
Mixed Mode computation in CASINO

Lucian Anton1,∗, Dario Alfe2,†

1Numerical Algorithms Group Ltd, Wilkinson House, Jordan Hill Road,
Oxford, OX2 8DR, UK

2Department of Earth Sciences, and Department of Physics and Astron-
omy, University College London, Gower Street, London,WC1E 6BT,
United Kingdom

May 10, 2010

Abstract

CASINO is a quantum Monte Carlo code that solves the many particle Schroedinger equation with
the help of configurations of random walkers. This method is suitable for parallel computation because
it has a very good computation/communication ratio. The standard parallel algorithm increases the
computation speed by distributing equally the configurations among the available processors. For a
computation with P processing elements the computation time for Nc configurations is proportional
with Nctc/P , where tc is the average time taken for one configuration step. On petascale computers one
can have more processing elements than configurations and besides that for models with more that 1000
electrons tc increases significantly. We present a mixed mode implementation of CASINO that takes
advantage of the architectures with large numbers of multicore processors to improve computation speed
by using multiple OpenMP threads for the computation of each configuration step.

Keywords: Quantum Monte Carlo, OpenMP, mixed mode parallelism.

1 Introduction

CASINO [1] is a quantum Monte Carlo code suit-
able for computation in quantum many body models
with a large number of particles as it uses algorithms
that scale algebraically with the system size. In a
previous paper [2] we gave a brief description of the
algorithms and general code architecture, extended
documentation is available in Refs [3, 4].

CASINO can be used efficiently on parallel com-
puters because it can run the computation on sets
of independent configurations distributed over the
available number of processing elements. Therefore,
for a model with Ne electrons the computation time
is approximated by

TCPU ≈ tc
Nc

P
, (1)

tc ≈ Nα
e , (2)

where Nc is the average number of configurations,

P is the number of MPI tasks used, tc is the time
needed per configuration with α = 2 for the models
studied in this paper.

Nonetheless the current parallel algorithm used
by CASINO cannot use optimally the top perfor-
mance parallel computer systems available today for
the following reasons:

• the current parallel algorithm can use at most
Nc processing elements which for very large
parallel systems could be significantly less that
the total processing capacity,

• the computation of each configuration step is
serial, hence tc may increases significantly for
models with large Ne ,

• the previous problem is amplified by the fact
that the clock rate of the multicore modern
processors is decreasing slightly and in the
computational throughput per processing el-

∗email: lucian.anton@nag.co.uk
†email: d.alfe@ucl.ac.uk

1

ement might decrease further due to techno-
logical constrains (the so called power wall,
see e.g. Ref [5]).

In this paper we describe the second level paral-
lelism (SLP) addition to CASINO algorithm which
corrects the deficiencies listed before by offering the
possibility to compute in parallel the configuration’s
time steps with OpenMP threads.

The paper is organised as follow. In Section 2 we
present the guiding ideas of the SLP implementation
and the performance analysis of the implemented al-
gorithm on three models. In Section 3 we present
a detailed analysis of SLP scaling breakdown which
was observed for a particular matrix operation. Gen-
eral conclusions are presented in Section 4.

2 Second Level Parallelism

The results presented in this paper are obtained for
models described by the following trial wavefunction

Ψ(α,R,RI) = eJ(α,R,RI)D↑(r1, . . . , rN↑)
×D↓(rN↓+1...,rNe

) , (3)

where D↑,↓ are the Slater determinants of the elec-
trons with spin up(↑) or down(↓) while the Jastrow
function J(α,R,RI) adds the electron-electron and
electron-ion correlation whose parameters are deter-
mined by a variational Monte Carlo computation [4].

The SLP is implemented using OpenMP threads
for the set of loops whose number of iterations scales
with the number of electrons or ions. Since in the
computation of a configuration time step the scaling
with the number of electrons or ions appears only
through the length of these loops it follows that the
fraction of computation done in SLP increases with
the number of electrons or ions of the model.

From the analysis of the source code the follow-
ing sectors were identified to scale with the number
of particles and consequently computed in SLP:

• one particle orbitals (OPO), which computes
the one particle orbital value from a grid of
B-spline coefficients,

• Jastrow (JAS), which computes the value of
the Jastrow factor,

• Ewald summation (EWA) needed for the com-
putation of the electrostatic energy,

• evaluation of the matrix D̄ used for the fast
computation of the Slater determinant,

• electron-electron relative distances Ree.

The percentage of computing time spent in each se-
lected sector by the original algorithm is shown in
Fig 1 where one can see also that the percentage of
the total time spend in these sectors increases with
the number of electrons.

The Figures 2, 3 and 4 show the scaling of the
computation time function of number of threads for
the SLP sectors. In this study we have used three
similar models containing 1024, 1536 and 2400 elec-
trons. The time is normalised to the time taken by
the respective sector in the original code for each
compiler. The data were collected for executable
produced by PGI 10.0.0 and GNU 4.4.2 compilers1

on the quadcore AMD Barcelona processor [6] which
is used in the phase 2a of HECToR [8].

The results show that the sectors with the sim-
plest code structure, ”EWA” and ”Ree ” have a good
scaling for all models. A baffling feature observed in
data are several large variation (about 20%) of the
computation time between the original code and the
SLP code with one thread. These overhead times
change significantly also with the compiler although
the original source code was not changed beside the
introduction of the OpenMP directives and a few lo-
cal scalar variables. A constant negative feature is
the loss scaling for the D̄ sector for models with 1536
and 2400 electrons which occurs for both compilers
when the number of threads is doubled from 2 to 4.
This problem is analysed further in Sec 3.

The SLP aggregate performance gain in a realis-
tic computation was measured using an equilibrated
population of configurations with a 100 MPI tasks
for 10 DMC block steps and 1,2, 4 SLP threads. Fig
5 shows that for the model with 1024 electrons the
speed up factors are close to 1.5 and 2 for SLP with
2 and 4 OpenMP threads respectively.

3 On the scaling loss in ”D̄”
sector

The sector ” D̄” performs the following operations
on the cofactor matrix D̄ for a given electron index
i [9]

1Although the Pathscale compiler generates the fastest CASINO code, see http://www.hector.ac.ukcse/reports/compilers.php,
the version installed on HECToR fails to compile with the OpenMP flag modules that contain THREADPRIVATE directives
for module variables.

2

D̄kj =
{

D̄kj/qii if j = i
D̄kj − qji

qii
D̄ki if j 6= i

(4)

qji =
Ne∑
l=1

D̄ljφl(ri) , (5)

where φj(ri) are one particle orbitals used to com-
pute the Slater determinants.

The calculation described by Eq 4 was imple-
mented in a small test program for a detailed mea-
surement of the computation time scaling with re-
spect to the number of threads for various sizes of
matrix D̄. Fig 6 (left) shows that the computa-
tion time scales with the number of threads up to
a matrix size close to 700. A matrix with this linear
size needs approximately 4 MB of memory to store
its elements (in double precision) which is also the
amount of available cache memory (4L2+L3) on the
Barcelona processor [6]. This indicates as a possible
cause for the scaling breakdown the lack of memory
bandwidth to move data concurrently between the
cache memory of all four cores and the main mem-
ory.

A hardware performance counter analysis con-
firms this hypothesis. We have found that the val-
ues of hardware counters for the cache misses and
translation look aside buffer do not change signifi-
cantly with the matrix size over the whole range of
the study, instead the stalled instructions counts in-
creases with more than 20% for matrices with linear
size larger than 700.

The test program was also run on a Magny-Cours
processor [7], which will be used in phase 2b of HEC-
ToR. The scaling breakdown occurs for larger ma-
trices but still in agreement with the cache fill argu-
ment, see Fig 6 (right).

4 Conclusion

We have studied the performance increase obtained
by adding the SLP to CASINO for computations on
models with a large number of electrons. The nu-
merical intensive loops whose lengths increase with
the number of particles were identified, implemented
in parallel with OpenMP threads, and their perfor-
mance measured over a range of models.

This study shows that using the SLP in CASINO
the computation speed can be improved with a fac-
tor of ≈ 1.5 or ≈ 2 if 2 or 4 threads are used respec-
tively in the SLP for a model with 1024 electrons.

On the negative side we have found that although
the fractions of operations done in parallel with SLP
grows with the number of electrons the computation
time does not scale better, as one would expect from
the Amdahl’s law, because the computation speed
of certain SLP sectors become memory bound if the
number of electrons in the model increases beyond a
certain limit. Also it was found that significant over-
heads (up to ±20%) are introduced by the OpenMP
directives in some sectors.

The analysis done in Sec 3 predicts that a good
speed up can be achieved on Magny-Cours proces-
sors for models containing up to approximately 2000
electrons. Nevertheless, the results of this study and
the current hardware trends point to the necessity
consider new algorithms for some numerical inten-
sive sectors of CASINO if SLP is to be used for
models with even a larger number of electrons.

Acknowledgements

The authors acknowledge HECToR - a Research
Councils UK High End Computing Service. LA
thanks Kevin Roy for useful discussions.

References

[1] http://www.tcm.phy.cam.ac.uk/∼mdt26/casino2.html

[2] L. Anton, D. Alfè R. Q. Hood and D. Tanqueray, CUG 2009 proceedings,
http://www.cug.org/5-publications/proceedings attendee lists/CUG09CD/.

[3] Richard Needs, Mike Towler, Pablo Lopéz Ŕıos, CASINO User’s Guide (Theory of Condensed Matter
Group, Cavendish Laboratory, Cambridge, UK, 2008).

[4] M. D. Towler, Phys. Stat. Sol. (B) 243, No. 11, 2573 (2006).

[5] www.darpa.mil/Docs/ExaScale Study Initial.pdf

3

[6] The AMD Barcelona quadcore processor has the following technical specifications: 2.3 GHz clock rate,
8 GB of RAM, 64KB L1 cache, 512 KB L2 cache, 2 MB L3 cache(shared), peak performance close to
40 Gflops in double precision.

[7] The AMD Magny-Cours 12 core processor has the following technical specifications: 2.1 GHz clock rate,
16 GB of RAM, 64KB L1 cache, 512 KB L2 cache, 6 MB L3 cache(shared).

[8] http://www.hector.ac.uk

[9] S. Fahy, X. W. Wang and Steven G. Louie, Phys. Rev. B 42 3503 (1990).

 0

 20

 40

 60

 80

 100

1024
1536

2400
1024

1536
2400

ti
m

e
 %

PGI GCC

OPO
JAS

EWA
D

Ree
Other

Figure 1: Percentage of time spent by the initial algo-
rithm in the computational sectors described in text
for models with 1024, 1536 and 2400 electrons.

 0.2
 0.4
 0.6
 0.8

 1
 1.2

PGI

 0.2
 0.4
 0.6
 0.8

 1
 1.2

OPO JAS EWA D Ree

GCC

_

1 thread
2 threads

4 threads

Figure 2: The computation time function of the num-
ber of threads for each SLP sector for a model with
1024 electrons. Time is normalised to the time taken
by an identical run of an executable compiled without
OpenMP support.

 0.2
 0.4
 0.6
 0.8

 1
 1.2

PGI

 0.2
 0.4
 0.6
 0.8

 1
 1.2

OPO JAS EWA D Ree

GCC

_

1 thread
2 threads

4 threads

Figure 3: As in Fig 2 for a model with 1536 electrons.

 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

PGI

 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

OPO JAS EWA D Ree

GCC

_

1 thread
2 threads

4 threads

Figure 4: As in Fig 2 for a model with 2400 electrons.

4

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1 2 3 4

ti
m

e

Number of threads

GCC

PGI

Ideal

Figure 5: The computation time with SLP support using 1, 2, 4 OpenMP threads, 1024 electrons model.
The time is normalised to the computation time of the same run done by an executable compiled without
OpenMP (PGI compiler).

 0.01

 0.1

 1

 10

 100

 500 1000 1500 2000

ti
m

e

matrix size

n=1
n=2
n=4

 0.01

 0.1

 1

 10

 100

 500 1000 1500 2000

matrix size

n=1
n=3
n=6
n=9
n=12

Figure 6: Scaling of computation time for Eq 4 done in parallel with OpenMP on the quadcore processor
with n = 1, 2, 4 threads, left panel, and for the twelve-core with n = 1, 3, 6, 9, 12 threads, right panel.

5

