
Considerations for Developing and Deploying Petascale Systems
to Ensure Optimum Scheduling of Resources

Scott Jackson and Trev Harmon

Adaptive Computing, Provo, Utah
May 26, 2010

Abstract: As petascale systems establish themselves as the standard for high-end Top 500 machines and as
the leadership sites sets their sights on exascale systems, many important considerations in the design and
efficient operation of batch systems need to be resolved. In this paper, we will discuss scalability and other
issues regarding the scheduling of batch workload and resources these leading sites will face in the future.

1. Background/Introduction

Helpful to a proper understanding of the properties
needed in future workload schedulers is an understand-
ing of the trends that have brought us to petascale*
computing and the emerging issues that are shaping
our path to the next level of computing—exascale†
computing.

Through the 1970s and 1980s, the fastest super-
computers were based on vector architectures. Gigas-
cale computing (109) was achieved in 1985 with the
Cray 2 vector supercomputer. But the vector architec-
ture eventually ran into scaling limits and began to be
surpassed by clusters. The first terascale computer
(1012) appeared in 1997 and was based on a massively
parallel cluster of compute nodes (ASCI Red). Massive-
ly parallel architectures using thousands of processors
from commodity PCs running Unix dominated super-
computing for the next couple of decades. (Wladawsky-
Berger.)

As increases due to clock speed tapered off and
clusters of nodes expanded to the tens of thousands, the
path from terascale to petascale was driven by the
growth of multi-core processors. As a case in point, in
2005 the 26 teraflop/s Cray XT had only one CPU core
on each compute node. Over the next three years, the
computational power of this system doubled three times
as the number of cores doubled to two, then four, and
finally eight cores per node, giving the Cray XT system

* A computer system capable of achieving perfor-

mance of excess of one quadrillion (1015) floating point
operations per second.

† A computer system capable of achieving perfor-
mance of one quintillion (1018) floating point operations
per second.

more than a quarter of a petaflop/s capability. In late
2008, a 1.3 petaflop/s Cray XT5 system was installed at
ORNL and a year later was upgraded to faster proces-
sors to achieve its present 2.3 petaflop/s computational
power using 12 cores per node. (Geist.)

Cray’s strategy of employing a lightweight Linux
operating system that severely reduces system “noise”
as well as network chatter was an important key in be-
ing able to scale to over 100,000 processors and achieve
petascale computing in 2008. IBM’s BlueGene used
similar strategies to bring Lawrence Livermore systems
to be the first to achieve hundreds of teraflop/s. The
trend of minimizing system noise and interrupts is like-
ly to continue and result in more lightweight compute
node platforms and may also instigate the increased use
of virtualization and custom provisioning.

Current trends project that exascale systems will
begin to appear by around 2018. Because we are no
longer able to increase the performance of a single
processing element by turning up the clock rate because
of power and cooling issues, we now have to rely solely
on increased concurrency. Since our primary path to
increasing performance will be through parallelism, we
anticipate exascale systems may have upwards of 100
million cores. (Wladawsky-Berger.)

Beginning today with petascale systems such as
Jaguar, the roadmap shows that systems with a few tens
of petaflop/s will be available in the 2011–2012 time-
frame. The first example may be the National Science
Foundation's Blue Waters system, which is expected to
be delivered to the National Center for Scientific Appli-
cations in 2011. By 2015, systems with a few hundred
petaflop/s are expected to exist. In the 2018–2020 time-
frame, the first exascale system is expected to appear.
(Geist.)

Just as multi-core chips were the technology driver
that enabled petascale science, research suggests that
the emerging heterogeneous many-core processor tech-

Considerations for Petascale Systems 2 Scott Jackson and Trev Harmon

nology will replace the current multi-core trend in order
to reach exaflop/s scaling. Whereas multi-core proces-
sors have a few to tens of cores, many-core processors
will have hundreds of cores on each chip. These many-
core processors place hundreds of specialized cores
(such as GPUs) on a chip with a few general-purpose
cores as controllers. Such heterogeneous many-core
chips have been announced by AMD, Intel, and other
chip manufacturers. Heterogeneity in future systems
may also be driven by the increasingly common inclu-
sion of accelerators such as Field Programmable Arrays
(FPGA), vector accelerators, and special-purpose com-
puters.

Heterogeneous, many-core processors additionally
have the potential to overcome a major exascale chal-
lenge—power consumption—by providing two orders
of magnitude more flop/s per watt than multi-core pro-
cessors. (Geist.) Even with these innovations, power
consumption continues to be a major challenge for ex-
ascale. Projections in the Defense Advanced Research
Projects Agency’s extreme scale study show that the
power consumption for an exascale system in 2018
even under optimistic assumptions would be 100–200
MW. The electric bill for that much power would be in
excess of $100 million per year and is tantamount to the
power produced by a small power plant. (Geist.)

Interconnection network topologies will become of
increasing importance. With millions of nodes, nodes
will be anywhere from one to many hops from each
other. Optimal inter-node connectivity becomes critical
for both path redundancy and communication latency.
The volume of data traffic will tend to increase signifi-
cantly in future systems since a job will now be spread
out over more nodes and more communication will be
relayed over the network. Network chatter will have to
be severely curtailed in such systems and efficient
communication mechanisms utilized.

Further we have the challenge of resiliency (Bianc-
hini), which becomes significantly more pronounced in
large systems since as more nodes are added to the sys-
tem, each with a relatively constant MTBF (Mean Time
Between Failure), the MTBF for the overall system is
significantly reduced. Assuming a node MTBF of 106
hours, we would have a system MTBF of just a few
hours at best for an exascale system. (Kogge.)

These technology trends have major implications
for batch schedulers, requiring major innovations in a
wide range of areas. New mechanisms to address scala-
bility will be paramount. An exascale batch system will
have to be more autonomic in nature, optimizing and
adapting to new conditions and failures. It will have to
be fault tolerant and intelligently migrate jobs around
failed or failing components. Scheduler support for
virtualization may be needed to perform live process
migration from failing nodes and may also be used to
allow the compute node operating system to be ex-

tremely lightweight. The batch system will need to take
into account the physical network topology to minimize
connection distance and communication latency. Ener-
gy-aware scheduling may become more important. Pol-
icies and mechanisms for efficiently scheduling over
heterogeneous many-core nodes will be essential.

Increased capacity will lead to new usage patterns
and will require more adaptable scheduling mechanisms
and policies. Support for reservations for failure isola-
tion, rolling maintenances, and political policy parti-
tioning will be key. Emerging cloud technologies will
spur the need for dynamic provisioning of virtually
every aspect of the environment.

2. Scalability

The increased scale of future high-performance
computing systems, in terms of number of nodes, will
have effects on job scheduling, job submission and job
startup rates, collection of node-state and job-state in-
formation from the compute nodes, and client-
command performance.

For capability machines‡, job submission rate will
be relatively unchanged since we expect a comparable
number of jobs on the next-generation systems. But for
capacity machines, where the increase in the number of
nodes per job will not keep up with the increase of the
number of nodes in the machine, job counts will be
significantly higher and the resource manager will have
to be able to handle a significantly increased (perhaps
on the order of 100) job submission rate. Since the
clock rate is not expected to be significantly increased
in this timeframe, submissions may have to be handled
in a more distributed manner (with more logic in the
client, or communicating with one of many batch serv-
ers, though independent of the scheduling thread).
Another optimization may be for resource managers
and schedulers to store their object data in an enterprise
database so job submissions, client requests, and re-
source managers, can perform their functions without
impinging on scheduling or other simultaneous schedu-
ler requests.

Start rate will be more of a concern as the launch-
ing of processes on an increased number of nodes per
job will have to be coordinated. One might naively ex-
pect job start times to increase linearly with the number
of nodes (~100x), but this is clearly untenable. At pe-

‡ High-end supercomputers can be classified as be-

ing designated for either capability or capacity compu-
ting. Capability supercomputers use large portions of
the resources to solve very large problems in the short-
est amount of time. Capacity supercomputers, on the
other hand, support large numbers of simultaneous
smaller problems.

Considerations for Petascale Systems 3 Scott Jackson and Trev Harmon

tascale and on to exascale, a resource manager will
need to use a more sophisticated approach for data dis-
semination and aggregation than one-to-all communica-
tion. It will need to utilize some form of distributed or
hierarchical approach. If we assume that we will be
using a tree-based hierarchical data-dissemination mod-
el, the exascale startup time may go up merely by one
third (assuming an n-ary tree of degree 10) from the
petascale startup time.

Another serious challenge will be collecting the job
and node-state information from the compute nodes
where the jobs are running. The volume of data from a
million nodes to update the resource manager with the
current node and job state would completely over-
whelm both the network and the resource manager un-
less very carefully managed by a number of enhance-
ments. First, instead of sending all information, each
node will need to send only “delta” information, that is,
send only the values that have changed since the last
data transfer. Next, some form of distributed or tiered
approach will be needed to avoid directly sending data
over the network from all compute nodes to the re-
source manager. The compute nodes may each update
to a distributed database, or they may use a tree-based
hierarchical data-aggregation model where information
is aggregated in tiers from child sub-trees (in reverse of
the hierarchical distribution tree) to funnel the informa-
tion back in a manner that will not overwhelm the net-
work or the resource manager. Data compression will
also become a key factor, especially if using a hierar-
chical data-aggregation tree.

Scheduling algorithms will also be affected by
next-generation realities. Scheduling algorithms are
diverse and complex, but as a first-order approximation,
one might roughly say that scheduling computation
may roughly scale on the order of jobs times nodes.
Therefore, the scheduling problem would be expected
to be at least 100 times more complex on capability
machines (because of the assumed hundredfold increase
in nodes from petascale to exascale) and even more so
(perhaps a thousandfold) for capacity machines. Some
of the better optimizing scheduling routines would suf-
fer a higher-order impact. This poses a challenge since
any ordered scheduling (priority, FIFO, etc.) is not an
easy thing to make multi-threaded and clock speeds are
not likely to increase with system size. Undoubtedly,
batch-system vendors will continue to innovate through
coding optimizations (and potential use of accelerators)
to keep up with the challenge at least through exascale.
Some current algorithms, however, will likely have to
be discarded for more efficient ones.

Batch-system client-command invocation will un-
doubtedly see an increase on the capacity machines.
However, to the extent that these requests can be engi-
neered to interact directly with an enterprise data repo-

sitory for their information, such invocation will likely
not pose a serious problem.

3. Resiliency

Future systems will have millions of nodes in them.
They will have substantially more processing elements,
more memory components, and more network links.
The system MTBF will be reduced to the point that
failures will be continuous rather than exceptional oc-
currences. Every layer of the batch and application
stack will have to be designed to dynamically detect,
adapt to, and recover from failures. The typical capabil-
ity job will encounter component, node, or network
failure as a matter of course in its lifetime, so new
measures must be instituted to dynamically route
around failures that formerly proved to be fatal for the
job.

Workload manager systems need to be fault tole-
rant. Compute nodes will need to automatically register
themselves to the resource management system and be
deregistered when they fail to check in. It may be useful
to establish a hierarchical or peer-to-peer relationship
between the resource management subsystems on the
compute nodes for communication efficiencies. These
connections will need to be formed dynamically, and
the connection graph will need to adapt automatically to
node or network failures.

Users expect their jobs to run to completion in spite
of failures that will become the rule rather than the ex-
ception. System or application-level job check-pointing
could be one way to approach this issue. That way, if a
failure were to occur and the job were to terminate, the
job could be restarted on a set of nodes and network
links to avoid the problem. However, this approach may
not be viable at future scales. Although processing
power is keeping up with Moore’s law, network band-
width, disk storage, and memory access are becoming
increasingly limiting factors for next-generation sys-
tems. Consider the magnitude of trying to write out a
full-state checkpoint (including all memory, disk usage,
in-flight messages, operating system states, etc.) of a
million-node job network-attached disk storage. Next
consider the length of time that would be required to
complete this against the frequency with which these
checkpoints would need to be taken, in the face of sys-
tem MTBFs measuring in hours or minutes. By the ex-
ascale timeframe, checkpoint-restart may cease to be
the holy grail of HPC resiliency.

A possible alternative (or supplementary) approach
could be job or task migration. Some computing ven-
dors and leadership sites are studying ways to identify
failing components before failures become catastrophic.
If one were able to detect signs of component failure
prior to loss, one could potentially migrate the effected

Considerations for Petascale Systems 4 Scott Jackson and Trev Harmon

processes and tasks to other locations during the job
run. One of the most promising ways to do this is with
virtual machines. Virtual machines today are able to
operate very close in performance to the physical ma-
chines they run on. Live process-level or job-level mi-
gration could be performed as a remedy to failing com-
ponents in the case where these failures can be pre-
dicted. (Wang.)

 In fact, virtualization helps address another resi-
liency issue. We described the trend to have more
lightweight operating system images to avoid noise and
interrupts. This trend also has a positive effect on resi-
liency, since the fewer software elements that are run-
ning and installed on the system, the less that can go
wrong. Through virtualization or other means, a job
submitter could dynamically provision the application
environment with the entire required software stack by
means of a virtual machine image booted on their allo-
cated compute nodes. If this practice became the norm,
the compute nodes could become very streamlined in-
deed. This approach could additionally protect the secu-
rity of the system software and provide an effective
means to allow for bounded sharing of the many cores
per node among multiple jobs.

4. Power

Some exascale studies are finding that the single
most difficult and pervasive challenge deals with ener-
gy use. (Kogge.) This involves not only the power con-
sumed by processing components but also the increa-
singly expensive energy costs related to data transporta-
tion. It is generally agreed that the thousandfold in-
crease in processing power between petascale and exas-
cale computing must be accompanied by not more than
a tenfold increase in energy consumption, or the costs
for operating these systems will be prohibitively expen-
sive. (Wladawsky-Berger.) One of the technologies that
could contribute to lower overall energy costs is ener-
gy-aware scheduling.

One of the highest payoffs could be achieved by
reducing power consumption for unused or underuti-
lized resources. Intelligent batch systems, such as the
Moab Workload Manager, can be used to place idle
servers or resources in power-saving modes or even
power nodes off completely until needed. Next-
generation power-management software will be able to
turn off or ratchet down unneeded resources within a
node. The workload manager may be able to interact
with the power management software on a node to help
it identify and power down resources that are not cur-
rently needed.

Additionally, workload managers may be able to
take into account component power usage and factors
that contribute to high power consumption, such as

temperature and activity hotspots. Cost savings could
be achieved by using an intelligent scheduler to route
workload around such hotspots and make placement
and timing decisions to minimize overall energy costs.

5. Topology

The computational processing rate of nodes as
measured in flop/s is increasing substantially faster than
the rate of bandwidth increases in the communication
interconnects. Thus inter-node communication is be-
coming an ever-increasing bottleneck for parallel-
application performance. Moreover, the topology of the
network interconnect will continue to become a much
larger factor in system scalability and application per-
formance. With millions of nodes in future systems, it
is not feasible for all nodes to be physically or even
logically close to each other. While some nodes will be
single hops apart, other nodes will be many hops in
distance apart.

Schedulers that can make use of network-topology
information to allocate nodes to jobs that are physically
or logically close to each other will be needed. The
placement of nodes in close network proximity will
result in communication-bound application perfor-
mance being many times improved over less optimal
placements.

One question to ask is how much should a work-
load manager know about the topology? One could
relatively easily construct a map indicating pair-wise
connections of all nodes that have direct connections,
but this fails to model the problem, since many of the
hops will be through switches and routers. A list of dis-
tances between each one of a million nodes and every
other node would include about 500 billion paths, not to
mention the intractability of trying to find a least-
distance node set within this data. One approach to this
problem is to have the scheduler make a call to an ex-
ternal service for this information. The request would
specify a list of nodes that have been prescreened as
feasible for the job and possibly even presorted accord-
ing to other preference and priority factors, along with a
count of how many nodes are wanted. The topology
service would then return a list of nodes that have topo-
logical proximity, which the scheduler would then allo-
cate for the job. This model is currently being used by
the Moab Workload Manager on BlueGene systems.

However, another very viable approach can be de-
rived from the fact that almost all systems are delivered
and organized in cabinets or pods. These units normally
have up to a few hundred compute nodes that are physi-
cally and logically close to each other and among which
the network topology is approximately flat. Thus, nodes
can be organized into chunks, where members of each
chunk are close to one other. These chunks themselves

Considerations for Petascale Systems 5 Scott Jackson and Trev Harmon

may then be organized into chunks of chunks that are
close to each other, depending on the actual network
topology. This approach vastly simplifies the problem
in that a scheduler can actually know about and manage
scheduling within this granularity of detail. It can quite
readily compute a first-order placement decision, which
will come reasonably close to optimal performance.
Jobs that are smaller than these chunks would simply be
placed entirely within a chunk. Jobs that are larger than
the chunk size would fill up whole chunks (cabinets or
pods) and be placed in chunks that are close to each
other. The need to address more than two layers of
chunking in the proximal future is unlikely. Schedulers
will need a way to allocate nodes across the minimal
number of maximally filled chunks possible. It will also
be useful to be able to express the closeness of these
chunks to each other in order to minimize hops in cross-
chunk communication. (Bhatele.)

6. Usage Considerations

A variety of usage considerations must be taken in-
to account for any large-scale system. In addition to the
technical considerations outlined in the previous sec-
tions, a system administrator must also look at how the
system is going to be used by the target user base.
Large-scale systems should not only be able to serve
the current needs of the current users but also offer
new, exciting possibilities to the administrators. With
the increased capacity, system owners can potentially
tap new markets and provide their users with new offer-
ings. This section will not only outline some of the
practical considerations for today’s users but also pro-
vide additional ideas and directions for potential new
uses for a petascale system in the areas of dynamic pro-
visioning and virtualization.

Dynamic Provisioning

Just as system designers must decide what mix of
hardware to use in their clusters, they are also faced
with many software-mix decisions. One such important
decision in this area is what operating system or mix of
operating systems to install on the selected hardware.
Many cluster users have very specific needs in terms of
what operating systems are required to execute their
workloads. Users’ needs for specific operating systems
can potentially lead to the creation of resource silos
based on the software stacks.

Fortunately, unlike hardware changes, software
changes are comparably easy to automate. Already, a
number of clusters in the world automatically change
their operating systems or other parts of their software
stacks dynamically to meet workload needs. One such

HPC system that has effectively deployed this type of
solution is SciNet at the University of Toronto (Adap-
tive Computing). With such a system, it is necessary to
increase and improve what is covered by a job defini-
tion. Workload must understand its own software re-
quirements and be able to communicate those needs to
the scheduler, just as it would communicate any re-
quirement for processor or memory. In addition, to
make the most effective use of the resources possible,
an intelligent scheduler or orchestrator with the follow-
ing attributes is needed:

1. Capable of receiving and understanding software
requirements

2. Able to effect change to the underlying infrastruc-
ture

3. Understand trade-offs caused by temporarily taking
systems offline to change operating system or
software stack

4. Maintains future view of resources and future res-
ervations to avoid potential thrashing situations

Virtualization

Another closely related topic is that of virtualiza-
tion. Traditionally, virtualization has not been a consid-
eration for heavily utilized HPC clusters because of the
overhead and potential unpredictability that may be
potentially injected into the cluster by virtualization and
hypervisor technologies. However, as these technolo-
gies have matured and continued to receive increased
support from hardware vendors, some members of the
HPC community have expressed renewed interest in
virtualization.

Virtualization provides a number of potential gains
for an owner of a large-scale cluster. While one school
of thought may approach this issue and simply state that
enough hardware exists within a petascale system to
accomplish any task, the opposite camp may respond
with the fact that virtualization technologies make poss-
ible new types of workload on the cluster. So, it is a
case of adding new capabilities, as opposed to simply
replacing existing use cases. In fact, if virtualization
were to only replace existing functionality, the inherit
drawbacks of virtualization technology would almost
certainly override any potential gains.

One potential use for virtualization technology in a
large-scale system is that of being able to run user-
defined images. This is closely related to our earlier
discussion around the desired ability for a cluster to
dynamically change its software infrastructure to meet
user needs. In this slightly more advanced use case,
users would be able to submit their workload encapsu-
lated within a virtual machine image. This is especially

Considerations for Petascale Systems 6 Scott Jackson and Trev Harmon

useful for end users who have very specific needs in
terms of operating system, required libraries, specia-
lized software, etc. Often these environments may be
either comparably brittle or otherwise untenable for
standard deployment within the cluster. However, by
treating virtual machine images as just another type of
workload, just like HPC batch, environments as work-
load can fall under the same set of policies and control
as other workload. Naturally, creating a cluster capable
of handling these more advanced use cases requires
additional work and more intelligent management than
a traditional HPC cluster. Such an effort requires a
scheduler that can understand both types of workload
and route them appropriately, as improved or additional
resource managers may be needed to handle this en-
hanced form of workload.

Another potential area of benefit is that of check-
pointing workload. Almost all virtualization technolo-
gies support a form of checkpointing. In a virtualized
environment, this checkpointing can be used to archive
running systems. It can be used to perform a checkpoint
and restart function. When combined with the migration
capabilities found in many virtualization technologies,
many potential benefits arise. For example, large HPC
clusters often have many large, long-running jobs. As-
suming the I/O and network bandwidth issues can be
addressed, a virtualized system running under an intel-
ligent scheduler would be able to automatically migrate
workload from servers that are beginning to experience
problems as reported by built-in or external hardware-
monitoring systems. This will become increasingly im-
portant as we continue to build larger systems with
shorter MTBF periods.

Sources

Adaptive Computing. “Adaptive Computing Delivers
Energy Efficiency to Canada’s Largest Supercom-
puter.” 17 Nov. 2009. 24 May 2010 <http://www.
adaptivecomputing.com/news/2009scinet.php>.

Bhatele, Abhinav Sudarshan. “Scaling Scientific Appli-
cations to Exascale.” Parallel Programming La-
boratory: Department of Computer Science, Uni-
versity of Illinois at Urbana Champaign. 24 May
2010 <http://charm.cs.uiuc.edu/~bhatele/job/
Bhatele_res_stmt.pdf>.

Bianchini, Ricardo, et al. “System Resilience at Ex-
treme Scale” (DARPA Exascale Report on Resi-
lience). LANL Institutes Office. E. N. (Mootaz) El-
nozahy, ed. Los Alamos National Laboratory. 24
May 2010 <http://institutes.lanl.gov/resilience/docs
/IBM Mootaz White Paper System Resilience.pdf>.

Geist, Al. “Paving the Roadmap to Exascale.” SciDAC
Review. IOP Publishing in association with Ar-
gonne National Laboratory, for the US Department
of Energy, Office of Science. 24 May 2010 <http://
www.scidacreview.org/1001/html/hardware.html>.

Kogge, Peter, et al. “ExaScale Computing Study: Tech-
nology Challenges in Achieving Exascale Sys-
tems.” Georgia Tech School of Electrical and
Computer Engineering. 28 Sept. 2008. 24 May
2010 <http://users.ece.gatech.edu/mrichard
/ExascaleComputingStudyReports/exascale_final_
report_100208.pdf>.

Wang, Chao, et al. “Proactive Process-Level Live Mi-
gration in HPC Environments.” 24 May 2010
<http://moss.csc.ncsu.edu/~mueller/ftp/pub/mueller
/papers/sc08.pdf>.

Wladawsky-Berger, Irving. “Extreme Scale Comput-
ting.” Irving Wladawsky-Berger: A Collection of
Observations, News and Resources on the Chang-
ing Nature of Innovation, Technology, Leadership,
and Other Subjects. 15 February 2010. 24 May
2010 <http://blog.irvingwb.com/blog/2010
/02/extreme-scale-computing.html>.

	Considerations for Developing and Deploying Petascale Systemsto Ensure Optimum Scheduling of Resources
	1. Background/Introduction
	2. Scalability
	3. Resiliency
	4. Power
	5. Topology
	6. Usage Considerations
	Dynamic Provisioning
	Virtualization

	Sources

