
CUG 2010

High Performance Computing
driven software development for
next-generation modelling of the

world’s oceans

Xiaohu Guo, Gerard Gorman, Mike Ashworth,
Stephan Kramer, Matthew Piggott, Andrew Sunderland.

ARC, CSE Department, STFC,
AMCG, Department of Earth Science and Engineering,

Imperial College London

dCSE ICOM Collaborations

•  Applied Modeling and Computation Group, Imperial
College, London (AMCG, http://amcg.ese.ic.ac.uk/)

•  ARC, The Computational Science & Engineering
Department (CSED), STFC (http:// www.cse.clrc.ac.uk/)

•  Proudman Oceanographic Laboratory, Liverpool (POL,
http://www.pol.ac.uk/)

CUG 2010

CUG 2010

INTRODUCTION

•  Overview of Imperial College Ocean Model
(ICOM) – the next generation ocean model

•  Solver Comparison

•  Profiling and Performance Analysis

•  Summary

Motivations for the next generation ocean model

•  To resolve a wide range of spatial and temporal scales

•  Model internal waves, boundary currents, eddies,
overflows, convection events, …, accurately and
efficiently within a global and coupled context

•  Need for accurate and efficient representation of highly
complex domains

•  Ability to model interaction of flow with small scale
topography, shelf seas, coastal regions, islands,
estuaries, harbours,…

CUG 2010

A overview of the Computational
Characteristic of ICOM

•  Unstructured FEM Code
–  Start with Fluidity – an open source control volume finite

element solver for 3D compressible multi-phase fluids. Has
been developed by AMCG for more than a decade and is the
basis for a range of multi-physics multi-scale applications

–  Initial mesh generation to follow complex bathymetry and
coastlines -- terrno

•  Adaptive Mesh, solving from large scales to small
scales.
–  Add an adaptivity library which performs topological

operations on the mesh, and mesh movement, to optimise
the size and shape of elements in response to error
measures

–  Dynamic load balance method -- Zoltan
CUG 2010

•  Most time spent solving Ax=b, where A is a Sparse
Matrix
–  FEM Matrix assembly
–  Using PETSc’s preconditioner and Iterative Solver
–  Most Computing time is spent here

•  Fortran, C++/C, Python MPI Based
•  Makes use of open source solutions for I/O,

Visualisation, etc
–  Advantage – using latest software features

CUG 2010

ICOM Software Package Lists

•  VTK
•  CGNS
•  BLAS
•  LAPACK
•  XML2
•  MPI
•  PETSc
•  ParMetis
•  APPACK

•  NetCDF
•  UDUnits
•  Python Development

Environments
•  Trang
•  Spatial-Index
•  Fortran 90 Compilers
•  C++
•  Subvision (SVN)

CUG 2010

CUG 2010

Unstructured meshes are an
Ideal choice for representing
complex problem domains
and a coupled range of
scales without the need for
grid nesting

Diamond automatic pre-processing tool
•  An xml schema file

describes the rules that
govern model options

•  Diamond uses this to
automatically generate a
GUI based on the schema

•  Options are entered and
output as another xml file
containing the options
values

•  This is read into an
options library accessible
from anywhere in code

•  Includes many features,
including the ability to
define python functions
executed at run time

Configuration of test case

•  Baroclinic gyre benchmark
test case has 10 million
vertices; resulting in 200
million degrees of freedom
for velocity

•  The basic configuration is
set-up to run for 4 time
steps and not to adapt.

•  Considering primarily the
matrix assembly and linear
solver stages of a model
run.

CUG 2010

Solver Comparisons

CUG 2010

•  The pressure matrix
has a very high
condition number

•  ICOM MG targeted
specially at large-
scale, large aspect
ratio ocean problems

•  ICOM MG has better
scalability than
BoomerAMG due to its
specialised nature.

Profiling and Performance Analysis

•  Users should not spend time optimizing a code until
after having determined where it spends the bulk of
its time on realistically sized problems.

•  Using CrayPAT/Vampir to address the parallel
aspects, such as parallel efficiency, load balancing
and communications overheads.

•  Automatic tools in Profiling tools didn’t work for ICOM
profiling

•  Simple timing hooks in the code to get a coarse grain
profile of code performance

CUG 2010

Basic Timings

CUG 2010

•  The solution process consists of the
assembly of the linear systems
representing the discretised
momentum equation and the pressure
equation.

•  Matrix assembly for pressure and
velocity can take more than 30% of
the total simulation time with 1024
cores.

•  Pressure solver is the main cost

•  Matrix assembly phase is expensive

o Significant loop nesting, where the
innermost loop increases in size with
increasing quadrature;
o Indirect addressing (due to
unstructured meshes)
o  Cache re-use.

Speedup and Efficiency

CUG 2010

the speedup and efficiency of momentum solver and each of
its components

Communication overhead and load
balance analysis

CUG 2010

•  Using CrayPAT, we obtained the
statistic of three groups of functions,
namely MPI functions, USER
functions and MPI_SYNC functions.

•  MPI_SYNC is used in the trace
wrapper for each collective
subroutine to measure the time
spent waiting at the barrier call
before entering the subroutine.

•  The time percentage of MPI SYNC
increases from 25.7% to 42.0%.

•  The time percentage spent in MPI
increases from 28.7% to 33.1%
while USER functions drop from
45.5% to 24.9%

Top time consuming USER functions

CUG 2010

•  The speed up of the linear solver
KSPSolve is about 3.5 with 4096
cores comparing with 1024 cores
according to the CrayPAT tracing
results.

•  The function main represents the
functions that have not been
traced in the code. These functions
are outside of momentum solver

•  Future work will focus on these
functions of poor scaling
behaviour.

Top time consuming MPI functions

CUG 2010

•  The most time consuming of the
MPI groups is MPI_Allreduce.

•  From the call tree generated by
CrayPAT, it becomes clear that
this function is called from
PetscMaxSum within PETSc.

•  MPI_Waitany is indicative of
the quality of the load balancing.
Given that this amount does not
increase significantly between
runs on 1024 to 4096 cores

Top time consuming MPI_SYNC functions

CUG 2010

MPI_Allreduce accounts
the most part of waiting time
spent in the barrier, it is
worth to check if there are
possibility to combine
several MPI_Allreduces
together.
MPI_Bcast and MPI_SCAN
are becoming more
significant on 4096 cores,
compared to runs on 1024
and 2048 cores

Guidelines for third party library tracing for ICOM

•  Requiring direct access to the source file or the object
file, which limits the analysis of third party software
performance, like PETSc.

•  Properly reducing the profiling data determines
qualities of profiling.

•  Coarse time profiling + Fine grain profiling of specific
parts of the code with CrayPAT/Vampir has been
effective for ICOM

CUG 2010

Summary
•  From a starting point where the code was only routinely run on 64

cores on a local cluster, the ICOM dCSE project has significantly
improved the performance of the code to enable efficient usage of large
high performance computing systems such as the Hector Cray XT4.

•  Presently the code is now scaling well up to at least 4096 cores on
HECToR.

•  Porting the code to HECToR has involved several challenges.
–  the code requires a range of third party libraries which need to be maintained on the

target platform
–  Some Fortran 95 programming constructs caused compiler issues (stress-tested) for

the various compilers. Resolving these required substantial effort from different groups
including the developers, STFC ARC group and HECToR Support.

•  Profiling the real world applications is a big challenge
–  Need to reduce the profiling data size whilst maintaining a representative dataset
–  Manual instrumentation was required in order to focus on specific sections of the ICOM

code.
–  CrayPAT and Vampir are well suited to fine grain profiling on specific sections of the

code
CUG 2010

Acknowledgements

•  The authors would like to acknowledge the support of a
HECToR distributed Computational Science and
Engineering award.

•  The authors would also like to thank the HECToR and
NAG support team for their help throughout this work.

•  Gerard Gorman gratefully acknowledges support from the
Leverhulme Trust.

•  Some experiments of this paper has been carried on the
Swiss National Supercomputing Centre's Cray XT5,
Rosa, and we would also like to thank their support team.

CUG 2010

THANKS !

CUG 2010

