
Thomas Edwards, Kevin Roy

Cray Centre of Excellence for HECToR

 This talk is not about how to get maximum performance from
a Lustre file system.

 Plenty of information about tuning Lustre Performance
 Previous CUGs

 Lustre User Groups

 This talk is about a way to design applications to be
independent of I/O performance

 All about Output, but Input technically possible with explicit
pre-posting

I/
O

 B
an

d
w

id
th

Number of Processors

Peak Bandwidth

Bandwidth grows more
slowly as more processors

become involved.

Rapid improvements in I/O
Bandwidth as the number of

processors increases from zero

Good percentage of peak from
a proportion of the total

processors available

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

1024 1448 2048 2896 4096 5792 8192 11585 16384 23170 32768 46340

P
e

rc
e

n
t T

im
e

 S
p

e
n

t
in

 C
h

e
ck

p
o

in
t

Number of Cores

Percent wallclock spent in Checkpoint Strong Scaling
100MB per processor - 10 GBs I/O Bandwidth

10 Mins

20 Mins

30 Mins

1 Hour

3 Hours

Frequency of Checkpoints

 As apps show good weak scaling to ever larger numbers of
processors the proportion of time spent writing results will
increase.

 It’s not always necessary for applications to complete writing
before continuing computation if the data is cached in memory

 Therefore I/O can be overlapped with computation

 This I/O could be performed by only a fraction of the processors
used for computation and still achieve good I/O bandwidth.

 Developed by Prof K. Taylor and team at Queen’s University,
Belfast

 Solves the Time Dependent Schrödinger Equation for two
electrons in a Helium atom interacting with a laser pulse.

 Parallelised using domain decomposition and MPI

 Very computationally intensive, uses high order methods to
integrate PDEs

 Larger problems result in larger checkpoints

 I/O component is being optimised as part of a Cray Centre of
Excellence for HECToR project.
 Preparing the code for the next generation machine

10 5432

6 987 10

11 12 13 14

15 16 17

18 19

20

• Upper-triangular

domain decomposition

• Does not fit HDF5 or

MPI-IO models cleanly

• Regular Checkpoints

• File per process I/O

• 50 MB per file

• Scientific data extracted

from checkpoint data

8

Compute I/O Compute I/O Compute I/O Compute I/O

Time

Standard Sequential I/O

Compute

I/O

Compute

I/O

Compute

I/O

Compute

I/O

Asynchronous I/O

Compute Node

do i=1,time_steps

compute(j)

checkpoint(data)

end do

subroutine checkpoint(data)

MPI_Wait(send_req)

buffer = data

MPI_Isend(IO_SERVER, buffer)

end subroutine

I/O Server

do i=1,time_steps

do j=1,compute_nodes

MPI_Recv(j, buffer)

write(buffer)

end do

end do

Enforces the
order of

processing ...
sequential

Compute Node

do i=1,time_steps

compute(j)

checkpoint(data)

end do

subroutine checkpoint(data)

MPI_Wait(send_req)

buffer = data

MPI_Isend(IO_SERVER, buffer)

end subroutine

I/O Server

do i=1,time_steps

do j=1,compute_nodes

MPI_Irecv(j,buffer(j),req(j))

end do

do j=1,compute_nodes

MPI_Waitany(req, j, buffer)

write(buffer(j))

end do

end do

Requires a lot more buffer
space... Receives in any

order

• Many compute nodes
per I/O Server

• All compute nodes
transmitting (almost)
simultaneously

• Potentially too many
incoming messages or
pre-posted receive
messages

• Overloads the I/O server

I/O

Compute Node
do i=1,time_steps

compute()

send_io_data()

checkpoint()

end do

subroutine send_io_data()

if(data_to_send) then

MPI_Test(pinged)

if(pinged) then

MPI_Isend(buffer, req)

data_to_send = .false.

end if

end if

end subroutine

subroutine checkpoint(data)

send_io_data()

MPI_Wait(req)

buffer = data ! Cache data

data_to_send = .true.

end subroutine

I/O Server
do i=1,time_steps

do j=1,compute_nodes

MPI_Send(j) ! Ping

MPI_Recv(j, buffer)

write(buffer)

end do

end do

Enforces the order of
processing ... Sequential
but only one message to

the server at a time

Subroutine called so
infrequently that data

rarely sent

I/O

Compute

Compute

Compute

Compute

I/O

Compute

Compute

Compute

Compute
One at a time Two at a time

Compute Node
do i=1,time_steps

do j=1,sections

compute_section(j)

send_io_data()

end do

checkpoint()

end do

subroutine send_io_data()

if(data_to_send) then

MPI_Test(pinged)

if(pinged) then

MPI_Isend(buffer, req)

data_to_send = .false.

end if

end if

end subroutine

subroutine checkpoint(data)

send_io_data()

MPI_Wait(req)

buffer = data ! Cache data

data_to_send = .true.

end subroutine

I/O Server
do i=1,time_steps

do j=1,compute_nodes

MPI_Send(j) ! Ping

MPI_Recv(j, buffer)

write(buffer)

end do

end do

Now called more frequently so
greater chance of success

The greater the frequency of calls
the more efficient the transfer, but
the higher the load on the system

Compute Compute Compute Compute Compute Compute Compute

Compute Compute Compute Compute Compute Compute Compute

Compute Compute Compute Compute Compute Compute Compute

Compute Compute Compute Compute Compute Compute Compute

Compute Compute Compute Compute Compute Compute Compute

I/OWait I/O I/O I/O I/O I/OWait Wait Wait Wait Wait Wait

Time

P
in

g

Compute Compute Compute Compute Compute Compute Compute

P
in

g

P
in

g

P
in

g

P
in

g

P
in

g

Interrupt Points

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

160.0

180.0

200.0

64 256 1024 4096 16384 65536

Ti
m

e
 (s

)

Number of Processors

No I/O Servers

I/O Servers

300

350

400

450

500

550

600

650

700

64 512 4096 32768

Ti
m

e
 (s

)

Number of Processors

No I/O Servers

I/O Servers

 Using MPI , messages have to be sent from the compute nodes
to the I/O Server

 To prevent overloading the I/O Server the compute nodes
have to actively check for permission to send messages.

 It is simpler to have the I/O Server pull the data from the
compute nodes when it is ready

 SHMEM is a single sided communications API supported on
Cray systems

 SHMEM supports remote push and remote pull of
distributed data over the network

 It Can be directly integrated with MPI on Cray Architectures

Compute Node
do i=1,time_steps

compute()

checkpoint()

end do

subroutine checkpoint(data)

if(.not. CP_DONE) then

wait_until(flag, CP_DONE)

end if

buffer = data ! Cache data

flag = DATA_READY

end subroutine

I/O Server
do

do j=1,compute_nodes

get(j, local_flag)

if(local_flag = DATA_READY)

get(j, buffer)

write(buffer)

put(j, flag, CP_DONE)

end if

end do

end

• Compute node code becomes

much simpler...

• No requirement to explicitly send

data

• Polling interrupt done by the
system libraries

• I/O Server slightly more

complicated.

• Constantly polling the compute

nodes.

• Only one message at a time

I/O

Compute
Not ready

Compute
Not ready

Compute
Not ready

Compute
Not ready

Polling computes

I/O

Compute
Not ready

Compute
Ready!

Compute
Not ready

Compute
Ready

Compute

Compute

Compute

Compute

Compute

Compute

I/O I/O I/O I/O I/O I/O Wait

Time

C
h

e
ck

 R
e

a
d

y?

C
he

ck
 R

ea
dy

?

C
h

e
ck

 R
e

a
d

y?

C
he

ck
 R

ea
dy

?

C
h

ec
k

R
e

a
d

y?

C
he

ck
 R

ea
dy

?

I/O

Time steps during I/O phase Time steps during idle phase

I/O I/O I/O I/O

 I/O Servers introduce additional communication to the
application.

 Does this additional load affect the application’s overall
performance ?

Tests measured the wall clock time to complete standard
model time steps during I/O communications and during
I/O idle time

 An average Time step took 9.31s with MPI,
9.72s with SHMEM

 86% of Time steps were during idle time using
MPI, 75% with SHMEM.

 Using MPI, time steps during the I/O phase
cost 2.33% more, with SHMEM 0.19%.

Compute

I/O

Compute

I/O

Compute

I/O

Compute

I/O

Fewer I/O server processors

Minimises the time
I/O servers are idle

Greater risk to checkpoint
data, longer time before

writing is complete

Compute

I
/
O

Compute

I
/
O

Compute

I
/
O

Compute

I
/
O

More I/O server processors

I/O servers are idle
most of the time

Reduces risk to checkpoint
data. Written out at fastest

possible speed

Efficiency Performance

I/O Communicators

Compute I/O Compute I/O Compute I/O Compute I/O

Time

Standard Sequential I/O

Bandwidth is shared between jobs on the system

Compute

I/O

Compute Compute

I/O

Compute

I/O

Asynchronous I/O

I/O

Time

Another application on the system
writes out a checkpoint at the same

time. Effective application I/O
bandwidth halved. Write time doubles

Total run time increased

Same event, constant total run time

 I/O Server idle time could be put to good use

 Performing post-processing on data structures
 Averages, sums.

 Restructuring data (transposes etc)

 Repacking data (to HDF5, NetCDF etc)

 Compression (RLE, Block sort)

 Aggregating information between multiple jobs
 Collecting information from multiple jobs and performing calculations

 Ideally large numbers of small tasks
 Short jobs that can be scheduled between I/O operations

 Serial processes, or parallel tasks over the I/O servers

 I/O Servers could become multi-threaded to increase
responsiveness

 Writing data to disk can become a significant proportion of
runtime with weak scaling applications

 Asynchronous I/O offers a way for a set of applications to hide
I/O time.

 It also makes application runtime less dependent upon the
available I/O bandwidth

 I/O Servers are a way of implementing asynchronous I/O using
MPI or SHMEM constructs. They also provide additional
opportunities for post processing.

 SHMEM offers a nicer programming model for implementation
but requires further work. Should perform well on Gemini.

 Kevin Roy, Cray Centre of Excellence for HECToR

 Prof K. Taylor and the HELIUM development team at Queen’s
University Belfast

 Some results obtained on Jaguar-PF with approval from Oak
Ridge National Laboratory Leadership Computing Division

