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Abstract: As petascale systems establish themselves as the standard for high-end Top 500 machines and as 
the leadership sites sets their sights on exascale systems, many important considerations in the design and 
efficient operation of batch systems need to be resolved. In this paper, we will discuss scalability and other 
issues regarding the scheduling of batch workload and resources these leading sites will face in the future. 

 

1. Background/Introduction 

Helpful to a proper understanding of the properties 
needed in future workload schedulers is an understand-
ing of the trends that have brought us to petascale* 
computing  and the emerging issues that are shaping 
our path to the next level of computing—exascale† 
computing. 

Through the 1970s and 1980s, the fastest super-
computers were based on vector architectures. Gigas-
cale computing (109) was achieved in 1985 with the 
Cray 2 vector supercomputer. But the vector architec-
ture eventually ran into scaling limits and began to be 
surpassed by clusters. The first terascale computer 
(1012) appeared in 1997 and was based on a massively 
parallel cluster of compute nodes (ASCI Red). Massive-
ly parallel architectures using thousands of processors 
from commodity PCs running Unix dominated super-
computing for the next couple of decades. (Wladawsky-
Berger.) 

As increases due to clock speed tapered off and 
clusters of nodes expanded to the tens of thousands, the 
path from terascale to petascale was driven by the 
growth of multi-core processors. As a case in point, in 
2005 the 26 teraflop/s Cray XT had only one CPU core 
on each compute node. Over the next three years, the 
computational power of this system doubled three times 
as the number of cores doubled to two, then four, and 
finally eight cores per node, giving the Cray XT system 

                                                           
* A computer system capable of achieving perfor-

mance of excess of one quadrillion (1015) floating point 
operations per second. 

† A computer system capable of achieving perfor-
mance of one quintillion (1018) floating point operations 
per second. 

more than a quarter of a petaflop/s capability. In late 
2008, a 1.3 petaflop/s Cray XT5 system was installed at 
ORNL and a year later was upgraded to faster proces-
sors to achieve its present 2.3 petaflop/s computational 
power using 12 cores per node. (Geist.) 

Cray’s strategy of employing a lightweight Linux 
operating system that severely reduces system “noise” 
as well as network chatter was an important key in be-
ing able to scale to over 100,000 processors and achieve 
petascale computing in 2008. IBM’s BlueGene used 
similar strategies to bring Lawrence Livermore systems 
to be the first to achieve hundreds of teraflop/s. The 
trend of minimizing system noise and interrupts is like-
ly to continue and result in more lightweight compute 
node platforms and may also instigate the increased use 
of virtualization and custom provisioning. 

Current trends project that exascale systems will 
begin to appear by around 2018. Because we are no 
longer able to increase the performance of a single 
processing element by turning up the clock rate because 
of power and cooling issues, we now have to rely solely 
on increased concurrency. Since our primary path to 
increasing performance will be through parallelism, we 
anticipate exascale systems may have upwards of 100 
million cores. (Wladawsky-Berger.) 

Beginning today with petascale systems such as 
Jaguar, the roadmap shows that systems with a few tens 
of petaflop/s will be available in the 2011–2012 time-
frame. The first example may be the National Science 
Foundation's Blue Waters system, which is expected to 
be delivered to the National Center for Scientific Appli-
cations in 2011. By 2015, systems with a few hundred 
petaflop/s are expected to exist. In the 2018–2020 time-
frame, the first exascale system is expected to appear. 
(Geist.) 

Just as multi-core chips were the technology driver 
that enabled petascale science, research suggests that 
the emerging heterogeneous many-core processor tech-
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nology will replace the current multi-core trend in order 
to reach exaflop/s scaling. Whereas multi-core proces-
sors have a few to tens of cores, many-core processors 
will have hundreds of cores on each chip. These many-
core processors place hundreds of specialized cores 
(such as GPUs) on a chip with a few general-purpose 
cores as controllers. Such heterogeneous many-core 
chips have been announced by AMD, Intel, and other 
chip manufacturers. Heterogeneity in future systems 
may also be driven by the increasingly common inclu-
sion of accelerators such as Field Programmable Arrays 
(FPGA), vector accelerators, and special-purpose com-
puters. 

Heterogeneous, many-core processors additionally 
have the potential to overcome a major exascale chal-
lenge—power consumption—by providing two orders 
of magnitude more flop/s per watt than multi-core pro-
cessors. (Geist.) Even with these innovations, power 
consumption continues to be a major challenge for ex-
ascale. Projections in the Defense Advanced Research 
Projects Agency’s extreme scale study show that the 
power consumption for an exascale system in 2018 
even under optimistic assumptions would be 100–200 
MW. The electric bill for that much power would be in 
excess of $100 million per year and is tantamount to the 
power produced by a small power plant. (Geist.) 

Interconnection network topologies will become of 
increasing importance. With millions of nodes, nodes 
will be anywhere from one to many hops from each 
other. Optimal inter-node connectivity becomes critical 
for both path redundancy and communication latency. 
The volume of data traffic will tend to increase signifi-
cantly in future systems since a job will now be spread 
out over more nodes and more communication will be 
relayed over the network. Network chatter will have to 
be severely curtailed in such systems and efficient 
communication mechanisms utilized. 

Further we have the challenge of resiliency (Bianc-
hini), which becomes significantly more pronounced in 
large systems since as more nodes are added to the sys-
tem, each with a relatively constant MTBF (Mean Time 
Between Failure), the MTBF for the overall system is 
significantly reduced. Assuming a node MTBF of 106 
hours, we would have a system MTBF of just a few 
hours at best for an exascale system. (Kogge.) 

These technology trends have major implications 
for batch schedulers, requiring major innovations in a 
wide range of areas. New mechanisms to address scala-
bility will be paramount. An exascale batch system will 
have to be more autonomic in nature, optimizing and 
adapting to new conditions and failures. It will have to 
be fault tolerant and intelligently migrate jobs around 
failed or failing components. Scheduler support for 
virtualization may be needed to perform live process 
migration from failing nodes and may also be used to 
allow the compute node operating system to be ex-

tremely lightweight. The batch system will need to take 
into account the physical network topology to minimize 
connection distance and communication latency. Ener-
gy-aware scheduling may become more important. Pol-
icies and mechanisms for efficiently scheduling over 
heterogeneous many-core nodes will be essential. 

Increased capacity will lead to new usage patterns 
and will require more adaptable scheduling mechanisms 
and policies. Support for reservations for failure isola-
tion, rolling maintenances, and political policy parti-
tioning will be key. Emerging cloud technologies will 
spur the need for dynamic provisioning of virtually 
every aspect of the environment. 

2. Scalability 

The increased scale of future high-performance 
computing systems, in terms of number of nodes, will 
have effects on job scheduling, job submission and job 
startup rates, collection of node-state and job-state in-
formation from the compute nodes, and client-
command performance. 

For capability machines‡, job submission rate will 
be relatively unchanged since we expect a comparable 
number of jobs on the next-generation systems. But for 
capacity machines, where the increase in the number of 
nodes per job will not keep up with the increase of the 
number of nodes in the machine, job counts will be 
significantly higher and the resource manager will have 
to be able to handle a significantly increased (perhaps 
on the order of 100) job submission rate. Since the 
clock rate is not expected to be significantly increased 
in this timeframe, submissions may have to be handled 
in a more distributed manner (with more logic in the 
client, or communicating with one of many batch serv-
ers, though independent of the scheduling thread). 
Another optimization may be for resource managers 
and schedulers to store their object data in an enterprise 
database so job submissions, client requests, and re-
source managers, can perform their functions without 
impinging on scheduling or other simultaneous schedu-
ler requests. 

Start rate will be more of a concern as the launch-
ing of processes on an increased number of nodes per 
job will have to be coordinated. One might naively ex-
pect job start times to increase linearly with the number 
of nodes (~100x), but this is clearly untenable. At pe-

                                                           
‡ High-end supercomputers can be classified as be-

ing designated for either capability or capacity compu-
ting. Capability supercomputers use large portions of 
the resources to solve very large problems in the short-
est amount of time. Capacity supercomputers, on the 
other hand, support large numbers of simultaneous 
smaller problems. 
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tascale and on to exascale, a resource manager will 
need to use a more sophisticated approach for data dis-
semination and aggregation than one-to-all communica-
tion. It will need to utilize some form of distributed or 
hierarchical approach. If we assume that we will be 
using a tree-based hierarchical data-dissemination mod-
el, the exascale startup time may go up merely by one 
third (assuming an n-ary tree of degree 10) from the 
petascale startup time. 

Another serious challenge will be collecting the job 
and node-state information from the compute nodes 
where the jobs are running. The volume of data from a 
million nodes to update the resource manager with the 
current node and job state would completely over-
whelm both the network and the resource manager un-
less very carefully managed by a number of enhance-
ments. First, instead of sending all information, each 
node will need to send only “delta” information, that is, 
send only the values that have changed since the last 
data transfer. Next, some form of distributed or tiered 
approach will be needed to avoid directly sending data 
over the network from all compute nodes to the re-
source manager. The compute nodes may each update 
to a distributed database, or they may use a tree-based 
hierarchical data-aggregation model where information 
is aggregated in tiers from child sub-trees (in reverse of 
the hierarchical distribution tree) to funnel the informa-
tion back in a manner that will not overwhelm the net-
work or the resource manager. Data compression will 
also become a key factor, especially if using a hierar-
chical data-aggregation tree. 

Scheduling algorithms will also be affected by 
next-generation realities. Scheduling algorithms are 
diverse and complex, but as a first-order approximation, 
one might roughly say that scheduling computation 
may roughly scale on the order of jobs times nodes. 
Therefore, the scheduling problem would be expected 
to be at least 100 times more complex on capability 
machines (because of the assumed hundredfold increase 
in nodes from petascale to exascale) and even more so 
(perhaps a thousandfold) for capacity machines. Some 
of the better optimizing scheduling routines would suf-
fer a higher-order impact. This poses a challenge since 
any ordered scheduling (priority, FIFO, etc.) is not an 
easy thing to make multi-threaded and clock speeds are 
not likely to increase with system size. Undoubtedly, 
batch-system vendors will continue to innovate through 
coding optimizations (and potential use of accelerators) 
to keep up with the challenge at least through exascale. 
Some current algorithms, however, will likely have to 
be discarded for more efficient ones. 

Batch-system client-command invocation will un-
doubtedly see an increase on the capacity machines. 
However, to the extent that these requests can be engi-
neered to interact directly with an enterprise data repo-

sitory for their information, such invocation will likely 
not pose a serious problem. 

3. Resiliency 

Future systems will have millions of nodes in them. 
They will have substantially more processing elements, 
more memory components, and more network links. 
The system MTBF will be reduced to the point that 
failures will be continuous rather than exceptional oc-
currences. Every layer of the batch and application 
stack will have to be designed to dynamically detect, 
adapt to, and recover from failures. The typical capabil-
ity job will encounter component, node, or network 
failure as a matter of course in its lifetime, so new 
measures must be instituted to dynamically route 
around failures that formerly proved to be fatal for the 
job. 

Workload manager systems need to be fault tole-
rant. Compute nodes will need to automatically register 
themselves to the resource management system and be 
deregistered when they fail to check in. It may be useful 
to establish a hierarchical or peer-to-peer relationship 
between the resource management subsystems on the 
compute nodes for communication efficiencies. These 
connections will need to be formed dynamically, and 
the connection graph will need to adapt automatically to 
node or network failures. 

Users expect their jobs to run to completion in spite 
of failures that will become the rule rather than the ex-
ception. System or application-level job check-pointing 
could be one way to approach this issue. That way, if a 
failure were to occur and the job were to terminate, the 
job could be restarted on a set of nodes and network 
links to avoid the problem. However, this approach may 
not be viable at future scales. Although processing 
power is keeping up with Moore’s law, network band-
width, disk storage, and memory access are becoming 
increasingly limiting factors for next-generation sys-
tems. Consider the magnitude of trying to write out a 
full-state checkpoint (including all memory, disk usage, 
in-flight messages, operating system states, etc.) of a 
million-node job network-attached disk storage. Next 
consider the length of time that would be required to 
complete this against the frequency with which these 
checkpoints would need to be taken, in the face of sys-
tem MTBFs measuring in hours or minutes. By the ex-
ascale timeframe, checkpoint-restart may cease to be 
the holy grail of HPC resiliency. 

A possible alternative (or supplementary) approach 
could be job or task migration. Some computing ven-
dors and leadership sites are studying ways to identify 
failing components before failures become catastrophic. 
If one were able to detect signs of component failure 
prior to loss, one could potentially migrate the effected 
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processes and tasks to other locations during the job 
run. One of the most promising ways to do this is with 
virtual machines. Virtual machines today are able to 
operate very close in performance to the physical ma-
chines they run on. Live process-level or job-level mi-
gration could be performed as a remedy to failing com-
ponents in the case where these failures can be pre-
dicted. (Wang.) 

 In fact, virtualization helps address another resi-
liency issue. We described the trend to have more 
lightweight operating system images to avoid noise and 
interrupts. This trend also has a positive effect on resi-
liency, since the fewer software elements that are run-
ning and installed on the system, the less that can go 
wrong. Through virtualization or other means, a job 
submitter could dynamically provision the application 
environment with the entire required software stack by 
means of a virtual machine image booted on their allo-
cated compute nodes. If this practice became the norm, 
the compute nodes could become very streamlined in-
deed. This approach could additionally protect the secu-
rity of the system software and provide an effective 
means to allow for bounded sharing of the many cores 
per node among multiple jobs. 

4. Power 

Some exascale studies are finding that the single 
most difficult and pervasive challenge deals with ener-
gy use. (Kogge.) This involves not only the power con-
sumed by processing components but also the increa-
singly expensive energy costs related to data transporta-
tion. It is generally agreed that the thousandfold in-
crease in processing power between petascale and exas-
cale computing must be accompanied by not more than 
a tenfold increase in energy consumption, or the costs 
for operating these systems will be prohibitively expen-
sive. (Wladawsky-Berger.) One of the technologies that 
could contribute to lower overall energy costs is ener-
gy-aware scheduling. 

One of the highest payoffs could be achieved by 
reducing power consumption for unused or underuti-
lized resources. Intelligent batch systems, such as the 
Moab Workload Manager, can be used to place idle 
servers or resources in power-saving modes or even 
power nodes off completely until needed. Next-
generation power-management software will be able to 
turn off or ratchet down unneeded resources within a 
node. The workload manager may be able to interact 
with the power management software on a node to help 
it identify and power down resources that are not cur-
rently needed. 

Additionally, workload managers may be able to 
take into account component power usage and factors 
that contribute to high power consumption, such as 

temperature and activity hotspots. Cost savings could 
be achieved by using an intelligent scheduler to route 
workload around such hotspots and make placement 
and timing decisions to minimize overall energy costs. 

5. Topology 

The computational processing rate of nodes as 
measured in flop/s is increasing substantially faster than 
the rate of bandwidth increases in the communication 
interconnects. Thus inter-node communication is be-
coming an ever-increasing bottleneck for parallel-
application performance. Moreover, the topology of the 
network interconnect will continue to become a much 
larger factor in system scalability and application per-
formance. With millions of nodes in future systems, it 
is not feasible for all nodes to be physically or even 
logically close to each other. While some nodes will be 
single hops apart, other nodes will be many hops in 
distance apart. 

Schedulers that can make use of network-topology 
information to allocate nodes to jobs that are physically 
or logically close to each other will be needed. The 
placement of nodes in close network proximity will 
result in communication-bound application perfor-
mance being many times improved over less optimal 
placements. 

One question to ask is how much should a work-
load manager know about the topology? One could 
relatively easily construct a map indicating pair-wise 
connections of all nodes that have direct connections, 
but this fails to model the problem, since many of the 
hops will be through switches and routers. A list of dis-
tances between each one of a million nodes and every 
other node would include about 500 billion paths, not to 
mention the intractability of trying to find a least-
distance node set within this data. One approach to this 
problem is to have the scheduler make a call to an ex-
ternal service for this information. The request would 
specify a list of nodes that have been prescreened as 
feasible for the job and possibly even presorted accord-
ing to other preference and priority factors, along with a 
count of how many nodes are wanted. The topology 
service would then return a list of nodes that have topo-
logical proximity, which the scheduler would then allo-
cate for the job. This model is currently being used by 
the Moab Workload Manager on BlueGene systems. 

However, another very viable approach can be de-
rived from the fact that almost all systems are delivered 
and organized in cabinets or pods. These units normally 
have up to a few hundred compute nodes that are physi-
cally and logically close to each other and among which 
the network topology is approximately flat. Thus, nodes 
can be organized into chunks, where members of each 
chunk are close to one other. These chunks themselves 
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may then be organized into chunks of chunks that are 
close to each other, depending on the actual network 
topology. This approach vastly simplifies the problem 
in that a scheduler can actually know about and manage 
scheduling within this granularity of detail. It can quite 
readily compute a first-order placement decision, which 
will come reasonably close to optimal performance. 
Jobs that are smaller than these chunks would simply be 
placed entirely within a chunk. Jobs that are larger than 
the chunk size would fill up whole chunks (cabinets or 
pods) and be placed in chunks that are close to each 
other. The need to address more than two layers of 
chunking in the proximal future is unlikely. Schedulers 
will need a way to allocate nodes across the minimal 
number of maximally filled chunks possible. It will also 
be useful to be able to express the closeness of these 
chunks to each other in order to minimize hops in cross-
chunk communication. (Bhatele.) 

6. Usage Considerations 

A variety of usage considerations must be taken in-
to account for any large-scale system. In addition to the 
technical considerations outlined in the previous sec-
tions, a system administrator must also look at how the 
system is going to be used by the target user base. 
Large-scale systems should not only be able to serve 
the current needs of the current users but also offer 
new, exciting possibilities to the administrators. With 
the increased capacity, system owners can potentially 
tap new markets and provide their users with new offer-
ings. This section will not only outline some of the 
practical considerations for today’s users but also pro-
vide additional ideas and directions for potential new 
uses for a petascale system in the areas of dynamic pro-
visioning and virtualization. 

Dynamic Provisioning 

Just as system designers must decide what mix of 
hardware to use in their clusters, they are also faced 
with many software-mix decisions. One such important 
decision in this area is what operating system or mix of 
operating systems to install on the selected hardware. 
Many cluster users have very specific needs in terms of 
what operating systems are required to execute their 
workloads. Users’ needs for specific operating systems 
can potentially lead to the creation of resource silos 
based on the software stacks. 

Fortunately, unlike hardware changes, software 
changes are comparably easy to automate. Already, a 
number of clusters in the world automatically change 
their operating systems or other parts of their software 
stacks dynamically to meet workload needs. One such 

HPC system that has effectively deployed this type of 
solution is SciNet at the University of Toronto (Adap-
tive Computing). With such a system, it is necessary to 
increase and improve what is covered by a job defini-
tion. Workload  must understand its own software re-
quirements and be able to communicate those needs to 
the scheduler, just as it would communicate any re-
quirement for processor or memory. In addition, to 
make the most effective use of the resources possible, 
an intelligent scheduler or orchestrator with the follow-
ing attributes is needed: 

1. Capable of receiving and understanding software 
requirements 

2. Able to effect change to the underlying infrastruc-
ture 

3. Understand trade-offs caused by temporarily taking 
systems offline to change operating system or 
software stack 

4. Maintains future view of resources and future res-
ervations to avoid potential thrashing situations 

Virtualization 

Another closely related topic is that of virtualiza-
tion. Traditionally, virtualization has not been a consid-
eration for heavily utilized HPC clusters because of the 
overhead and potential unpredictability that may be 
potentially injected into the cluster by virtualization and 
hypervisor technologies. However, as these technolo-
gies have matured and continued to receive increased 
support from hardware vendors, some members of the 
HPC community have expressed renewed interest in 
virtualization. 

Virtualization provides a number of potential gains 
for an owner of a large-scale cluster. While one school 
of thought may approach this issue and simply state that 
enough hardware exists within a petascale system to 
accomplish any task, the opposite camp may respond 
with the fact that virtualization technologies make poss-
ible new types of workload on the cluster. So, it is a 
case of adding new capabilities, as opposed to simply 
replacing existing use cases. In fact, if virtualization 
were to only replace existing functionality, the inherit 
drawbacks of virtualization technology would almost 
certainly override any potential gains. 

One potential use for virtualization technology in a 
large-scale system is that of being able to run user-
defined images. This is closely related to our earlier 
discussion around the desired ability for a cluster to 
dynamically change its software infrastructure to meet 
user needs. In this slightly more advanced use case, 
users would be able to submit their workload encapsu-
lated within a virtual machine image. This is especially 
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useful for end users who have very specific needs in 
terms of operating system, required libraries, specia-
lized software, etc. Often these environments may be 
either comparably brittle or otherwise untenable for 
standard deployment within the cluster. However, by 
treating virtual machine images as just another type of 
workload, just like HPC batch, environments as work-
load can fall under the same set of policies and control 
as other workload. Naturally, creating a cluster capable 
of handling these more advanced use cases requires 
additional work and more intelligent management than 
a traditional HPC cluster. Such an effort requires a 
scheduler that can understand both types of workload 
and route them appropriately, as improved or additional 
resource managers may be needed to handle this en-
hanced form of workload. 

Another potential area of benefit is that of check-
pointing workload. Almost all virtualization technolo-
gies support a form of checkpointing. In a virtualized 
environment, this checkpointing can be used to archive 
running systems. It can be used to perform a checkpoint 
and restart function. When combined with the migration 
capabilities found in many virtualization technologies, 
many potential benefits arise. For example, large HPC 
clusters often have many large, long-running jobs. As-
suming the I/O and network bandwidth issues can be 
addressed, a virtualized system running under an intel-
ligent scheduler would be able to automatically migrate 
workload from servers that are beginning to experience 
problems as reported by built-in or external hardware-
monitoring systems. This will become increasingly im-
portant as we continue to build larger systems with 
shorter MTBF periods. 
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