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Abstract

The Spider system at the Oak Ridge National Labo-
ratory’s Leadership Computing Facility (OLCF) is the
world’s largest scale Lustre parallel file system. Envi-
sioned as a shared parallel file system capable of de-
livering both the bandwidth and capacity requirements
of the OLCF’s diverse computational environment, the
project had a number of ambitious goals. To support the
workloads of the OLCF’s diverse computational plat-
forms, the aggregate performance and storage capacity
of Spider exceed that of our previously deployed systems
by a factor of 6x - 240 GB/sec, and 17x - 10 Petabytes,
respectively. Furthermore, Spider supports over 26,000
clients concurrently accessing the file system, which ex-
ceeds our previously deployed systems by nearly 4x. In
addition to these scalability challenges, moving to a
center-wide shared file system required dramatically im-
proved resiliency and fault-tolerance mechanisms. This
paper details our efforts in designing, deploying, and
operating Spider. Through a phased approach of re-
search and development, prototyping, deployment, and
transition to operations, this work has resulted in a num-
ber of insights into large-scale parallel file system ar-
chitectures, from both the design and the operational
perspectives. We present in this paper our solutions to
issues such as network congestion, performance base-
lining and evaluation, file system journaling overheads,
and high availability in a system with tens of thousands
of components. We also discuss areas of continued chal-
lenges, such as stressed metadata performance and the
need for file system quality of service alongside with our
efforts to address them. Finally, operational aspects of
managing a system of this scale are discussed along with
real-world data and observations.

1 Introduction

The Oak Ridge Leadership Computing Facility
(OLCF) at Oak Ridge National Laboratory (ORNL)
hosts the world’s most powerful supercomputer,
Jaguar [2, 14, 7], a 2.332 Petaflop/s Cray XT5 [5].
OLCF also hosts an array of other computational re-
sources such as a 263 Teraflop/s Cray XT4 [1], visual-
ization, and application development platforms. Each of
these systems requires a reliable, high-performance and
scalable file system for data storage.

Parallel file systems on leadership-class systems have
traditionally been tightly coupled to single simulation
platforms. This approach had resulted in the deploy-
ment of a dedicated file system for each computational
platform at the OLCF, creating islands of data. These
dedicated file systems impacted user productivity due to
costly data transfers and added substantially to the total
system deployment cost.

Recognizing the above problems, OLCF initiated the
Spider project to deploy a center-wide parallel file sys-
tem capable of serving the needs of its computational
resources. The project had a number of ambitious goals:

1. To provide a single shared storage pool for all com-
putational resources.

2. To meet the aggregate performance and scalability
requirements of all OLCF platforms.

3. To provide resilience against system failures inter-
nal to the storage system as well as failures of any
computational resources.

4. To allow growth of the storage pool independent of
the computational platforms.
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The OLCF began a feasibility evaluation in 2006,
initially focusing on developing prototype systems and
integrating these systems within the OLCF. While the
OLCF was the primary driver of this initiative, partner-
ships with Cray, Sun Microsystems, and DataDirect Net-
works (DDN) were developed to achieve the project’s
ambitious technical goals. A Lustre Center of Excel-
lence (LCE) at ORNL was established as a result of our
partnership with Sun.

This paper presents our efforts in pushing Spider to-
ward its pre-designated goals, and the remainder of it is
organized as follows: Section 2 provides an overview of
the Spider architecture. Key challenges and their reso-
lutions are described in Section 3. Section 4 describes
our approaches and challenges in terms of day-to-day
operations since Spider was transitioned to full produc-
tion in June 2009. Finally, conclusions are discussed in
Section 5.

2 Architecture

2.1 Spider

Spider is a Lustre-based [21, 25] center-wide file sys-
tem replacing multiple file systems within the OLCF. It
provides centralized access to Petascale data sets from
all OLCF platforms, eliminating islands of data.

Unlike many existing storage systems based on lo-
cal high-performance RAID sets for each computation
platform, Spider is a large-scale shared storage cluster.
48 DDN S2A9900 [6] controller couplets provide stor-
age which in aggregate delivers over 240 GB/s of band-
width and over 10 Petabytes of RAID 6 formatted ca-
pacity from 13,440 1 Terabyte SATA drives.

The DDN S2A9900 couplet is composed of two sin-
glets (independent RAID controllers). Coherency is
loosely maintained over a dedicated Serial Attached
Storage (SAS) link between the controllers. This is suf-
ficient for insuring consistency for a system with write-
back cache disabled. An XScale processor [9] man-
ages the system but is not in the direct data path. In
our configuration, host-side interfaces in each singlet
are populated with two dual-port 4x Double Data Rate
(DDR) InfiniBand (IB) Host Channel Adapters (HCAs).
The back-end disks are connected via ten SAS links to
each singlet. For Spider’s SATA based system, these
SAS links connect to expander modules within each disk
shelf. The expanders then connect to SAS-to-SATA
adapters on each drive. All components have redun-
dant paths. Each singlet and disk tray has dual power-
supplies, one of which is protected by an uninterrupted

power supply (UPS). Figure 1 illustrates the internal
architecture of a DDN S2A9900 couplet and Figure 2
shows the overall Spider architecture.
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Figure 1: Internal architecture
of a S2A9900 couplet.
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Figure 2: Overall Spider archi-
tecture.

The DDN storage is accessed through 192 Dell dual-
socket quad-core Lustre OSS (object storage servers)
providing over 14 Teraflop/s in performance and 3 Ter-
abytes of memory in aggregate. Each OSS can provide
in excess of 1.25 GB/s of file system level performance.
Metadata is stored on 2 LSI Engino 7900s (XBB2) [11]
and is served by 3 Dell quad-socket quad-core systems.

Each DDN S2A9900 couplet is configured with 28
RAID 6 8+2 tiers. Four OSSs provide access to these 28
tiers (7 each). OLCF compute platforms are configured
with Lustre routers to access Spider’s OSSs.

All DDN controllers, OSSs, and Lustre routers are
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configured in partnered failover pairs to ensure filesys-
tem availability in the event of any component failure.
Connectivity between Spider and OLCF platforms is
provided by our large-scale 4x DDR IB network, dubbed
the Scalable I/O network (SION).

Moving toward a centralized file system requires in-
creased redundancy and fault tolerance. Spider is de-
signed to eliminate single points of failure and thereby
maximize availability. By using failover pairs, mul-
tiple networking paths, and the resiliency features of
the Lustre file system, Spider provides a reliable high-
performance centralized storage solution greatly en-
hancing our capability to deliver scientific insight.

On Jaguar XT5, 192 Cray Service I/O (SIO) nodes
are configured as Lustre routers. Each SIO node has 8
AMD Opteron cores and 8 GBytes of RAM and are con-
nected to Cray’s SeaStar2+ [3, 4] network. Each SIO
is connected to SION using Mellanox ConnectX [22]
host channel adapters (HCAs). These Lustre routers al-
low compute nodes within the SeaStar2+ torus to access
the Spider file system at speeds in excess of 1.25 GB/s
per compute node. The Jaguar XT4 partition is simi-
larly configured with 48 Cray SIO nodes acting as Lus-
tre routers. In aggregate, the XT5 partition has over 240
GB/s of storage throughput while XT4 has over 60 GB/s.
Other OLCF platforms are similarly configured.

2.2 Scalable I/O Network (SION)

In order to provide true integration among all systems
hosted by OLCF, a high-performance, large-scale IB [8]
network, dubbed SION, has been deployed. SION pro-
vides advanced capabilities including resource sharing
and communication between the two segments of Jaguar
and Spider, and real time visualization, streaming data
from the simulation platform to the visualization plat-
form at extremely high data rates. Figure 3 illustrates
the SION architecture.

As new platforms are deployed at OLCF, SION will
continue to scale out, providing an integrated backplane
of services. Rather than replicating infrastructure ser-
vices for each new deployment, SION permits central-
ized, center-wide services, thereby reducing total costs,
enhancing usability, and decreasing the time from initial
acquisition to production readiness.

SION is a high-performance multi-stage DDR IB net-
work providing over 889 GB/s of bisection bandwidth.
The core network infrastructure is based on four 288-
port Cisco 7024D IB switches. One switch provides an
aggregation link, two provide connectivity between the
two Jaguar segments and the Spider file system, and the
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Figure 3: Scalable I/O Network (SION) architecture.

fourth provides connectivity to all other OLCF via the
aggregation switch. The Spider is connected to the core
switches via 48 24-port IB switches allowing storage
to be accessed directly from SION. Additional switches
provide connectivity for the remaining OLCF platforms.

SION is routed using OpenSM [24] with its min-hop
routing algorithm with an added list of IB GUIDs that
have their forwarding entries placed in order before the
general population. This enhancement avoided a patho-
logical routing case that resulted in a 33% performance
degradation.

3 Integration

To provide a scalable, high-performance, and reliable
parallel file system at OLCF, the authors have evaluated
various technologies since 2007. IB has gained con-
siderable traction in the HPC community and has been
demonstrated at scales exceeding our requirements [18].
The availability of DDR IB, high port-count switches
and long-reach (up to 100 meters) optical cabling pro-
vided a plausible solution to our system area network
requirements. Much of the early work on IB evalua-
tion focused on optical cable testing [12] and porting the
OpenFabrics OFED stack to the Cray SIO node.
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OLCF began evaluation of the DDN S2A9900 stor-
age system in 2008. OLCF fielded one of the earli-
est examples of the S2A9900 platform for evaluation
and worked with DDN to address a number of perfor-
mance, stability and reliability issues. During this pe-
riod, a number of firmware and software level changes
substantially improved the S2A9900 storage platform in
order to meet the requirements of the Spider file system.

3.1 Establishing a Baseline of Performance

In order to obtain a baseline of performance on the
DDN S2A9900 the XDD benchmark [17] utility was
used. Initial experiments focused on aggregate perfor-
mance for sequential read or write workloads. Perfor-
mance results using XDD from 4 hosts connected to the
DDN via DDR IB are summarized in Table 4. The re-
sults presented show performance of 5 runs each of se-
quential read, sequential write, random read, and ran-
dom write operations using 1MB and 4MB transfers.
These tests were run using a single host with a single
LUN and 4 hosts each with 7 LUNs which is labeled
“multi” in the Tiers column. Of particular interest is
the dramatically improved performance of random read
and random write operations when transfer sizes are in-
creased from 1MB to 4MB as the cost of the head seek
is amortized over a larger write.

1MB vs 4MB

Page 1

Sum - Disk MB/s IO Type Pattern
read write

Tiers Run random seq random seq
1mb 1 2630.94 5907.87 2541.79 5422.21

2 2629.95 5918.09 2539.40 5403.04
3 2630.69 5901.75 2539.11 5379.23
4 2630.81 5894.38 2538.80 5430.05
5 2628.30 5916.40 2540.39 5413.06

single 1 96.44 468.49 94.63 264.43
2 96.34 471.66 94.41 272.06
3 96.44 484.79 93.92 284.03
4 95.96 478.78 94.13 261.35
5 95.85 476.94 94.40 267.35

4mb 1 4342.12 5421.92 5476.54 5490.39
2 4337.55 5386.17 5483.57 5480.20
3 4343.48 5338.70 5490.62 5496.76
4 4339.00 5391.05 5486.23 5494.29
5 4341.55 5352.51 5490.71 5477.88

single 1 254.16 483.54 242.34 376.91
2 252.69 509.96 242.14 386.55
3 253.27 411.54 241.47 399.96
4 256.78 498.00 241.44 377.63
5 258.24 585.97 241.08 392.12

Req Size
multi

multi

Figure 4: XDD performance results.

3.2 Improve Filesystem Journaling

After establishing a performance baseline using
XDD, Lustre level performance was examined using the
IOR benchmark [19]. IOR testing with Spider’s DDN
S2A9900s and SATA drives on Jaguar showed that Lus-
tre level write performance was 24.9% of baseline per-
formance with a 1 MB transfer size. Profiling the I/O

stream using the DDN utilities revealed a large num-
ber of 4 KB writes in addition to the expected 1 MB
writes. These small writes were traced to ldiskfs jour-
nal updates1. This information allowed identification of
bottlenecks in the way Lustre was using the journal –
each batch of write requests blocked on the commit of a
journal transaction, which added serialization to the re-
quest stream and incurred the latency of a disk head seek
for each write.

To address these issues a hardware-based solution as
well as a software-based one was developed. Exter-
nal journals on solid state devices were used to elim-
inate head seeks for the journal, which allowed us to
achieve 3,292.6 MB/sec or 58.7% of the baseline perfor-
mance per DDN S2A9900 couplet. The solid-state de-
vice used for this testing was a Texas Memory Systems’
RamSan-400 device [23] (on loan from ViON Corp.).
On the software side, by removing the requirement for
a synchronous journal commit for each batch of writes,
dramatically fewer 4 KB journal updates (up to 37%)
and associated head seeks were observed. This asyn-
chronous journaling method substantially improved the
block I/O performance to over 5,222.95 MB/s or 93% of
the baseline performance per DDN S2A9900 couplet.

Overall, asynchronous journaling has proven to be
a highly efficient solution to the performance problem
in terms of performance as well as cost-effectiveness.
Findings suggest that sub-optimal object storage file sys-
tem journaling performance significantly hurts the over-
all parallel file system performance. A bottleneck from
the critical write path was removed by providing an
asynchronous write/commit mechanism for the Lustre
file system and our approach is likely not specific to our
DDN hardware. This solution has been previously pro-
posed for NFSv3 and other file systems, and OLCF was
able to implement it in an efficient manner to signifi-
cantly boost the write performance in a very large scale
production storage deployment.

Current understanding and testing shows that
OLCF’s approach does not change the guarantees of file
system consistency at the local OST level, as the mod-
ifications only affect how Lustre uses the journal, and
not the operation of the journal itself. However, this
approach comes with a temporary increase of memory
consumption on clients while waiting for the server to
commit the transactions. This a fair exchange for the
substantial performance enhancement it provides on the
very-large scale production parallel file system. More

1Ldiskfs is the back-end local file system for I/O server in Lustre
version 1.6 and is a heavily patched and enhanced version of the Linux
ext3 file system.
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details about this work can be found in [15].

3.3 Network Congestion Control

After improving Lustre level performance to over
5,222.95 MB/s or 93% of the baseline performance on
a single DDN S2A9900, efforts were focused on exam-
ining performance at scale utilizing half of the available
Spider storage and Jaguar XT5.

Jaguar XT5’s SIO nodes were configured as Lustre
routers, forwarding Jaguar XT5’s Lustre IO traffic to
Spider’s OSSs. Decoupling individual system IO nodes
from the Lustre OSSs allows each system an indepen-
dent direct access path to the file systems. Reconfig-
uring the Lustre routing tables also allows systems’ IO
network access patterns to be tuned.

To optimize performance and avoid congestion on
Jaguar XT5’s SeaStar2+ 3D torus network, a mecha-
nism was devised that allowed clients to allocate objects
on OSTs that are topologically near the client. Perfor-
mance was then measured using IOR with each client
writing to a single file on an OST that was topologi-
cally nearby. Performance was improved substantially
as illustrated in Figure 5. In Figure 5 “default read” and
“default write” performance was obtained using the IOR
benchmark using Lustre’s default object allocation pol-
icy. The performance results of both “placed read” and
“placed write” were obtained using IOR and preallocat-
ing files on OSTs topologically near the client writing to
this file.
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Figure 5: Performance on Jaguar XT5.

Having demonstrated that network congestion can
severely impact aggregate file system performance, this
problem was tackled in the context of the Spider rout-
ing configuration. Lustre clients and servers spread load

amongst routers based on queue depths on the router
with no other mechanism to detect congestion between
a client and a router or a server and a router and prefer
routers that minimize network congestion. Recognizing
this as a severe architectural limitation, OLCF worked
with Sun to provide a mechanism for clients and servers
to prefer specific routers. This mechanism allows pair-
ing of clients with routers within the SeaStar2+ torus in
order to minimize congestion. In essence, a set of 32
routers can be viewed as a replicated resource providing
access to every OST in the file system such that con-
gestion in the IB network is minimized. With 192 total
routers and 32 routers in each set, 6 replicated resources
were replicated within the SeaStar2+ torus. By group-
ing these 32 routers appropriately clients were then as-
signed to these routers such that communication is lo-
calized to a 3-D sub-mesh of the torus. This strategy
reduces contention in the SeaStar2+ torus based on pre-
vious results on OST placement. Figure 6 illustrates this
concept using two routing groups on the SeaStar2+ net-
work, each with two routers. Lustre clients in Group
B (dark) will prefer the routers indicated by diamonds.
The diamond-shaped routers can access all storage via
an IB cross bar without resorting to traversing the IB
fat-tree. In a similar fashion, Group A clients (light)
can utilize the square-shaped (dark) routers to access any
storage. Contention on both the SeaStar2+ network and
the IB network is therefore minimized.

SeaStar
Network

Infiniband Client (Group A)

Client (Group B)

Router (Group A)

Router (Group B)

OSS (Group B)

OSS (Group A)

IB Line Card

Figure 6: Illustration of Lustre fine-grain routing.

3.4 Scalability

In order to verify the stability of the Spider file sys-
tem at full scale, testing was conducted using 4 ma-
jor systems at the OLCF including the Jaguar XT5 and
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Jaguar XT4 partition. All systems were configured to
mount Spider concurrently totaling over 26,000 Lustre
clients and over 180,000 processing cores. In conduct-
ing this testing a number of issues were revealed. As the
number of clients mounting the file system increased,
the memory footprint of Lustre grew at an unsustain-
able rate. As the memory footprint on the OSSes grew
past 11 GB out-of-memory errors (OOMs) on the OSS
nodes were observed. By analyzing the memory allo-
cations from Lustre, it was discovered that an extremely
large number of 64 KB buffers were being allocated. Re-
viewing the Lustre code base revealed that 40 KB mem-
ory allocations were made (1 for each client-OST con-
nection) which resulted in 64 KB memory allocations
within the Linux kernel. With 7 OSTs per OSS and over
26,000 clients this equalled 26000∗7∗64KB = 11.1GB
of memory per OSS for server side client statistics alone.
As client statistics are also stored on the client, a much
more scalable solution as each client would only store
7∗64KB = 448KB in the configuration, the server side
statistics were entirely removed.

3.5 Fault Tolerance

As Spider is a center-wide resource, much of the test-
ing at full scale centered on surviving component fail-
ures. One of the many fault-tolerance techniques used
is the Linux kernel dm-multipath [16]. This allows Spi-
der to sustain I/O and provide filesystem resources to
the compute platforms during a failure of one or many
components. DDN controller failure, Infiniband cable
failure, or Infiniband HCA failures are all examples of
modes where performance will be degraded, but the
filesystem will continue to function. In other implemen-
tations without dm-multipath, any one of these failures
will cause an outage for all compute platforms that use
the filesystem. This architecture has prevented 13 un-
scheduled outages since June 2009.

A major concern of the center wide file system ap-
proach was the impact of an unscheduled outage of a
major computational resource utilizing the Spider file
system. To test Spider’s fault-tolerance at scale, the file
system was mounted on all the compute nodes spanning
the Jaguar XT4 partition and two other compute plat-
forms. With an I/O workload active on Jaguar XT4, and
two other compute platforms, the Jaguar XT4 system
was rebooted. Shortly thereafter the file system became
unresponsive. Postmortem analysis of this event showed
that the OSSes spent a substantial amount of time pro-
cessing client evictions. Using the DDN S2A9900 per-
formance analysis tools, a large number of small writes
to each OST was observed during this eviction process-

ing with very little other I/O progressing on the system.
This was later tracked down to a synchronous write to
each OST for each evicted client resulting in a backlog
of client I/O from Lens and Smoky. Changing the client
eviction code to use an asynchronous write resolved this
problem and in later testing allowed us to demonstrate
the file system’s ability to withstand a reboot of either
Jaguar XT4 or Jaguar XT5 with minimal impact to other
systems with active I/O. Figure 7 illustrates the impact
of a reboot of Jaguar XT4 with active I/O on Jaguar XT4,
and two other compute platforms. The y-axis shows the
percentage of peak aggregate performance throughout
the experiment. After 206 seconds, Jaguar XT4 is re-
booted. RPCs timeout and performance of the Spider
file system degrades substantially for approximately 290
seconds. Aggregate bandwidth improves at 435 seconds
and steadily increases until we hit the new steady state
performance at 524 seconds. Aggregate performance
does not return to 100% due to the mixed workload on
the systems and the absence of Jaguar XT4 I/O load.
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Figure 7: Impact of Jaguar XT4 reboot on aggregate Spider
I/O performance.

4 Day-to-day Operations

4.1 Monitoring Tools

Monitoring the components of a file system at this
scale is a daunting task, as the health of a single com-
ponent can affect the performance seen by users across
all OLCF compute platforms. Currently the health of
the OSS nodes (Infiniband connectivity, OST mounts,
multipath health, ping, ssh, load, and physical server in-
formation –power supply status and voltage, fan speed,
and ambient and CPU temperatures–) is monitored via
Nagios [13]. Additionally, centralized syslog is parsed
for messages that are known to be indicative of problems
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with the file system. Also the ddntool application is be-
ing used to get near-time information about the impact
of user jobs on the file system, as well as performance at
the DDN controller level. Finally a periodic scan of the
processed RPC’s at the MDS generates information that
can correlate MDS load to specific jobs.

Analyzing syslog messages is essential for debugging
and monitoring purposes. However, in large-scale par-
allel systems, interpreting the syslog is a challenge be-
cause of the complex inter-dependencies among system
events. To interprete these logs for system diagnostics,
machine learning and data mining techniques are used.
Most often, these error or event log messages are best
understood when they are interpreted collectively rather
than being read individually. The log messages are clus-
tered in a sliding time widow by grouping them based
on the commonalities associated among the log events.
As an example, let us consider Lustre Cray Portals layer
messages, which are common in the Jaguar console log
messages. Within a certain time widow (one-minute,
without loss of generality), identical error messages with
a common source (generating node) or target type are
identified. If all messages are occuring from a common
source (e.g. compute nodes), then the relation between
these source nodes (e.g. are they running a common ap-
plication, physically located in the same column or cabi-
net, or are they one-hop neighbors in the 3D Torus inter-
connect?) are identified. If error messages have a com-
mon target (e.g. an OST) then the health and routes lead-
ing to that particular target are investigated. Although
this work is still in development and testing phase, by
intelligent grouping and correlation of events from mul-
tiple sources, failure events affecting the system perfor-
mance are identified.

The DDN S2A9900 appliances have an API for mon-
itoring a variety of parameters. In order to monitor all
48 couplets, a tool was developed to poll each couplet
individually, aggregate the results and store them in a
MySQL [20] database. Parameters being monitored in-
clude alarm data such as failed power supplies, excessive
temperatures and failed disks, performance data such as
RAID rebuild and verify status, current IOPS and band-
width status and response times for data requests.

A number of separate programs have been written
that query the hosting database for specific information.
With the support from MySQL, these programs are sim-
ple and easy to maintain. For example, the tool to mon-
itor for any temperature alarms requires a single SQL
query and less than 50 lines of Python code.

To detect performance degradation of metadata op-
erations, a rudimentary monitoring service is run at 5

minute intervals, which measures the time to execute ls
in a directory containing a large number of files. When
this service detects performance degradation, an alert is
sent to the operations staff. The alert is then manually
analyzed using the RPC statistics collected at the MDS.
Correlations between application workloads and MDS
RPC traces are then preformed to isolate which appli-
cations may be causing global performance degradation
from pathological workloads.

4.2 Hardware Failures

For the seven month period of June 2009 through
January 2010 hardware failure data was gathered and is
shown in Figure 8. There were 82 hardware failures.
However, none of these failures were catastrophic and
none caused data loss. 63.4% of all these were failing
disks as illustrated in Figure 8. Figure 9 presents the disk
failure breakdown by month. Although disk failures are
the dominant source of failures, Spider’s RAID 6 con-
figuration prevented data loss in all cases. Figure 8 also
tells that power supply failures constitute 12.2% of all
failure cases. This is important since the aforementioned
failure model did not take into account power supply
failures. There were also 15 S2A9900 singlet failures.
Of these, 13 were fully transparent to the users, and did
not caused data corruption or loss or unscheduled sys-
tem downtimes. Of the remaining 2 cases, one was due
to system operators’ error and the other was traced to a
bug in the dm-multipath code path. Both of these two
cases caused unscheduled temporary system downtimes
but did not results in data corruption or loss.

4.3 Metadata Scaling Problems

Center-wide file systems operating under production
conditions must handle pathological behavior often ex-
hibited by new applications and existing applications
scaling to previously unprecedented sizes. Especially
in the latter case, application authors (domain scien-
tists) often lack tools and opportunities for evaluating
I/O performance characteristics of their applications at
scale. Center-wide file systems exacerbate these issues
by transmitting the performance impact of pathologi-
cal application I/O workloads to all file system users on
all attached compute platforms. Therefore, pathological
I/O workloads must be carefully isolated, profiled, cor-
rected, and tested to maintain sufficient sustained perfor-
mance for other applications.

Among such applications presenting pathological I/O
behavior on OLCF platforms, application A is a Density
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Figure 10: Performance of opening per-process files.

Functional Theory code used to determine the proper-
ties of atomic nuclei in detail. Given its inherent low
I/O requirements, optimization and parallelization ef-
forts were focused on compute performance. When run
for the first time at scale (48,000 processes on Jaguar
XT5/Spider), I/O performance issues limited its scala-
bility and affected overall file system performance.

Application A’s primary I/O workload consists of
scanning a short ASCII parameter file by all compute
threads. The serial implementation read variable val-
ues by opening, scanning, reading, then closing the input
file for each variable. The parallel implementation used
the same method, resulting in 48,000 processes rapidly
and repeatedly opening and closing the same file and
thus overloading the file system metadata server. As a
result, overall center-wide file system performance was
significantly reduced during this period. The concomi-
tant degradation in interactive filesystem responsiveness
also impacted center-wide throughput by hindering user
operations.

Lustre file system performance analysis tools devel-
oped at the OLCF were used to isolate and diagnose the
performance degradation. The serialized I/O code was
then reworked to improve scalability. Replacing the in-
put routine with a single reader followed by a network
broadcast improved overall application performance by
a factor of two. It also alleviated the metadata conges-
tion and associated effects.

To better identify the metadata scaling problem and
its effects, in-house benchmarks were developed. These
benchmarks are executed on the separated file system;
results are presented in figures 10 and 11.

Figure 10 illustrates the time it takes for 1,024 ∼
65,536 per-process files to be opened in parallel, in the
RDWR-CREAT (passing the O RDWR and O CREAT
flags to the file system) and RDONLY modes, respec-
tively. A synchronization barrier is enforced after all
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Figure 11: Performance of opening shared file.

files have been opened, and the cost of this entire phase
is reported (this behavior is similar to the applications
discussed above). The RDONLY mode keeps the exe-
cution time below 5 seconds. But in the RDWR-CREAT
mode the time grows fast and reaches nearly 50 seconds
with 65,536 processes, mainly because that each pro-
cess needs to lock the containing directory. This causes
a large number of Lustre RPCs waiting for the lock to
be released, not only slowing down the application itself
but also affecting other applications by exhausting the
server’s thread pool.

Besides file-per-process, another commonly used
model of parallel I/O is for all processes to write to a
single shared file. Figure 11 shows the cost of open-
ing a single shared file from 32 ∼ 32,768 processes in
parallel with two different strategies. In “all-open,” each
process passes the O RDWR and O CREAT flags to the
file system and attempts to create the file if it doesn’t ex-
ist. In the “ordered” method, the root process creates
the file and all other processes use WRONLY mode to
write to the file. Although file open time increases with
the number of processes in either mode, “ordered” has a
clear win with larger than 2,048 processes. The differ-
ence, again, is caused by different locking requirements
– in the “all-open” mode, although only one process will
successfully create the file, all other processes acquire
the lock for the parent directory in order to check if the
file exists or not. This further illustrates the severe im-
pact of parent directory lock contention.

Based on the observations from applications and
benchmarking results, the following optimization tech-
niques will be investigated to enhance the scalability of
metadata operations on the Spider system.

• Directory fanout: Create a directory hierarchy for
file-per-process I/O. This strategy reduces lock
contention, which should enable Lustre to handle
the metadata volume more efficiently.

• I/O Aggregation: Collect bulk I/O at a number of
delegated I/O worker processes that interact with
the file system. This strategy reduces metadata load
for the same amount of simulation data.

• I/O middleware: Utilize I/O middleware layers to
parametrize I/O strategies. This approach would
likely require major changes to the underlying
code.

OLCF’s existing toolset and test file system will al-
low for comprehensive evaluation of these techniques in
the near future.

5 Conclusions and Future Work

In collaboration with Cray, SUN, and DDN, the Oak
Ridge Leadership Computing Facility (OLCF) at Oak
Ridge National Laboratory (ORNL) has successfully ar-
chitected and integrated a center-wide file system capa-
ble of supporting over 26,000 clients and delivering 240
GB/sec of I/O bandwidth. The OLCF then deployed this
file system to production. To achieve this goal, a num-
ber of unique technical challenges were met. Design-
ing a system of this magnitude required careful analysis
of failure scenarios, fault tolerance mechanisms to deal
with these failures, scalability of system software and
hardware components, and overall system performance.
Through a phased approach of deploying and evaluat-
ing prototype systems, deployment of a large scale ded-
icated file system followed by a transition to Spider, we
have delivered one of the world’s highest performance
file systems. The Spider file system is now in full pro-
duction use by all platforms and projects at the OLCF.

While a large number of technical challenges have
been addressed during the Spider project, a number still
remain. Performance degradation during an unsched-
uled system outage may last for up to 5 minutes as de-
tailed in Section 3. The OLCF is working closely with
file system engineers from Sun and Cray in order to
minimize or eliminate this degradation entirely. Fine-
grained routing in the LNET layer is currently accom-
plished by creating multiple distinct LNET networks.
Testing of this approach is currently underway and some
success is reported although the complexity of the con-
figuration is daunting.

The OLCF’s reliability model needs to be updated in
light of the gathered hardware failure data. Future work
also includes implementing more in-house tools for ag-
gregating all Lustre monitoring data together, and de-
ployment of the Lustre Monitoring Toolkit (LMT) [10].

9



The system log monitoring and data mining work is be-
ing extended to perform real-time log analysis, model-
ing failure patterns and, if possible, predicting failures.
Work for increasing metadata scalability by collaborat-
ing with the OLCF’s domain scientists for evaluation
and implementation of various metadata optimization
techniques such as directory fanout, I/O aggregation,
and development and deployment of more efficient I/O
middleware is continuing. The OLCF’s existing bench-
marking and analysis tool set and testbed capabilities
will allow for comprehensive evaluation of these tech-
niques in the near future.
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