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Parallel Programming Gap 
   Not many innovations... 

   Memory semantics 
unchanged for over 50 
years 

   2010 Multi-Core x86 
programming model 
identical to 1982 
Symmetric Multi-
Processor 
programming model 

   Unwillingness to adopt 
new languages 
   Users want to leverage 

existing investments in 
code 

   Prefer to incrementally 
migrate to parallelism 

  OpenMP/MicroTasking – Data parallelism 
  Pthreads – Task parallelism 
  Wishful Thinking – Mixed task and data 

parallelism 



Parallelism and Synchronization are Orthogonal 

Expressing Synchronization and Parallelism 

Parallelism 
Explicit Implicit 

Synchronization 
Code Pthreads/

OpenMP Vectorization 

Data MTA Dataflow 
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Synchronization and parallelism primitives can be mixed 

OpenMP mixed with Atomic Memory Operations 
 MTA synchronization mixed with OpenMP parallel loops 

OpenMP mixed with Pthread Mutex Locks 
OpenMP or Pthreads mixed with Vectorization 

All of the above mixed with MPI, UPC, CAF, etc. 



Thread-Centric versus Data-Centric 

Compiler is already doing this for ILP, loop 
optimization, and vectorization 

Optimizes for concurrency, which is 
performance portable 

Moving task to data is a natural option for 
load balancing 

Data-Centric 

Manage Data Dependencies 

Optimizes for specific machine 
organization 

Requires careful scheduling of 
moving data to/from thread 

Difficult to load balance dynamic and 
nested parallel regions 

Thread-Centric 

Manage Threads 

TASK: Map millions of degrees of parallelism onto tens 
of (thousands of) processors 



Lock-Free and Wait-Free Algorithms 
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   Lock Free and Wait Free 
Algorithms... 
   Don’t really exist 
   Only embarrassingly Parallel 

algorithms don’t use 
synchronization 

   Compare And Swap... 
   is not lock free or wait-free 
   has no concurrency 
   is a synchronization primitive 

which corresponds to mutex 
try-lock in the Pthreads 
programming model 



Compare And Swap 
   LOCK# CMPXCHG – x86 Locked Compare and Exchange 
   Programming Idioms 

   Similar to mutex try-lock 
   Mutex locks can spin try-lock or yield to the OS/runtime 
   So Called Lock-Free Algorithms 

   Manually coded secondary lock handler 
   Manually coded tertiary lock handler... 

   All this try-lock handler work is not algorithmically efficient... 
   It’s Lock-Free Turtles all the way down... 

   Implementation 
   Instruction in all i386 and later processors 
   Efficient for processors sharing caches and memory controllers 
   Not efficient or fair for non-uniform machine organizations 
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Atomic Memory Operations Do Not Scale   
It is not possible to go 10,000 way parallel on one piece of data. 



Thread-Centric Parallel Regions 

OpenMP 
Implied fork/join scaffolding 
   Parallel regions are separate 

from loops 
   Unannotated loops: Every 

thread executes all iterations 
   Annotated loops: Loops are 

decomposed among existing 
threads 

   Joining Threads 
   Exit parallel region 
   Barriers 

Pthreads 
Fully explicit scaffolding 
   Forking Threads 

   One new thread per 
PthreadCreate() 

   Loops or trees required 
to start multiple threads 

   Flow control   
   PthreadBarrier 
   Mutex Lock 

   Joining Threads 
   PthreadJoin 
   return() 
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Data-Centric Parallel Regions on XMT 
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Multiple loops, with different trip counts, after 
restructuring a reduction, all in a single parallel region: 
Parallel region   1 in foo 
       Multiple processor implementation 
       Requesting at least 50 streams 

Loop   2 in foo in region 1 
       In parallel phase 1 
       Dynamically scheduled, variable chunks, min size = 26 
       Compiler generated 

Loop   3 in foo at line 7 in loop 2 
       Loop summary: 1 loads, 0 stores, 1 floating point operations 
                1 instructions, needs 50 streams for full utilization 
                pipelined 

Loop   4 in foo in region 1 
       In parallel phase 2 
       Dynamically scheduled, variable chunks, min size = 8 
       Compiler generated 

Loop   5 in foo at line 10 in loop 4 
       Loop summary: 2 loads, 1 stores, 2 floating point operations 
                3 instructions, needs 44 streams for full utilization 
                pipelined 

      | void foo(int n, double* restrict a,   
      |          double* restrict b,   
      |          double* restrict c,   
      |          double* restrict d) 
      | { 
      |   int i, j; 
      |   double sum = 0.0; 
      |  
      |   for (i = 0; i < n; i++)  
3 P:$ |     sum += a[i]; 
** reduction moved out of 1 loop 
      |  
      |   for (j = 0; j < n/2; j++)  
5 P   |     b[j] = c[j] + d[j] * sum; 
      | } 



Parallel Histogram 

PARALLEL-DO  i = 0 .. Nelements-1 
   j = 0 
   while(j < Nbins &&  
         elem[i] < binmax[j])  
       j++ 
   BEGIN CRITICAL-REGION 
     counts[j]++  Only 1 thread at a time 
   END CRITICAL-REGION 

• Critical region around update to 
counts array 

• Serial bottleneck in critical region 

• Wastes potential concurrency 

Thread Centric         Time = Nelements 

PARALLEL-DO  i = 0 .. Nelements-1 
  j = 0 
  while(j < Nbins &&  
        elem[i] < binmax[j])  
      j++ 
  INT_FETCH_ADD(counts[j], 1)  Updates  

are atomic 

Data Centric               Time = Nelements/Nbins 
Updates to count table are atomic: 

•  Requires abundant fine grained 
synchronization 

All concurrency can be exploited: 
•  Maximum concurrency limited 

to number of bins 
•  Every bin updated 

simultaneously 



Linked List Manipulation 

   Insertion Sort 
   Time = N*N/2 – Inserting from same side every time 
   Time = N*N/4 – Insert at head or tail, whichever is nearer 

   Unlimited concurrency during search 
   Concurrency during manipulations 

   Thread Parallelism: One update to list at a time 
   Data Parallelism: Between each pair of elements 

   Grow list length by 50% on every step 
   Two phase insertion (search, then lock and modify) 
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Two-Phase List Insertion (OpenMP) 

1.  Find site to insert at 
   Do not lock list 
   Traverse list serially 

2.  Perform List Update 
   Enter Critical Region 
   Re-Confirm site is unchanged 
   Update list pointers 
   End Critical Region 
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   Only One Insertion at a 
time 

   Unlimited number of 
search threads 
   More threads means... 

   more failed inter-node 
locks 

   more repeated 
(wasted) searches 

   Wallclock Time = N 
   Parallel Search – 1 
   Serial updates – N 



Two-Phase List Insertion (MTA) 

1.  Find site to insert at 
   Do not lock list 
   Traverse list serially 

2.  Perform List Update 
   Lock two elements inserted 

between 
   Acquire locks in lexicographical 

order to avoid deadlocks 
   Confirm link between nodes is 

unchanged 
   Update link pointers of nodes 
   Unlock two elements in reverse 

order of locking 

   N/4 Maximum concurrent 
insertions 
   Insert between every pair 

of nodes 
   More insertion points 

means fewer failed inter-
node locks 

   Total Time = logN 
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Global HACHAR – Initial Data Structure 
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   Use “two-step 
acquire” on 
length, region 
linked list 
pointers, chain 
pointers. 

   Use 
int_fetch_add 
on “next free 
slot” to 
allocate list 
node. 



Global HACHAR – Two items inserted 
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   “locked” length 
and inserted 
into “head of 
list” 

   Potential 
contention only 
on length 

   List node 
shows 
example for 
Bag Of Words 



Global HACHAR – Collisions 

3 

1 

Region Head Non-full 
Region 

Next Free Slot = ∞ Next Free Slot = x 
Chain 
Length 

Ta
bl

e 
/ C

hu
nk

 s
iz

e 

Word Word Id 

Region 0 Region 1 

   Lookup:  walk 
chain, no 
locking 

   Malloc and free 
limited to the 
few region 
buffer 

   Growing a chain 
requires lock of 
only last pointer 
(int_fetch_add  
length) 



Global HACHAR – Region Overflow 
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Once Per Thread vs. Once Per Iteration 

   OpenMP 
   Parallel regions are separate 

from loops 
   Loop decomposition idiom 

already captured in 
conventional pragma syntax 
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PARALLEL-DO  i = 0 .. Nthreads-1 
  float *p = malloc(...) 
  int  n_iters = Nelements / Nthreads 
  DO j = i*n_iters .. max(N,(i+1)*n_iters) 
    p[j] = ... x[j] ... 
    x[j] = ... p[j] ... 
  ENDDO 
  free(p); 
END-PARALLEL-DO 

Allocating Storage Once Per Thread 

malloc hoisted out of inner 
loop, or fused into outer loop 

Block of serial iterations 

Parallel loop, one iteration per 
thread 

   XMT 
   Abominable Kludge 
   Non-portable pragma 

semantics 
   Requires separate 

loops, possibly parallel 
region 



Synchronization is a Natural Part of Parallelism 

   Synchronization cannot be avoided, it must 
be made efficient and easy to use 
   “Lock Free” algorithms aren’t... 

   Sequential execution of atomic ops (compare 
and swap, fetch and add) 

   Hidden lock semantics in compiler or hardware 
(change either and you have a bug) 

   Communication-free loop level data 
parallelism (ie: vectorization) is a limited kind 
of parallelism  

   Synchronization needed for many purposes 
   Atomicity 
   Enforce order dependencies 
   Manage threads 

   Must be abundant 
   Don’t want to worry about allocating or 

rationing synchronization variables 

I’m a lock free scalable 
parallel algorithm! 
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Conclusions 
   Synchronization is a natural part of parallel programs 

   Synchronization must be abundant, efficient, and easy to use 
   Some latencies can be minimized, others must be tolerated 

   Parallelism can mask latency 
   Enough parallelism makes latency irrelevant 

   Fine-grained synchronization improves utilization 
   More opportunities for exploiting parallelism 
   Proactively share resources 

   Parallelism is performance portable 
   Same programming model from desktop to supercomputer 
   Quality of Service determined by amount of concurrency in hardware, not 

optimizations in software 
   AMOs versus Tag Bits 

   Tags make fine-grained parallelism possible 
More Data == More Concurrency 

   AMOs do not scale 
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