
A Comparison Of Shared
Memory Parallel Programming
Models
Jace A Mogill
David Haglin

1

Parallel Programming Gap
   Not many innovations...

   Memory semantics
unchanged for over 50
years

   2010 Multi-Core x86
programming model
identical to 1982
Symmetric Multi-
Processor
programming model

   Unwillingness to adopt
new languages
   Users want to leverage

existing investments in
code

   Prefer to incrementally
migrate to parallelism

  OpenMP/MicroTasking – Data parallelism
  Pthreads – Task parallelism
  Wishful Thinking – Mixed task and data

parallelism

Parallelism and Synchronization are Orthogonal

Expressing Synchronization and Parallelism

Parallelism
Explicit Implicit

Synchronization
Code Pthreads/

OpenMP Vectorization

Data MTA Dataflow

3

Synchronization and parallelism primitives can be mixed

OpenMP mixed with Atomic Memory Operations
 MTA synchronization mixed with OpenMP parallel loops

OpenMP mixed with Pthread Mutex Locks
OpenMP or Pthreads mixed with Vectorization

All of the above mixed with MPI, UPC, CAF, etc.

Thread-Centric versus Data-Centric

Compiler is already doing this for ILP, loop
optimization, and vectorization

Optimizes for concurrency, which is
performance portable

Moving task to data is a natural option for
load balancing

Data-Centric

Manage Data Dependencies

Optimizes for specific machine
organization

Requires careful scheduling of
moving data to/from thread

Difficult to load balance dynamic and
nested parallel regions

Thread-Centric

Manage Threads

TASK: Map millions of degrees of parallelism onto tens
of (thousands of) processors

Lock-Free and Wait-Free Algorithms

5

   Lock Free and Wait Free
Algorithms...
   Don’t really exist
   Only embarrassingly Parallel

algorithms don’t use
synchronization

   Compare And Swap...
   is not lock free or wait-free
   has no concurrency
   is a synchronization primitive

which corresponds to mutex
try-lock in the Pthreads
programming model

Compare And Swap
   LOCK# CMPXCHG – x86 Locked Compare and Exchange
   Programming Idioms

   Similar to mutex try-lock
   Mutex locks can spin try-lock or yield to the OS/runtime
   So Called Lock-Free Algorithms

   Manually coded secondary lock handler
   Manually coded tertiary lock handler...

   All this try-lock handler work is not algorithmically efficient...
   It’s Lock-Free Turtles all the way down...

   Implementation
   Instruction in all i386 and later processors
   Efficient for processors sharing caches and memory controllers
   Not efficient or fair for non-uniform machine organizations

6

Atomic Memory Operations Do Not Scale
It is not possible to go 10,000 way parallel on one piece of data.

Thread-Centric Parallel Regions

OpenMP
Implied fork/join scaffolding
   Parallel regions are separate

from loops
   Unannotated loops: Every

thread executes all iterations
   Annotated loops: Loops are

decomposed among existing
threads

   Joining Threads
   Exit parallel region
   Barriers

Pthreads
Fully explicit scaffolding
   Forking Threads

   One new thread per
PthreadCreate()

   Loops or trees required
to start multiple threads

   Flow control
   PthreadBarrier
   Mutex Lock

   Joining Threads
   PthreadJoin
   return()

7

Data-Centric Parallel Regions on XMT

8

Multiple loops, with different trip counts, after
restructuring a reduction, all in a single parallel region:
Parallel region 1 in foo
 Multiple processor implementation
 Requesting at least 50 streams

Loop 2 in foo in region 1
 In parallel phase 1
 Dynamically scheduled, variable chunks, min size = 26
 Compiler generated

Loop 3 in foo at line 7 in loop 2
 Loop summary: 1 loads, 0 stores, 1 floating point operations
 1 instructions, needs 50 streams for full utilization
 pipelined

Loop 4 in foo in region 1
 In parallel phase 2
 Dynamically scheduled, variable chunks, min size = 8
 Compiler generated

Loop 5 in foo at line 10 in loop 4
 Loop summary: 2 loads, 1 stores, 2 floating point operations
 3 instructions, needs 44 streams for full utilization
 pipelined

 | void foo(int n, double* restrict a,
 | double* restrict b,
 | double* restrict c,
 | double* restrict d)
 | {
 | int i, j;
 | double sum = 0.0;
 |
 | for (i = 0; i < n; i++)
3 P:$ | sum += a[i];
** reduction moved out of 1 loop
 |
 | for (j = 0; j < n/2; j++)
5 P | b[j] = c[j] + d[j] * sum;
 | }

Parallel Histogram

PARALLEL-DO i = 0 .. Nelements-1
 j = 0
 while(j < Nbins &&
 elem[i] < binmax[j])
 j++
 BEGIN CRITICAL-REGION
 counts[j]++ Only 1 thread at a time
 END CRITICAL-REGION

• Critical region around update to
counts array

• Serial bottleneck in critical region

• Wastes potential concurrency

Thread Centric Time = Nelements

PARALLEL-DO i = 0 .. Nelements-1
 j = 0
 while(j < Nbins &&
 elem[i] < binmax[j])
 j++
 INT_FETCH_ADD(counts[j], 1) Updates

are atomic

Data Centric Time = Nelements/Nbins
Updates to count table are atomic:

•  Requires abundant fine grained
synchronization

All concurrency can be exploited:
•  Maximum concurrency limited

to number of bins
•  Every bin updated

simultaneously

Linked List Manipulation

   Insertion Sort
   Time = N*N/2 – Inserting from same side every time
   Time = N*N/4 – Insert at head or tail, whichever is nearer

   Unlimited concurrency during search
   Concurrency during manipulations

   Thread Parallelism: One update to list at a time
   Data Parallelism: Between each pair of elements

   Grow list length by 50% on every step
   Two phase insertion (search, then lock and modify)

10

Two-Phase List Insertion (OpenMP)

1.  Find site to insert at
   Do not lock list
   Traverse list serially

2.  Perform List Update
   Enter Critical Region
   Re-Confirm site is unchanged
   Update list pointers
   End Critical Region

11

   Only One Insertion at a
time

   Unlimited number of
search threads
   More threads means...

   more failed inter-node
locks

   more repeated
(wasted) searches

   Wallclock Time = N
   Parallel Search – 1
   Serial updates – N

Two-Phase List Insertion (MTA)

1.  Find site to insert at
   Do not lock list
   Traverse list serially

2.  Perform List Update
   Lock two elements inserted

between
   Acquire locks in lexicographical

order to avoid deadlocks
   Confirm link between nodes is

unchanged
   Update link pointers of nodes
   Unlock two elements in reverse

order of locking

   N/4 Maximum concurrent
insertions
   Insert between every pair

of nodes
   More insertion points

means fewer failed inter-
node locks

   Total Time = logN

12

Global HACHAR – Initial Data Structure

0

0

Region Head Non-full Region

Next Free Slot = ∞ Next Free Slot = 0
Chain
Length

Ta
bl

e
/ C

hu
nk

 s
iz

e

Region 0 Region 1

   Use “two-step
acquire” on
length, region
linked list
pointers, chain
pointers.

   Use
int_fetch_add
on “next free
slot” to
allocate list
node.

Global HACHAR – Two items inserted

1

1

Region Head Non-full
Region

Next Free Slot = ∞ Next Free Slot = 0
Chain
Length

H
as

h
Fu

nc
tio

n
R

an
ge

Word Word Id

Region 0 Region 1

   “locked” length
and inserted
into “head of
list”

   Potential
contention only
on length

   List node
shows
example for
Bag Of Words

Global HACHAR – Collisions

3

1

Region Head Non-full
Region

Next Free Slot = ∞ Next Free Slot = x
Chain
Length

Ta
bl

e
/ C

hu
nk

 s
iz

e

Word Word Id

Region 0 Region 1

   Lookup: walk
chain, no
locking

   Malloc and free
limited to the
few region
buffer

   Growing a chain
requires lock of
only last pointer
(int_fetch_add
length)

Global HACHAR – Region Overflow

3

2

Region Head Non-full
Region

Next Free Slot = ∞ Next Free Slot = ∞
Chain
Length

Ta
bl

e
/ C

hu
nk

 s
iz

e

Word Word Id

Region 0 Region 1

Next Free Slot = 1

Region 2

Once Per Thread vs. Once Per Iteration

   OpenMP
   Parallel regions are separate

from loops
   Loop decomposition idiom

already captured in
conventional pragma syntax

17

PARALLEL-DO i = 0 .. Nthreads-1
 float *p = malloc(...)
 int n_iters = Nelements / Nthreads
 DO j = i*n_iters .. max(N,(i+1)*n_iters)
 p[j] = ... x[j] ...
 x[j] = ... p[j] ...
 ENDDO
 free(p);
END-PARALLEL-DO

Allocating Storage Once Per Thread

malloc hoisted out of inner
loop, or fused into outer loop

Block of serial iterations

Parallel loop, one iteration per
thread

   XMT
   Abominable Kludge
   Non-portable pragma

semantics
   Requires separate

loops, possibly parallel
region

Synchronization is a Natural Part of Parallelism

   Synchronization cannot be avoided, it must
be made efficient and easy to use
   “Lock Free” algorithms aren’t...

   Sequential execution of atomic ops (compare
and swap, fetch and add)

   Hidden lock semantics in compiler or hardware
(change either and you have a bug)

   Communication-free loop level data
parallelism (ie: vectorization) is a limited kind
of parallelism

   Synchronization needed for many purposes
   Atomicity
   Enforce order dependencies
   Manage threads

   Must be abundant
   Don’t want to worry about allocating or

rationing synchronization variables

I’m a lock free scalable
parallel algorithm!

18

Conclusions
   Synchronization is a natural part of parallel programs

   Synchronization must be abundant, efficient, and easy to use
   Some latencies can be minimized, others must be tolerated

   Parallelism can mask latency
   Enough parallelism makes latency irrelevant

   Fine-grained synchronization improves utilization
   More opportunities for exploiting parallelism
   Proactively share resources

   Parallelism is performance portable
   Same programming model from desktop to supercomputer
   Quality of Service determined by amount of concurrency in hardware, not

optimizations in software
   AMOs versus Tag Bits

   Tags make fine-grained parallelism possible
More Data == More Concurrency

   AMOs do not scale

19

20

