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dCSE ICOM Collaborations 

•  Applied Modeling and Computation Group, Imperial 
College, London  (AMCG, http://amcg.ese.ic.ac.uk/)  

•  ARC, The Computational Science & Engineering 
Department (CSED), STFC  (http:// www.cse.clrc.ac.uk/)  

•  Proudman Oceanographic Laboratory, Liverpool (POL, 
http://www.pol.ac.uk/)  
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INTRODUCTION 

•  Overview of Imperial College Ocean Model 
(ICOM) – the next generation ocean model 

•  Solver Comparison 

•  Profiling and Performance Analysis 

•  Summary 



Motivations for the next generation ocean model 

•  To resolve a wide range of spatial and temporal scales 

•  Model internal waves, boundary currents, eddies, 
overflows, convection events, …, accurately and 
efficiently within a global and coupled context  

•  Need for accurate and efficient representation of highly 
complex domains 

•  Ability to model interaction of flow with small scale 
topography, shelf seas, coastal regions, islands, 
estuaries, harbours,…  
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A overview of the Computational 
Characteristic of  ICOM 

•  Unstructured FEM Code  
–  Start with Fluidity – an open source control volume finite 

element solver for 3D compressible multi-phase fluids. Has 
been developed by AMCG for more than a decade and is the 
basis for a range of multi-physics multi-scale applications 

–  Initial mesh generation to follow complex bathymetry and 
coastlines -- terrno 

•  Adaptive Mesh, solving from large scales to small 
scales. 
–  Add an adaptivity library which performs topological 

operations on the mesh, and mesh movement, to optimise 
the size and shape of elements in response to error 
measures 

–  Dynamic load balance method -- Zoltan 
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•  Most time spent solving Ax=b, where A is a Sparse 
Matrix 
–  FEM Matrix assembly 
–  Using PETSc’s preconditioner and Iterative Solver 
–  Most Computing time is spent here 

•  Fortran, C++/C, Python MPI Based  
•  Makes use of open source solutions for I/O, 

Visualisation, etc 
–  Advantage – using latest software features 
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ICOM Software Package Lists 

•  VTK  
•  CGNS  
•  BLAS  
•  LAPACK  
•  XML2  
•  MPI  
•  PETSc  
•  ParMetis 
•  APPACK  

•  NetCDF  
•  UDUnits  
•  Python Development 

Environments  
•  Trang  
•  Spatial-Index  
•  Fortran 90 Compilers  
•  C++  
•  Subvision (SVN) 
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Unstructured meshes are an  
Ideal choice for representing  
complex problem domains 
and a coupled range of 
scales without the need for 
grid nesting 



Diamond automatic pre-processing tool 
•  An xml schema file 

describes the rules that 
govern model options 

•  Diamond uses this to 
automatically generate a 
GUI based on the schema 

•  Options are entered and 
output as another xml file 
containing the options 
values 

•  This is read into an 
options library accessible 
from anywhere in code 

•  Includes many features, 
including the ability to 
define python functions 
executed at run time 



Configuration of test case 

•  Baroclinic gyre benchmark 
test case has 10 million 
vertices; resulting in 200 
million degrees of freedom 
for velocity 

•  The basic configuration is 
set-up to run for 4 time 
steps and not to adapt. 

•  Considering primarily the 
matrix assembly and linear 
solver stages of a model 
run. 
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Solver Comparisons 
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•  The pressure matrix 
has a very high 
condition number 

•  ICOM MG targeted 
specially at large-
scale, large aspect  
ratio ocean problems 

•  ICOM MG has better 
scalability than 
BoomerAMG due to its 
specialised nature. 



Profiling and Performance Analysis 

•  Users should not spend time optimizing a code until 
after having determined where it spends the bulk of 
its time on realistically sized problems. 

•  Using CrayPAT/Vampir to address the parallel 
aspects, such as parallel efficiency, load balancing 
and communications overheads. 

•  Automatic tools in Profiling tools didn’t work for ICOM 
profiling 

•  Simple timing hooks in the code to get a coarse grain 
profile of code performance 
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Basic Timings 
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•  The solution process consists of the 
assembly of the linear systems 
representing the discretised 
momentum equation and the pressure 
equation. 

•   Matrix assembly for pressure and 
velocity can take more than 30% of 
the total simulation time with 1024 
cores. 

•  Pressure solver is the main cost 

•  Matrix assembly phase is expensive 

o Significant loop nesting, where the 
innermost loop increases in size with 
increasing quadrature;  
o Indirect addressing (due to 
unstructured meshes)  
o  Cache re-use. 



Speedup and Efficiency 
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the speedup and efficiency of momentum solver and each of 
its components 



Communication overhead and load 
balance analysis 
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•  Using CrayPAT, we obtained the 
statistic of three groups of functions, 
namely MPI functions, USER 
functions and MPI_SYNC functions. 

•   MPI_SYNC is used in the trace 
wrapper for each collective 
subroutine to measure the time 
spent waiting at the barrier call 
before entering the subroutine. 

•  The time percentage of MPI SYNC 
increases from 25.7% to 42.0%. 

•  The time percentage spent in MPI 
increases from 28.7% to 33.1% 
while USER functions drop from 
45.5% to 24.9% 



Top time consuming USER functions 
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•  The speed up of the linear solver 
KSPSolve is about 3.5 with 4096 
cores comparing with 1024 cores 
according to the CrayPAT tracing 
results. 

•  The function main represents the 
functions that have not been 
traced in the code. These functions 
are outside of momentum solver 

•  Future work will focus on these 
functions of poor scaling 
behaviour. 



Top time consuming MPI functions 
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•  The most time consuming of the 
MPI groups is MPI_Allreduce. 

•  From the call tree generated by 
CrayPAT, it becomes clear that 
this function is called from 
PetscMaxSum within PETSc. 

•  MPI_Waitany is indicative of 
the quality of the load balancing. 
Given that this amount does not 
increase significantly between 
runs on 1024 to 4096 cores 



Top time consuming MPI_SYNC functions 
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MPI_Allreduce accounts 
the most part of waiting time 
spent in the barrier, it is 
worth to check if there are 
possibility to combine 
several MPI_Allreduces 
together. 
MPI_Bcast and MPI_SCAN 
are becoming more 
significant on 4096 cores, 
compared to runs on 1024 
and 2048 cores 



Guidelines for third party library tracing for ICOM 

•  Requiring direct access to the source file or the object 
file, which limits the analysis of third party software 
performance, like PETSc. 

•  Properly reducing the profiling data determines 
qualities of profiling. 

•  Coarse time profiling + Fine grain profiling of specific 
parts of the code with CrayPAT/Vampir has been 
effective for  ICOM 
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Summary 
•  From a starting point where the code was only routinely run on 64 

cores on a local cluster, the ICOM dCSE project has significantly 
improved the performance of the code to enable efficient usage of large 
high performance computing systems such as the Hector Cray XT4. 

•  Presently the code is now scaling well up to at least 4096 cores on 
HECToR. 

•  Porting the code to HECToR has involved several challenges. 
–  the code requires a range of third party libraries which need to be maintained on the 

target platform 
–  Some Fortran 95 programming constructs caused compiler issues (stress-tested) for 

the various compilers. Resolving these required substantial effort from different groups 
including the developers, STFC ARC group and HECToR Support. 

•  Profiling the real world applications is a big challenge 
–  Need to reduce the profiling data size whilst maintaining a representative dataset 
–  Manual instrumentation was required in order to focus on specific sections of the ICOM 

code. 
–  CrayPAT and Vampir are well suited to fine grain profiling on specific sections of the 

code 
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