
A Comparison Of Shared Memory Parallel Programming Models

Jace A. Mogill David J. Haglin

Pacific Northwest National Laboratory
Richland, WA, USA

{jace.mogill, david.haglin}@pnl.gov

ABSTRACT:

The dominant parallel programming models for shared memory computers, Pthreads and
OpenMP, are both thread-centric in that they are based on explicit management of tasks
and enforce data dependencies and output ordering through task management. By com-
parison, the Cray XMT programming model is data-centric where the primary concern of
the programmer is managing data dependencies, allowing threads to progress in a data
flow fashion. The XMT implements this programming model by associating tag bits with
each word of memory, affording efficient fine grained data synchronization independent of
the number of processors or how tasks are scheduled. When task management is implicit
and synchronization is abundant, efficient, and easy to use, programmers have viable al-
ternatives to traditional thread-centric algorithms. In this paper we compare the amount
of available parallelism relative to the amount of work in a variety of different algorithms
and data structures when synchronization does not need to be rationed, as well as identify
opportunities for platform and performance portability of the data-centric programming
model on multi-core processors.

KEYWORDS: Programming Models, Cray XMT, OpenMP, Parallelism

1 Introduction

All parallel programming models for shared
memory computers are comprised of two orthog-
onal concepts: the source of concurrency and the
synchronization primitives used to manage the
concurrency. These responsibilities may be im-
plemented in hardware, software, or both, and
typically may be mixed freely. At one end of
the design space is the Cray XMT which imple-
ments as much of this functionality in hardware
as possible, whereas conventional x86 multi-core
microprocessors rely almost entirely on software.
The XMT’s rich and efficient hardware level con-
currency and synchronization afford fine-grained
parallel programming models such as data flow
that are not feasible with software only. In this

paper we describe how synchronization is much
more than just syntax – efficient and easy-to-
use synchronization of the XMT qualitatively
changes the parallel programming model by in-
creasing the amount of concurrency available for
hardware to exploit.

1.1 Programming Models

The two dominant shared memory program-
ming models are Pthreads and OpenMP. The
Pthreads programming interface is specified
in POSIX and is typically accessed via run-
time library and operating system calls. Any
ANSI/ISO-C conforming compiler may be used
to compile programs which use Pthreads and
the compiler has no direct knowledge of con-

1

currency in the program. OpenMP extends the
programming language (C or Fortran) with di-
rectives to make parallelism and data privacy
explicit. OpenMP annotations change the se-
mantics of loops and data persistence and it is
possible for OpenMP annotations to assert in-
correct program transformations which manifest
themselves as race conditions or deadlocks.

Because Pthreads are frequently implemented
in the operating system and runtime, requiring
no special compiler support, Pthreads are often
used as the underlying infrastructure to imple-
ment OpenMP in compilers. Pthreads are, in
fact, a superset of OpenMP’s functionality, and
many OpenMP implementations allow Pthreads
and OpenMP to be mixed. The semantics of
OpenMP pragmas are implemented and enforced
by the compiler and the OpenMP runtime li-
brary, meaning an OpenMP capable compiler
is required to compile OpenMP annotated pro-
grams. Furthermore, the execution performance
of the program is highly dependent on the qual-
ity of the OpenMP implementation.

Parallel programming on the XMT is unlike
Pthreads and OpenMP in that it is largely im-
plicit; in some circumstances, the programmer
may be required to describe why a particular
loop is parallelizable, but the programmer is not
involved in describing how the parallelism should
be implemented. The XMT compiler performs a
static dependence analysis similar to that per-
formed by automatic vectorizing compilers, and
then automatically parallelizes loops that are
proven to not have dependences between iter-
ations. By comparison, OpenMP does not per-
form any analysis or any automatic paralleliza-
tion, and Pthreads is just a library and has noth-
ing to do with the compiler at all.

It is important to note that parallelism need
not be represented by loop constructs in the
source code. In OpenMP it is possible to in-
troduce parallelism at an arbitrary place in
the program, causing all the statements in the
parallel region to be executed by each thread.
Loops without any OpenMP annotation will ex-
ecute every iteration on every thread, whereas
OpenMP annotated loops inside an OpenMP
parallel region are decomposed among the ex-

isting threads.

In Pthreads a new thread is created by an ex-
plicit call to the operating system specifying the
entry point for the new thread and a single ar-
gument. To create multiple new threads for a
parallel region, a loop creating one thread per
iteration or a fanout tree is required. Similarly,
at the end of a parallel region a loop or other
reduction “joining” each thread is needed to en-
sure all threads have finished executing before
proceeding.

Vector parallelism is sometimes referred to as
“data parallelism” because there are no depen-
dencies between any two elements of a vector,
permitting the calculations on the vector to take
place in any order (or concurrently). This con-
straint on data means vector parallelism never
requires any kind of synchronization, making
it easy for programmers and compilers to im-
plement data parallelism correctly by analyzing
static data dependencies that are explicit in the
code.

The parallelism made possible by multiple
CPU cores must also honor the constraint that
a single piece of data not be operated on in two
places simultaneously; otherwise a race condition
will occur. However, unlike vector processors,
multi-processors implement additional data se-
mantics, which detect these conditions at execu-
tion time through cache coherency mechanisms
and the processor automatically serializes oper-
ations so data races do not occur. This runtime
dependence functionality comes at a steep per-
formance cost as it is intended to manage excep-
tion cases, not to be relied on as the nominal
programming idiom.

1.2 Historical Development

Shared memory parallel programming has been
part of High Performance Computing (HPC)
since the Cray X-MP was introduced in 1985
[1]. As a vector processor based machine,
the X-MP was also an early example of a
hybrid-microparallel computer: a lower level of
communication-free parallelism in a single vec-
tor processor, and a higher level parallelism of
multiple processors working concurrently. Long

2

vectors were often strip-mined to provide nested
parallelism, but explicitly annotated outer loops
were sometimes required in order to fully utilize
the Cray X-MP.

Programming was usually performed in FOR-
TRAN77 with a combination of implicit loop
parallelism and explicit micro-tasking direc-
tives. Cray micro-tasking directives typically
instructed the compiler to decompose the iter-
ations of a single loop across multiple proces-
sors. The Multi-Streaming processors of the
Cray X-1 were programmed in a similar fash-
ion. SGI’s multiprocessor RISC based systems
has their own set of directives. Several lines of
equivalent directives for these different compilers
(figure 2) were a common sight prior to OpenMP.

When SGI bought Cray they found themselves
with two different and incompatible sets of direc-
tives for parallel programming. Their solution
was to form the OpenMP consortium to define a
set of portable directives based on commonalities
from the existing methods. The substantial over-
lap of semantics readily yielded a set of OpenMP
directive which replaces the directive soup with
a single directive seen in figure 3.

Since 2003, commodity x86 microprocessors
have essentially combined the X-MP’s hybrid
system model onto a single chip: vector function
units are implemented in the streaming single-
instruction multiple-data (SSE and MMX) in-
structions, and the processor core is replicated
several times per socket; a conventional micro-
processor is indeed a Cray X-MP on a chip.

2 Expressing Synchronization
and Parallelism

Regardless of the syntax of the parallel program-
ming model, the semantics can be divided into
two parts: The part(s) regarding where and to
what degree the program should begin executing
in parallel, and the part(s) regarding the flow
control (synchronization) of the threads (Fig-
ure 4). In Pthreads all aspects of parallelism
are explicit, and the parts can be identified by
the particular Pthread function call. OpenMP
explicitly declares parallel regions, but much of

the synchronization is managed implicitly.

2.1 So Called Lock- and Wait-Free Al-
gorithms

Developing algorithms and data structures (in-
cluding hash tables) for lock-free components
(see [2, 3]) has recently received attention. The
definition of “lock-free” (sometimes called non-
blocking or wait-free) in these algorithms is much
more relaxed than “cannot use locks”. To pro-
vide a “lock-free” service, the component must
guarantee that whenever a thread executes some
finite number of steps, at least one thread must
make progress toward completing its task [4].
Using this definition it may be more appropri-
ate to call these components dead-lock free.

The x86 instruction which implements a
locked compare and swap is an obvious and
frequent choice for implementations of these
so called wait-free algorithms. Compare And
Swap corresponds to the Pthreads primitive
pthread mutex trylock() but this functional-
ity is not available in OpenMP and must be ac-
cessed via compiler primitives or direct assembly
language code. For each use of CAS there must
be explicit success and fail outcomes, which is
predicated on there being something else to do if
the desired lock cannot be acquired. This begs
several questions:

• If there is other work to do which does not
require the lock, why wasn’t it done first?

• If another lock will be tried, why not retry
this same lock instead?

• What is the cost of issuing speculative work
which will be discarded relative to the cost
of just waiting?

• What is the probability that issuing spec-
ulative work does not interfere with work
which will definitely make progress?

• If the algorithm must keep trying locks until
it acquires one, how is this different from
spinning?

The analysis of most lock-free or wait-free al-
gorithms fail to include the cost of discarded

3

Figure 1: Block diagram of the Cray X-MP. A diagram of a multi-core x86 processor will look substantially similar,
with “Inter-CPU Communication and Control” functionality being implemented in the memory controller.

!CSD$ PARALLEL DO PRIVATE(I)

CMIC$ DO ALL VECTOR SHARED(LENH, IADDH, IM, VBL, SCR) PRIVATE(I)

C$ DOACROSS SHARE(LENH, IADDH, IM, VBL, SCR) LOCAL(I)

DO I=1,LENH

SCR(IM+I,1)=.5E0*(VBL(IADDH+IM+I-1)+VBL(IADDH+2*IM+I-1))

SCR(IM+I,2)=1.E0/SCR(IM+I,1)

ENDDO

Figure 2: Cray Microtasking (CMIC$), Cray Multi-Streaming (!CSD$), and SGI (C$) directives decomposing a loop
across multiple vector processors.

speculative work. Speculative work consumes
data bandwidth, can pollute caches, steals in-
struction bandwidth from threads that could
otherwise make progress, and consumes power
adding to hardware cost and complexity. Ulti-
mately, many lock-free algorithms are both al-

gorithmically and power inefficient.

4

C$OMP PARALLEL DO DEFAULT(SHARED)

DO I=1,LENH

SCR(IM+I,1)=.5E0*(VBL(IADDH+IM+I-1)+VBL(IADDH+2*IM+I-1))

SCR(IM+I,2)=1.E0/SCR(IM+I,1)

ENDDO

Figure 3: OpenMP directive replacing Cray Microtasking, Cray Multi-Streaming, and SGI.

Parallelism
Explicit Implicit

Synchronization Task/Thread Pthreads/OpenMP Vectorization
Data XMT Data flow

Figure 4: Orthogonality of the source of parallelism and synchronization.

2.2 Synchronization on the x86 Archi-
tecture

No meta-data about the user’s data is stored
in the main memory of conventional comput-
ers, however caches, memory controllers and pro-
cessors frequently store meta-data about where
copies of data are and which copies are up-to-
date with respect to other copies [5]. Synchro-
nization and atomicity are enforced by memory
access protocols and cache coherency which have
access to the meta-data. The x86 instruction
set offers a small number of instructions which
are can be combined with a LOCK# prefix defined
with extended memory semantics. The “Lock
Signal” which is used to define the locked instruc-
tions is never directly exposed in the x86 ABI,
allowing implementations to optimize or replace
it with another mechanism entirely.

A partial list of locked x86 instructions:

• xadd, xsub: Atomic add, subtract

• xand, xnot, xxor: Bitwise operations

• xchg: Atomic swap

• xcmpxchg: Atomic compare and Swap

The atomic arithmetic and bitwise operations
implement thread-safe versions of their ordinary
counterparts. The atomic compare and swap in-
struction can be used to implement a mutual
exclusion lock. A word of storage representing

the lock is initialized to a value representing un-
locked, and subsequent Compare-And-Swap in-
structions try to swap the unlocked value with
their thread ID number. A successful swap indi-
cates the mutual exclusion lock was acquired.

None of the atomic instructions permit any
concurrency. To the contrary, their locked or
atomic nature defines that there is no concur-
rency. The LOCK# prefix on atomic instructions is
an explicit micro-architectural mutual exclusion
region that works in the same way as a software
mutual exclusion lock or critical region. Specif-
ically, on systems which have an explicit data
lock separate from a data operation, or imple-
ment this functionality in microcode, atomic (or
locked) compare and swap is equivalent to:

lock(data)

if(data == compare value)

data = new value

endif

unlock(data)

In situations where loop bodies are only a few
instructions long, the number of hardware pro-
cessors may be greater than the number of in-
structions in the loop body. In these instances
some instructions must be executing in multiple
processors simultaneously, and if those instruc-
tions includes any of the x86 locked instructions
operating on shared data, the execution would
serialize at that instruction. The fastest time

5

such a loop can be executed is T = N , the num-
ber of iterations, not the number of iterations di-
vided by the number of processors. This scenario
is far more common than one would first think,
and will become more common as the number of
cores increases over time.

It is important to note that cache coherency
mechanisms are architected to handle exception
cases, not efficiently manage the synchronization
of data between hardware processors. The per-
formance penalty for inefficient use of these fea-
tures can be 100x or more slower than implemen-
tations with no false sharing or synchronization.

2.3 Synchronization on the Cray
XMT

The Cray XMT is the commercial name for
the shared-memory multithreaded machine de-
veloped by Cray under the code name “El-
dorado” [6, 7]. The system is composed of
dual-socket Opteron AMD service nodes and
custom-designed multithreaded compute nodes
with Threadstorm processors. The entire sys-
tem is connected using the Cray Seastar-2.2 high
speed interconnect. The system we use in this
study has 128 processors and 1 TB of shared
memory.

Each Threadstorm processor is able to sched-
ule 128 fine-grained hardware threads (the XMT
terminology for this is stream) to avoid memory-
access generated pipeline stalls on a cycle-by-
cycle basis. At runtime, a software thread is
mapped to a hardware stream comprised of a
program counter, a status word, 8 target reg-
isters and 32 general purpose registers. Each
Threadstorm processor has a VLIW (Very Long
Instruction Word) pipeline containing operations
for the Memory functional unit, the Arithmetic
unit and the Control unit.

Memory is structured with full-empty-,
pointer forwarding- and trap- bits to support fine
grained thread synchronization with little over-
head. The memory is hashed at a granularity of
64 bytes and fully accessible through load/store
operations to any Threadstorm processor con-
nected to the Seastar-2.2 network, which is con-
figured in a 3D toroidal topology.

The software environment on the Cray XMT
includes a custom, multithreaded operating sys-
tem for the Threadstorm, a parallelizing C/C++
cross-compiler targeting Threadstorm, a stan-
dard Linux 64-bit environment executing on
the service and I/O nodes, and the neces-
sary libraries to provide communication and in-
teraction between the two parts of the XMT
system. The parallelizing compiler generates
multithreaded code that is mapped to the
threaded capabilities of the processors automat-
ically. Parallelism discovery happens fully- or
semi-automatically by the addition of pragmas

(directives) to the C/C++ source code. This
discovery focuses on analyzing loop nests and
mapping the loop’s iterations in a data-parallel
manner to threads.

To understand the lightweight synchroniza-
tion features of the XMT, we review two as-
pects of the programming model: full-empty
bits and generic functions. Each 8-byte word
of memory has an associated full-empty bit en-
abling lightweight synchronization operations.
The software (compiler and runtime) allows pro-
grams to manipulate the full-empty bits with
generic functions are executed atomically within
one instruction cycle.

Special versions of load and store instructions
are emitted by the compiler automatically as
part of parallelization and can be used directly
by programmers:

• readxx: Returns the value of a variable
without checking the full-empty bit.

• readfe: Returns the value of a variable
when the variable is in a full state, and si-
multaneously sets the bit to be empty.

• writeef : Writes a value to a variable if the
variable is in the empty state, and simulta-
neously sets the bit to be full.

• writxef : Writes a value to a variable if
without checking the full-empty bit.

• int fetch add: Atomically adds an integer
value to a variable.

6

Threadstorm 1

Virtual Memory (8 Gbyte x N)

Hardware Shuffling
64 Byte Granularity

Physical Memory (8 Gbyte x N)

...

128 Threads

Memory Modules

Memory Buffers (128 Kbyte x Module)

Threadstorm 2

...

128 Threads

Threadstorm 3

...

128 Threads

Threadstorm N

...

128 Threads...

Figure 5: Cray XMT Threadstorm memory subsystem.

Much like the x86 which implements atomic-
ity in the processor and memory controller, the
XMT also implements atomicity in it’s memory
controller and processor, but differs in that the
processor is able to context switch without the
operating system, making context switch a side
effect of memory semantics. This difference is
critical to the XMT’s programming model.

On XMT, the semantics of mutex locks are im-
plemented by the hardware, which is only pos-
sible because the CPU can context switch with-
out software intervention. Deadlocked software
threads only use one stream’s worth of state re-
sources and no instruction issue resources re-
gardless of how long the stream is stalled. Dead-
locked loads are treated identically to data loads
with long latency, simplifying the mental model
of the system for debugging. Critical regions in-
volving multiple locks can be implemented by
nesting the emptying and refilling of memory lo-
cations.

The XMT provides tag bits for each 64-bit
word of memory meaning that synchronization
need not be rationed, and because the full/empty
bit can be examined and modified as part of the
data load or store already being performed, syn-
chronization can casually be incorporated into
algorithms. By extension, the XMT can be used
to efficiently implement data flow algorithms.

3 Thread-local data

Privatization of variables in OpenMP is per-
formed by adding the private clause to di-
rectives, listing variables from an outer scope
which should be privatized in the parallel re-
gion. The loop induction variable is always con-
sidered local. The XMT compiler generally pri-
vatizes scalar variables and intermediate values
automatically based on the dependence analy-
sis, but also provides directives for explicit pri-
vatization. Both programming models honor
ANSI-C’s scoping rules with respect to auto-
matic (stack) variables, meaning variables which
are declared (and thus scoped) within a paral-
lel region are privatized by virtue of already be-
ing on the thread’s stack. An example of two
variables, tmp1 and tmp2 declared with differ-
ent scopes in ANSI-C but with the same effec-
tive scoping semantics due to modification with
OpenMP pragmas as seen in figure 6.

3.1 Executing Once Per Thread

Hoisting of invariant operations out of loops to
reduce or eliminate redundant operations is a
basic loop optimization performed by compilers
and programmers. Expensive operations such
as system calls should be avoided inside perfor-

7

int i;

int tmp1; // Subroutine scoped automatic stack variable

#pragma omp parallel for private(tmp1)

for(i=0; i < npoints; i++) {
int tmp2; // Thread Private Automatic stack variable

tmp1 = ...; // tmp1 accesses are to thread-private copies

tmp2 = ...;

}
tmp1 = ...; // Outer scoped tmp1 undefined after parallel region

Figure 6: Modifying the semantics of variable scoping to conform to parallel semantics.

mance critical loops, two common examples of
idiom are performing I/O or allocating and free-
ing memory. These are frequently rewritten by
hoisting the system calls out of the loop and is-
suing a single system call which does the work
for all the iterations.

Consider the example in figure 7 which allo-
cates temporary storage for each iteration of the
loop. The compiler is not able to restructure
this loop because the amount of storage needed
is not known until runtime. However, the pro-
grammer may know size is never greater than
npoints, meaning it would be safe to always al-
locate npoints of temporary storage. Some stor-
age may go unused, but this space/performance
tradeoff may be practical for a given problem and
system size.

This idiom exposes a tension between classi-
cal scalar optimizations (hoisting of invariant ex-
pressions out of a loop) with the desire to push
dependencies into inner loops to permit paral-
lelization of the outer loop(s). In this instance,
having the malloc/free pair inside the outer
loop means there is no dependency on the tem-
porary storage by ensuring that tmp is thread-
private storage, however we wish to move the
memory allocation call out of the loop, creating
a new loop carried dependence on the storage for
tmp.

A brute-force solution would pre-allocate all
the memory needed by all the iterations before
the loop begins, and the each iteration would in-
dex into it’s private region in the large temporary
storage space. This technique is inefficient when

the number of iterations is larger than the num-
ber of threads because the storage needs to be
replicated only to remove dependencies between
threads, not between iterations. That is, a loop
with 1 million iterations running on 4 processors
needs temporary storage for 4 iterations, not 1
million iterations.

OpenMP syntax elegantly captures this id-
iom in the notion that parallel regions are sep-
arate from loops. Specifically, OpenMP pro-
grams can go parallel outside a loop, perform all
the thread-private work before entering the loop,
and then map the iterations of the parallel loop
onto the threads which have already performed
the thread-private work. This syntax is shown
in figure 8.

By comparison the XMT’s runtime does not
even require that the number of threads work-
ing on a loop does not change while the loop
is executing (in practice presently, this is con-
stant for a single parallel region, but this is not
required), making it challenging to express sim-
ilar execution and storage semantics. In the re-
vision 1.4 of the XMT’s programming environ-
ment Cray has introduced a pragma creates a
parallel region outside of a loop. The number of
iterations is the number of streams the runtime
acquires for that parallel region. This pragma is
non-portable, has no OpenMP equivalent, may
not work as expected when used in combination
with other parallel regions, and will no longer
work if/when the runtime is enhanced to permit
threads to join and leave the parallel region dur-
ing execution.

8

for(i=0; i < npoints; i++) { // Target loop to parallelize

int size = ...data[i]...;

float *tmp = malloc(sizeof(float) * size); // Per-iteration allocation

for(j=0; j < size; j++) {
tmp[j] = ...; // Thread-safe data updates

}
free(tmp); // Free temporary memory per iteration

}

Figure 7: Allocating and freeing temporary storage from inside a loop.

#pragma omp parallel

{
float *tmp = malloc(sizeof(float) * npoints); // Allocate once per thread

#pragma omp for

for(i=0; i < npoints; i++) {
size = ...data[i]...;

for(j=0; j < size; j++) {
tmp[j] =; // Thread safe data references and updates

}
}
free(tmp); // Free temporary data once per thread

}

Figure 8: Efficient allocation and freeing of temporary storage inside a parallel region but outside of a loop.

4 Context Switching

The processor architecture of the Cray XMT is a
Barrel Processor meaning that a single instruc-
tion execution pipeline is shared by many con-
texts which are selected from on every clock cy-
cle. This is illustrated in figure 9. The term
Barrel Processor comes from automatic machine
gun designs in which a single barrel is served by
a rotating cylinder or magazine containing am-
munition.

By way of comparison, a x86 processor core
has only a single hardware context and can-
not change contexts on it’s own. All context
switch semantics on these systems are enforced
by the operating system saving the processor’s
state, loading a new state, and resuming execu-
tion of a thread. This kind of time-multiplexed
resource sharing has been implemented in time-
sharing operating systems since the 1970’s and

can also be used to mimic parallel execution on
serial hardware by over-subscribing the number
of tasks to cores.

The efficiency of software managed context
switching depends on the amount of state which
needs to be saved (which can be several hundred
bytes of state including all the multimedia, vec-
tor and floating point registers), how much work
is performed between context switches, and the
hardware’s ability to store and re-load it’s state.
A typical x86 context switch can require sev-
eral thousand cycles to store or load, requiring
hundreds of thousands of instructions of work to
amortize the cost of. For this reason, software
context switch is not suitable for context switch-
ing at a fine grain such as cache misses.

Systems with efficient hardware for storing all
state and bandwidth sufficient for fast switches
can have more tasks mapped onto them without
detrimental performance effects. For example,

9

Figure 9: Logical diagram of instruction execution on the Cray XMT processor.

the T90’s processors could context switch within
a few instructions, and over-subscription (more
than one software thread per hardware proces-
sor) of T90s was a standard use case. The XMT’s
processors does not need to store or re-load a
thread’s context during a context switch because
the state is held entirely in banks of registers in
the processor, thus a context switch can occur
every clock cycle with no performance penalty.

Although most OpenMP programs assume
there is one OpenMP thread per hardware pro-
cessor, this is not required. The OpenMP pro-
gramming model allows a program to run on
any number of hardware resources equal to or
less than the number of requested processors.
This permits over-subscription (running more
OpenMP threads than there are hardware pro-
cessors) or for OpenMP to allocate a smaller
number of threads than the number requested

– or even no threads at all. Because of the rel-
atively high cost of context switching on x86, it
is uncommon to request more software threads
than processors. However if this cost were re-
duced (or eliminated), it might possibly be ad-
vantageous to do so, and harmless to do even
if there were no mechanical advantage to over-
subscription.

5 Application Example

In this section we explore the different program-
ming models by showing examples of implemen-
tations of similar tasks in the variety of program-
ming models. We comment on the performance
issues of each example.

10

5.1 Hashing

Hashing with chaining is a well-studied and well-
established data structure and accompanying al-
gorithms. The idea with chaining is that each
bucket of the hash table is organized as a linked
list. The strategy works best when the length of
the linked lists are small.

Recently, a combination of “hashing with
chaining” and “region based allocation” was pre-
sented [8]. This strategy, called HACHAR, is
well-suited to a shared memory architecture.
The general idea is to move synchronization
points to the most localized position(s) possible.
For example, we could lock the entire hashing
structure, or provide locks for each bucket, or
even move the synchronization out to the end of
each chain, locking only when there is a need to
extend the chain.

We note that a hashing repository may be used
for a wide range of kernel applications, including:
histogramming (counting the number of occur-
rences of each key), unique labeling (providing a
globally unique label such as an integer value for
each key), and existence lookup (checking to see
if a key has been encountered before). While
each of these variations has slightly different
memory access patterns, they are nearly iden-
tical in the hashing aspect of their computation.
We will use the histogramming variation in our
example, and show only the insert(Key key)

method. Note that at the end of processing,
the hashing repository contains a collection of
<key, frequency> pairs.

5.1.1 Hachar data structure

Recall that hashing with chaining involves hash-
ing the key to get the bucket index followed by
chaining forward in a linked list in search of
the key. The type of processing is dependent
upon the application variation (histogramming,
unique id assignment, etc.). For the case of his-
togramming, we do the following:

• If the key is found, the associated frequency
value is incremented.

• If key is not found, we insert a new key into

the chain with an associated frequency value
of one.

Although there is a good, general purpose
memory manager on the XMT designed specif-
ically for multithreaded architectures [9], our
memory allocation pattern is well-known and
specialized, so it makes sense to implement a
region-based memory allocator to achieve better
performance. The region-based memory alloca-
tor provides for all linked list nodes in the buck-
ets to be allocated out of large regions (see Fig-
ure 10). Synchronization can occur at a global
level (one lock for the entire structure), at an in-
termediate level (one lock for each bucket), or at
a fine granularity than that (a lock at only the
last node in each chain, allowing other threads
to be visiting earlier nodes in the chain). Note
that the fine-grain approach works because we
only insert new nodes at the end of the chain.

The data structure is initialized by allocating
a region to serve as the hash table, allocating
a bucket sizes array, and writing zeroes in the
bucket sizes array. In anticipating buckets that
exceed a size of one, an empty region is allocated
and linked from the hash table. To dismantle
this data structure all that is needed is to free
the bucket sizes integer array and each of the
regions. If the data type of the key or value
needs to be dismantled, then each of the array
entries will need to be freed as well.

5.1.2 Insert into a HACHAR

A high-level description of the insert method is
given in figure 11. Note that lines 2, 6 and 9 each
require some type of protection against multiple
thread updates. This can be done by allowing
only one thread into this insertHACHAR method
at a time or by locking parts of the data struc-
ture.

5.1.3 HACHAR on a Cray XMT

We first show the code (in figure 12) to perform
the insertEmpty method on the XMT, which
corresponds to line 2 of insertHACHAR in figure
11. This is followed by a sketch of the while loop

11

3 

2 

Region Head  Region Tail 

Next Free Slot  Next Free Slot  Next Free Slot 

U
nu

se
d 
sl
ot
s 

Bucket 
Sizes 

Ta
bl
e 
/ 
Ch

un
k 
si
ze
 

Key  Val 

Region 0  Region 1  Region 2 

Figure 10: Data structure used to support the Hashing with CHaining And Region-based memory alloca-
tion(HACHAR).

Procedure: InsertHACHAR(key)

1: bucket = hashFunction(key)

// try inserting into an empty bucket
2: flag = insertEmpty(key, Value=1, bucket)

3: while flag != success do
4: Walk down linked list looking for key . no locking used
5: if (key is found) then
6: increment value associated with key . synchronization required
7: flag = true

8: else
// try to insert into the list

9: flag = growChain(key, Value=1) . synchronization required
10: end if
11: end while

Figure 11: Procedure to insert a key-frequency pair in a HACHAR structure. The increment operation at line 6
must be synchronized. Note that the growChain method may fail if some other thread increases the size of the chain
between the time that we noticed that we had walked to the end of the list and the time that we tried to allocate
a new node. If this occurs, we simply return to the top of the loop and continue walking the chain over the newer
parts of the linked list.

12

(lines 3 through 11). Note that these XMT im-
plementations assume a serial context but there
may be many hundreds or even thousands of
threads manipulating this HACHAR data struc-
ture concurrently.

The main while loop of the insertHACHAR

function will iterate until the key has been pro-
cessed (counted). Most of the operations can be
done without the need for synchronization since
the chains will grow only at the end of the linked
list. That means that a search through an exist-
ing list can rely on unchanging data and struc-
ture.

If we run to the end of the chain, we must
synchronize around the task of adding to the list.
On the XMT we synchronize by setting the full-
empty tag bit of the word holding the next link.
When we have completed the update, we write
a value to that link and clear the tag bit.

The details of the growChain function are not
shown. This function uses a process similar to
the insertEmpty to lock and then verify that
the pointer is still NULL before linking in a new
node. The new nodes are allocated from the
pool of available link nodes in a region by us-
ing int fetch add on the next free slot in-
dex. Allocating a new region and linking it in
also follows the same pattern of lock and then
verify that the pointer is still NULL.

5.1.4 HACHAR in OpenMP

Since OpenMP uses a thread-centric synchro-
nization programming model, we must lock
certain parts of the code rather than locking
the data to ensure data integrity across crit-
ical regions. To port the XMT code to an
OpenMP machine, we must address synchro-
nization with the int fetch add idiom and the
readfe/writeef tag bit idiom.

The int fetch add idiom is the easier of the
two and is addressed by simply providing an
inline function that uses the OpenMP atomic
pragma:

inline int

int_fetch_add(int * addr, int & value) {

int old;

#pragma omp atomic

old = (*addr += value);

return old-value;

}

This strategy will handle the increment found
at line 6 of figure 11. The other idiom of the tag
bits requires a little more attention. There are
a couple of strategies for this: using an explicit
lock by creating additional data for the lock and
establishing a critical region of the code (essen-
tially locking the code rather than the data). We
show the second strategy in figure 14.

We can employ a similar technique to provide
critical section locking in the growChain func-
tion. Note that this strategy may not scale very
well because the critical section will not allow
multiple threads into the section of code even
though several of the threads needing to enter
the critical section are trying to update different
buckets of the hash table. The data-centric syn-
chronization easily supports simultaneously up-
dates to different buckets whereas the thread-
centric synchronization either does not support
simultaneous updates at all, or forces the use of
an expensive software lock with separate data.

6 Conclusions and Future
Work

Synchronization is a natural part of parallel pro-
grams which cannot be avoided. The Cray
XMT makes synchronization primitives part of
the memory model, as a result synchronization
is easy to use because it is already part of the
load-store model and it requires no special al-
location or rationing. Communication-free par-
allelism (i.e.: vectorization) is a limited kind of
parallelism and cannot be used on loops which
require some kind of synchronization or output
ordering. Synchronization is needed for imple-
menting atomicity, enforcing order dependencies,
and managing threads.

So called lock-free techniques that rely on
atomic memory operations have locks implied
the in mutual exclusion of the Atomic Memory
Operation (AMO) instructions. Such instruc-
tions do not afford any concurrency and loops
which operate on shared data using AMOs will

13

bool insertEmptyXMT(Key & key, Value & value, int bucket) {
Flag flag = not successful;

// try inserting into an empty bucket

if (bucketSize[bucket] == 0) {
int size=readfe(&bucketSize[bucket]); // lock

if (bucketSize[bucket] == 0) {
region0[bucket].key = key;

region0[bucket].value = 1;

region0[bucket].next = NULL;

flag = successful;

size = 1;

}
writeef(size); // unlock

}
return flag;

}

Figure 12: Implementation of the insertEmpty operation for the HACHAR strategy on the Cray XMT. This corre-
sponds to line 2 of figure 11. Note that this function only attempts to insert into an empty bucket. If the bucket is
not empty, this function will return not successful.

void insertHACHAR(Key & key) {
unsigned int bucket = hashFunction(key);

Flag flag = insertEmpty(key, Value=1, bucket);

Node * ptr = & region0[bucket];

while (flag != successful) {
if (ptr->key == key) {
// accumulate frequency count using atomic add

int fetch add(& (ptr->Value), 1);

flag = successful;

} else if (ptr->next == NULL) {
flag = growChain(key, Value=1); // this may fail

} else {
ptr = ptr->next;

}
}

}

Figure 13: Implementation of the insertHACHAR operation on the Cray XMT. Note that the call to growChain may
fail if some other thread comes in and extends this chain between the time we notice the next link is NULL and the
time inside of growChain where we will lock the next link (using readfe).

have an execution time that is a function of the
number of iterations, not the number of itera-
tions divided by the number of processors. Fine
grained synchronization on data exposes concur-

rency not present in algorithms which manage
concurrency through task management, making
the algorithms more algorithmically efficient and
faster executing.

14

bool insertEmptyOpenMP(Key & key, Value & value, int bucket) {
Flag flag = not successful;

// try inserting into an empty bucket

if (bucketSize[bucket] == 0) {
#pragma omp critical(insertEmptySlot) // lock code

{
if (bucketSize[bucket] == 0) {
region0[bucket].key = key;

region0[bucket].value = 1;

region0[bucket].next = NULL;

flag = successful;

size = 1;

}
} // unlock

}
return flag;

}

Figure 14: Implementation of the insertEmpty operation for the HACHAR strategy using OpenMP. This corresponds
to line 2 of figure 11. Note that this function only attempts to insert into an empty bucket. If the bucket is not
empty, this function will return not successful.

In addition to extended memory semantics,
the XMT implements efficient context switch-
ing in hardware, making it possible to toler-
ate the latency of memory operations by ex-
ecuting software threads whose memory oper-
ations have already completed. It is impor-
tant to note that this mechanism which masks
hardware latency also masks algorithmic latency
when producers and consumers of shared data
are far apart in time. This synergy between
the programming model and the hardware sim-
plifies programming by turning most processor
under-utilization problems into a matter of find-
ing more threads to execute.

Unlike special hardware features which may
be implementation dependent, parallelism is per-
formance portable. A program which is written
to exploit vector registers of a given length may
need to be completely redesigned to expose more
concurrency when the hardware’s vector length
is increased. However, multithreaded software
is agnostic with respect to how the parallelism
is implemented, making the implementation ir-
relevant. Furthermore, the multithreaded pro-
gramming model presents a single programming

model from the desktop to the supercomputer
in which quality of service is determined by the
amount of concurrency in hardware, not opti-
mizations in software.

Acknowledgments

This work was funded under the Center for
Adaptive Supercomputing Software - Multi-
threaded Architectures (CASS-MT) at the Dept.
of Energys Pacific Northwest National Labora-
tory. Pacific Northwest National Laboratory is
operated by Battelle Memorial Institute under
Contract DE-ACO6-76RL01830.

About the Authors

Jace A Mogill, Research Scientist, studies
hybrid-microparallel computer architectures and
parallel programming models. He is an applica-
tions analyst that eventually took Alan Kay’s ad-
vice to learn to build his own hardware. He can
be reached at: Pacific Northwest National Lab-
oratory, 902 Battelle Boulevard, P.O. Box 999,

15

MSIN J4-30, Richland, WA, 99352, USA, Email:
jace.mogill@pnl.gov.

David J. Haglin, senior research scientist, is
interested in algorithm design, algorithm theory,
parallel algorithms, graph algorithms and data
mining. He can be reached at: Pacific North-
west National Laboratory, 902 Battelle Boule-
vard, P.O. Box 999, MSIN J4-30, Richland, WA,
99352, USA, Email: david.haglin@pnl.gov.

References

[1] Cray Research Inc., “Cray X-MP Series of
Computer Systems,” 1985, Sales/Marketing
Literature.

[2] M. M. Michael, “High performance dynamic
lock-free hash tables and list-based sets,” in
SPAA ’02: Proceedings of the fourteenth an-
nual ACM symposium on Parallel algorithms
and architectures. New York, NY, USA:
ACM, 2002, pp. 73–82.

[3] E. Petrank, M. Musuvathi, and
B. Steesngaard, “Progress guarantee for par-
allel programs via bounded lock-freedom,”
in PLDI ’09: Proceedings of the 2009 ACM
SIGPLAN conference on Programming
language design and implementation. New
York, NY, USA: ACM, 2009, pp. 144–154.

[4] M. M. Michael, “Scalable lock-free dynamic
memory allocation,” in PLDI ’04: Proceed-
ings of the ACM SIGPLAN 2004 conference
on Programming language design and imple-
mentation. New York, NY, USA: ACM,
2004, pp. 35–46.

[5] Advanced MicroDevices, BIOS and Kernel
Developer’s Guide for AMD NPT Family
0Fh Processors, 3rd ed. AMD Inc., 2009.

[6] J. Feo, D. Harper, S. Kahan, and P. Konecny,
“ELDORADO,” in CF ’05: Proceedings of
the 2nd conference on Computing frontiers.
New York, NY, USA: ACM, 2005, pp. 28–
34.

[7] D. Chavarŕıa-Miranda, A. Marquez,
J. Nieplocha, K. Maschhoff, and C. Scherrer,

“Early Experience with Out-of-Core Appli-
cations on the Cray XMT,” in Proceedings
of the 22nd IEEE International Parallel and
Distributed Processing Symposium, April
2008, pp. 1–8.

[8] E. L. Goodman, D. J. Haglin, C. Scherrer,
D. Chavarŕıa-Miranda, J. Mogill, and J. Feo,
“Hashing Strategies for the Cray XMT,” in
Proceedings of the 24nd IEEE International
Parallel and Distributed Processing Sympo-
sium, April 2010.

[9] S. Kahan and P. Konecny, ““MAMA!”: a
memory allocator for multithreaded archi-
tectures,” in PPoPP ’06: Proceedings of
the eleventh ACM SIGPLAN symposium on
Principles and practice of parallel program-
ming. New York, NY, USA: ACM, 2006,
pp. 178–186.

16

