
MPI Queue characteristics of large-scale applications

Rainer Keller and Richard Graham
Oak Ridge National Laboratory

Oak Ridge, TN 37831
Email:{keller,rlgraham}@ornl.gov

ABSTRACT: Application codes running at large process counts may exhibit unexpected communi-
cation characteristics, hindering scalability. An optimized MPI-implementation must take these into
account to better utilize resources. This paper analyzes the communication and MPI-internal queue
characteristics of simulation codes important to the future Oak Ridge Leadership Computing Facility
(OLCF). The codes represent a wide mix of scientific applications using current production input data.
Open MPI’s Peruse interface is used to collect various events such as the length of the unexpected
message queue, the time of message stay in the unexpected message queue and the amount of time
spent searching the unexpected message queue for already received data.
We show, that applications exhibit patterns over process counts, and that applications have char-
acteristic unexpected message queue usage. We also shown, that process zero almost always has a
longer unexpected message queue (due to being the root process in collective operations) and that
other applications always have a long unexpected message queue on every fourth process. This
paper provides useful data for the application and the MPI developer alike. Knowing the unexpected
message queue characteristics allows an MPI implementation, e. g. to tune the search algorithm to
minimize the overhead.

KEYWORDS: Application performance, Scalability, MPI Queue characteristics, Cray XT5

1 Introduction

The Message Passing Standard is the most widely used
parallel programming paradigm for highly-scalable paral-
lel applications. Since its introduction in 1995 various ex-
tensions and updates have been incorporated; the latest
standard is MPI-2.2 [7]. While MPI is considered to be the
”assembler of parallel programming”, additions currently
being worked on allow application developers to scale to
upcoming and future architectures.

A system that fits this programming model is the Cray
XT series, which consists of a family of scalable systems
comprising of commodity AMD Opteron microprocessors
are connected using a custom 2D or 3D torus network. the
so-called SeaStar2+ [3] interconnect. The communication

stack that is used beneath the vendor’s MPI and Open
MPI is Portals [8]. Installations of this series range from
the midrange Cray XT5m to the Cray XT5 installations at
Oak Ridge National Laboratory. The current highest per-
forming system Jaguar at ORNL consists of 18688 compute
nodes each using two AMD Opteron hex-core Istanbul pro-
cessors per node.

To allow parallel applications to scale to such core
counts, communication needs to be optimized on several
levels to introduce as little overhead as possible: The ap-
plication must make as few data exchanges as possible, it
should try to decouple communication and computation
to try hide the communication and the system software
and the communication library should not introduce over-
heads. When trying to adapt the MPI implementation

1

to requirements of large-scale applications, it is essential
to understand the communication characteristics, such as
communication pattern, communication amount and dis-
tribution. At large process counts various effects may skew
a nicely load-balanced application. In this paper, we study
the MPI-internal queue characteristics of several applica-
tions important to the next Oak Ridge Leadership Com-
pute Facility (OLCF).

In this paper we introduce a lot of results gathered with
a tracing library developed using the Peruse introspection
interface [9]. Section 2 provides an overview of Peruse and
the implementation of this tracing library. In section 3 ap-
plication’s performance characteristics gathered with this
library are presented. Section 4 shows some related work.
Finally, in section 5 we provide a short conclusion and give
an outlook of this work.

2 Measurement Methodology

In order to retrieve information on the message handling
characteristics of an application, we used the Peruse [9]
specification, which is implemented in Open MPI [10]. In
between the MPI library and the application, a library
hooks in using the Profiling MPI-Interface (PMPI).

2.1 Peruse Overview

While the standard PMPI-based interface allows gather-
ing of timing information around MPI calls, the Peruse in-
terface is targeted for performance measurement libraries,
to gather information on state-changes within the MPI li-
brary. This allows fine-grained tracking of messages within
the MPI stack. User-level callbacks are registered with
Peruse, to be invoked upon a state-change. These may in-
clude incoming messages, or entering the search for already
received messages. Here we concentrate on evaluating the
events concerning the Unexpected Message Queue (UMQ).

Figure 1 shows the currently defined events in Peruse
and their sequence along the send- and receive path; please
note that the Open MPI implementation offers an addi-
tional event PERUSE_XFER_CONTINUE not stated in the Pe-
ruse specification, which allows detailed timing informa-
tion for messages split in a rendezvous message protocol.
Peruse does not impose any particular message passing
method, any fixed set of events, allows additional events
and recommends not supporting a particular event, if this

would slow down the particular MPI implementation. The
interface is portable in design, by allowing applications or
performance tracing libraries to query for supported events
using defined ASCII strings. For an overview of the seman-
tics of events we refer to [9].

In order to study the behavior of large-scale applica-
tion’s usage on the unexpected message queue, we use
the Peruse Events PERUSE_COMM_MSG_INSERT_IN_UNEX_Q,
PERUSE_COMM_MSG_REMOVE_FROM_UNEX_Q, PERUSE_COMM_

SEARCH_UNEX_Q_BEGIN and PERUSE_COMM_SEARCH_UNEX_

Q_END. As Open MPI purposefully only allows a single
callback to be attached to an event, we demultiplex events
in the registered callback-handler within our library.

2.2 Library implementation

For this study, a tracing library has been developed Hooks
using the PMPI-interface are provided for any C- or
Fortran-application If the application is linked using this
wrapper interface, the only output is a header informing
of its initialization on process with rank zero. Apart from
the the wrapper and an API described below, there is a set
of environment variables with which one sets sizes of in-
ternal buffers and alike. Additionally, the library offers an
API to initialize with different internal buffer sizes, reset
counters, print out detailed information, print collectively
reduced statistics and collectively write the detailed buffer
information to one file per statistics. Care has been taken
to take scalability into account in the API and the us-
age of underlying communication. For example, for jobs
with 30,000 processes, while the collective reduce opera-
tions provide limited information, the full amount of data
may be written collectively using parallel IO: JaguarPF
employs Spider, the center-wide Lustre installation, i. e.
data is written to disk over the Infiniband network. This
exposed a problem with job sizes of 30,000 processes: while
care has been taken to write contiguously in only one col-
lective I/O-call, the proper ROMIO info-flags had to be
passed upon file-open to allow write aggregation. Further-
more for big message traces (≥ 4096 UMQ measurements
per process), one needs to stripe the file to more than the
default four Lustre OSTs. Currently the library does not
set striping using an ioctl or the Lustre User Toolkit li-
brary (libLUT), but rather sets the striping prior the ap-
plication run.

The library currently provides three different analyzes

2

IN_UNEX_Q
MSG_INSERT_

FROM_UNEX_Q
MSG_REMOVE

POSTED_REQ
MSG_MATCH_

IN_POSTED_Q
REQ_INSERT_

FROM_POSTED_Q
REQ_REMOVE

ACTIVATE
REQ_

ACTIVATE
REQ_

REQ_MATCH
UNEX

REQ_XFER_BEGIN

MSG_ARRIVED

Communication Layer

REQ_COMPLETE

REQ_XFER_END

MPI_Start

MPI_*send

MPI_Start

MPI_*recv

REQ_NOTIFY

MPI Library

User Code

(REQ_XFER_CONTINUE)*

MPI_Wait*/MPI_Test*

MPI_*send/MPI*recv

User Code

All incoming messages

Figure 1: Events and sequence of events during MPI communication as defined in the Peruse specification.

which may enabled separately:

• UMQ maximum and current length, i. e. the max-
imum length of the process’s MPI queue for mes-
sages, for which no MPI_Recv (or equivalent) has
been posted,

• UMQ time, i. e. the time per message staying in the
process’s MPI queue, which allows analysis, when the
actual receive call has been posted,

• UMQ search time, i. e. the time this process has spent
searching this MPI process’ UMQ.

All the event counters may be reset, or written to disk
during the run, to show phases in the application run.

2.3 Measurement

In order not to skew the performance results, all libraries
and applications have been adapted to limit the output
written to disk as is noted in the corresponding sections.
Furthermore all applications and libraries were compiled
with the latest default PGI compiler (PGI version 9.0.4)
and with the same compilation flags (-fastsse to allow
vectorization of code, and -Mipa=fast,inline for inlin-
ing and -tp=istanbul-64 to optimize the code for the
hex-core processor of JaguarPF). The applications were
scaled weakly to be able to easily compare communication
characteristics. The output files generated above may get
large, e. g. in the case of S3D up to one gigabyte. Octave
has been used with scripts to load, analyze, post-process
and visualize the data.

3 Application Results

3.1 GTC

Gyrokinetic Toroidal (GTC) is a 3-D particle-in-cell
code [11]. This code is employed for calculating the turbu-
lence and transport in fusion plasmas such as ITER. GTC
is a heavily used code on JaguarPF at ORNL and has
been employed as a benchmark for machines at NCCS and
NERSC. In [13], the performance of GTC on two Cray XT4
machines installed at NERSC and ORNL are compared.

For this paper, the communication characteristics of up
to 8192 processes has been gathered. Similar to [13], we
weakly scale the input data set, i. e. the input data set
per processor was kept as the same. During the measure-
ment, it turned out that IO in GTC contaminated and
randomized the results, i. e. every 5 iterations a diagnosis
was performed, which writes the 3D data domain to one
file per process. This not only took up a lot of time, but
also perturbed the run drastically. Due to the size of the
domain per process, on JaguarPF only 4 processes were
run per node.

At first GTC is compared using Cray’s optimized MPI
(Cray MPT 3.5.1) with Open MPI with the Peruse trac-
ing enabled. Figure 2 shows the time of the two domi-
nating functions charge (left), pusher (middle) and the
total time (right). Open MPI does perform equally well in
the pusher routine, even though microbenchmarks show
MPI_Allreduce and MPI_Reduce employed here to be less
performant in Open MPI compared to Cray MPI. Overall
the application runs at 8192 processes with Open MPI and
Peruse about 2% slower than with Cray’s MPI.

3

 1100

 1150

 1200

 1250

 1300

 1350

 1400

 1450

 10 100 1000 10000

T
im

e
[s

]

Processors

Weak scaling of function Charge

CrayMPI
Open MPI w/ MPIstat

 1200

 1300

 1400

 1500

 1600

 1700

 1800

 10 100 1000 10000

T
im

e
[s

]

Processors

Weak Scaling of function Pusher

CrayMPI
Open MPI w/ MPIstat

 2800

 2900

 3000

 3100

 3200

 3300

 3400

 3500

 10 100 1000 10000

T
im

e
[s

]

Processors

Weak Scaling

CrayMPI
Open MPI w/ MPIstat

Figure 2: Execution time of GTC routines charge (left), pusher (middle) and the total time (right).

 0

 5

 10

 15

 20

 25

 10 100 1000 10000

L
e

n
g

th

Processors

Maximum UMQ for GTC

Max. UMQ length (Overall)

0

0

0

0

0

0

0
0

0

Shortest max. UMQ length

9 24 9
44 68 164 316

268

430

Figure 3: Maximum length of UMQ with rank.

Even though the communication is nearest neighbor
between segments of the torus, the results for the unper-
turbed execution shows that the maximum length of the
unexpected message queue (UMQ) slowly increases with
process count, as may be see in Fig. 31. Nevertheless,
the maximum length of 24 entries in the UMQ on rank
zero is very low in comparison with other codes, as in
LSMS 3.2. Similarly the average UMQ over all processes
and the shortest maximum UMQ stays low as well! The
process with rank 0 in this case has the longest UMQ with
up to 24 entries in the case with 8192 processes, while
the shortest maximum UMQ always stays below 5 entries.
When comparing the distribution of the UMQ length, pat-
terns show a correlation between neighbors, as shown in
Fig. 4 (left). This may be due to the physical simulation

domain, a Torus. The histogram clearly shows that the
majority of processes have a short UMQ as may be seen in
Fig. 4 (right). In the addendum the histograms and UMQ
plots for GTC with intermediate sizes are shown as well in
Fig. 9.

As the maximum length UMQ is limited for this code,
the time spent searching the UMQ does not offer any sur-
prises. Figure 5 shows the timing information: on the left,
the average, minimum and maximum time processes spent
searching the UMQ, i. e. in the 32 process case, on aver-
age 2.33 ms were overall spent on all processes combined
searching the UMQ for messages. This value increases the
larger the application scales, i. e. at 8192 processes overall
150.78 ms are spent searching the UMQ. While the av-
erage is still low, the maximum accumulated time spent
searching the UMQ increases from 3.1 ms at 32 processes
to 312.57 ms at 8192 processes, as shown in Fig. 5 (left).

Figure 5 (right) shows the accumulated time, messages
spend on the UMQ until the matching receive is posted.
Again, the minimum and maximum time increase, except
for the last test-case with 8192 processes. Summing up
over all messages, and all ranks. In the addendum in
Fig. 12, the total search time is shown for 64 to 8192 pro-
cesses. As may be seen, there exists a pattern of processes,
which spend more time searching the UMQ compared to
their neighbors. Eventually the histogram of the search
times flattens out.

1The values above the data point always denote the rank of the process

4

6

8

10

12

14

16

18

20

22

24

0 1000 2000 3000 4000 5000 6000 7000 8000

L
e
n
g
th

Process

Maximum UMQ of gtc with 8192 processes

0

500

1000

1500

2000

2500

5 10 15 20 25

N
u
m

b
e
r

o
f
p
ro

c
e
s
s
e
s
 i
n
 b

in

Max. length of UMQ

Histogram of gtc: Max. length of UMQ with 8192 processes

Figure 4: Maximum length of UMQ over ranks (left) and absolute histogram of maximum length of UMQ (right).

3.2 Locally Self-Consistent Multiple-
Scattering

The Locally Self-consistent Multiple-Scattering (LSMS)
Code [12] simulates the interactions between electrons and
atoms in magnetic materials. LSMS is used to perform
fundamental studies of the atomistic, electronic, and mag-
netic microstructure of metals, alloys and semiconductors.
Such studies include the description of complex, disordered
states of magnetism, and microstructural defects in the
materials.

The code has been developed at ORNL since 1994 and
was used to study large numbers of atoms, in ensembles of
up to 10k atoms. Using the Wang-Langdau (WL-LSMS)
scheme, the code may scale up to the whole machine size
of JaguarPF; in fact, this work received the Gordon Bell
Price at SC 2009 [6]. WL-LSMS distributes chunks of elec-
tron configurations to groups of locally optimizing lsms-
processes using non-blocking point-to-point communica-
tion. However, for the purposes of this paper, this work
distribution is not of interest. Rather the communication
requirements of the main kernel is of interest, which applies
density functional theory for the relativistic wave equation

for electron behavior Therefore the lsms_main has being
employed without the Wang-Langdau method. Here real-
world problems require 16 to up to 10k processes.

The first test-case consists of a system of iron atoms
in a body-centered cubic crystal structure which is equally
spaced at the lattice constant of Fe in a body-centered
cubic crystal stucture. The system is weakly scaled up to
4096 processes, however to reduce compute time, the num-
ber of evaluated energy points and number of iterations is
reduced. Without the Wang-Langdau step, the update of
potentials is enabled in lsms_main. The cut-off radius for
interactions is kept at the distance of 12.5 Bohr.

To compare the UMQ of different architectures, lsms_
main was run with up to 1024 cores on both JaguarPF
and Jaguar, the Cray XT5 installation with single-socket
quad-code AMD Opteron (Barcelona) processors. Figure 6
shows the maximum and shortest maximum length2 of the
UMQ for Jaguar and JaguarPF in the weak scaling for the
iron atom testcase. One may see, the UMQ length is in-
creasing linearly with the number of processes and behaves
exactly the same on both machines. To verify these results,
the code has been run with larger test-cases as well, as may

2That is, the lower bound of all processes’ maximum lengths of UMQ in a run.
3With Open MPI and MPISTAT at 16 processes 16.41 s per iteration and at 1024 processes 16.31 s per iteration

5

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 10 100 1000 10000

T
im

e
[s

]

Processors

Time spent searching UMQ for GTC

Avg. time
Min. time

Max. time

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 10 100 1000 10000

Processors

Time messages spent on UMQ for GTC

Avg. time
Min. avg. time [rank]

12 60 107
117 460 500

709 4094
134

Max. avg. time [rank]

10

45

6

60
61 894

296

79

1131

Figure 5: Time spent searching UMQ per process (left). Total time messages spent on UMQ (right).

be seen on the right hand side of Fig. 6. It is noteworthy
that the time per iteration, due to the weak scaling stayed
approximately the same3.

Another characteristic may be discovered when looking
at the lengths of UMQ. Figure 8 in the addendum shows
the normalized histograms of the length of UMQ over sev-
eral weakly-scaled runs, i. e. the the number of processes
within a certain bin of lengths of UMQ are normalized
against all processes (aka 100%). Clearly, the normalized
histograms reveal three spikes which are particular to this
application (and this input data set). The first humps
move, e. g. from 50 at 512 processes to 100 at 1024 pro-
cesses to 195 at 2048 processes (please note, that the X-axis
here is clamped at 500 entries).

3.3 S3D

S3D is a massively parallel Direct Numerical Simulation
(DNS) solver of fully compressible Navier-Stokes equations
including mass and energy conservation laws including de-
tailed chemistry. It is being developed at Sandia National
Laboratories [5]. On JaguarPF it has shown to scale to
up to the full machine size. For this study, S3D has been
scaled from 600 process to up to 18,000 processes

The test cases run with S3D always were set to in-
clude 25 grid-points per MPI process on a unit cube, the
number of time-steps run were kept at 400 (i_time_end),

no save fields were output to restart files (i_time_save).
The simulation included chemical reaction simulation with
4 elements (O, H, C, N) and 22 species.

From an MPI point of view, it uses some collective com-
munication, but most communication is nearest-neighbor
point-to-point communication. Of the 25 MPI calls (in-
cluding MPI_Init and MPI_Finalize) MPI_Barrier is
called before MPI_Allreduce, which is used to deduce
whether a redo_step is done. Furthermore for each
species, non-blocking point-to-point calls are used to ex-
change data to compute the gradient. The other calls are
used in IO and other service routines, but not the main
computational loop.

When analyzing S3D, there are striking patterns in the
maximum length of the UMQ at all scales, as may be seen
in Fig. 7. These patterns may be made visible when tak-
ing the distance between ranks with a UMQ length bigger
than a most others, e. g. a maximum UMQ length bigger
than the mean. It shows, that for S3D for the 18,000
process case over 98% of the distance between ranks with
such a bigger UMQ length is four, the rest is distributed
as may be seen in the following table (rank distances of
five, six and seven ranks do not occur):

Percentage of occurence
1 2 3 4 8

0.66% 0.51% 0.35% 98.19% 0.24%

6

 0

 200

 400

 600

 800

 1000

 1200

 10 100 1000 10000

L
e

n
g

th

Processors

Maximum UMQ for LSMS (Jaguar)

Max. UMQ length (Overall)

2 8 0

0

0

0

0
Shortest max. UMQ length

14 24 51 6 10 182 295
 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 10 100 1000 10000

L
e

n
g

th

Processors

Maximum UMQ for LSMS (JaguarPF)

Max. UMQ length (Overall)

4 0 0
0

0

0

0

0

Shortest max. UMQ length

2 61 20 201 109 732 360
1309

Figure 6: Maximum length of UMQ with rank for Jaguar (left) and JaguarPF (right).

4 Related Work

There does not exist a large body of work with regard to
MPI-internal performance analysis. The group with the
closest prior work is at Sandia doing similar analysis [1].
In [4] and [2], the authors research the collective and point-
to-point communciation requirements of the NAS parallel
Benchmarks and three applications (LAMMPS, CTH and
ITS) for job sizes of up to 64 processes. Currently, within
the MPI3 Forum, the tools working group is discussing
new interfaces to collect and expose similar information
to application and performance library space. However
without further information and lacking implementations,
the usefulness, including overheads involved cannot only
be speculated.

5 Conclusion

We have shown a new technique to analyze the communi-
cation characteristics of large-scale applications based on
the Peruse interface. The applications used, stress dif-
ferent characteristics, such as length of the unexpected
message queue, time required to search this queue and
the time messages stay in this queue. It is shown, that
these applications exhibit patterns based on these char-
acteristics. In a future work, applications may be identi-
fied using such low-overhead measurement techniques to

easily gather finger-prints of applications and possibly in-
efficient communication characteristics. With this library
MPI implementations may tune their message matching
and searching algorithm to fit the characteristics of the
application (or process rank therein.)

5.1 Acknowledgments

We would like to thank Ramanan Sankaran, Markus Eisen-
bach and Joshua Ladd for access to source code, input data
sets and valuable discussions. This work was supported by
the U.S. Department of Energy and performed at ORNL,
managed by UT-Battelle, LLC under Contract No. DE-
AC05-00OR22725.

5.2 About the Authors

Rainer Keller is a Postdoctoral research assistant at Oak
Ridge National Laboratory. His interest include large-scale
parallel applications and parallel tools. At the time of pub-
lication, he will heading the Group Applications, Models
and Tools at HLRS, Stuttgart. He may be reached at
keller@hlrs.de.
Richard Graham is a distinguished member of the research
staff at Oak Ridge National Laboratory, heading the Ap-
plication Performance Tools group within the Computer
Science and Mathematics Division. He may be contacted
at rlgraham@ornl.gov.

7

keller@hlrs.de
rlgraham@ornl.gov

References

[1] Ron Brightwell, Sue Goudy, and Keith Underwood.
A Preliminary Analysis of the MPI Queue Charac-
teristics of Several Applications. In Proceedings of
the International Conference on Parallel Processing
(ICPP), pages 175–183, June 2005.

[2] Ron Brightwell, Kevin Pedretti, and Kurt Ferreira.
Instrumentation and analysis of MPI queue times on
the SeaStar high-performance network. In Proceed-
ings of the 17th International Conference on Com-
puter Communications and Networks, St. Thomas, US
Virgin Islands, August 2008.

[3] Ron Brightwell, Kevin T. Pedretti, Keith D. Under-
wood, and Trammell Hudson. Seastar interconnect:
Balanced bandwidth for scalable performance. IEEE
Micro, 26(3):41–57, 2006.

[4] Ron Brightwell, Rolf Riesen, and Keith D. Under-
wood. An initial analysis of the impact of over-
lap and independent progress for MPI. In Dieter
Kranzlmüller, Peter Kacsuk, and J.J. Dongarra, ed-
itors, Proceedings of the 11th European PVM/MPI
Users’ Group Meeting, volume 3241 of Lecture Notes
in Computer Science (LNCS), pages 370–377, Bu-
dapest, Hungary, September 2004. Springer.

[5] Jackie H. Chen, Alok Choudhary, Bronis de Supinski,
Matthew DeVries, Evatt R. Hawkes, Scott Klasky,
Wei K. Liao, Kwan-Liu Ma, John Mellor-Crummey,
Norbert Podhorszki, Ramanan Sankaran, Shirley
Shende, and Chun S. Yoo. Terascale direct numerical
simulations of turbulent combustion using s3d. Com-
putational Science & Discovery, 2(1):015001, January
2009.

[6] Markus Eisenbach, C.-G. Zhou, D. M. C. Nicholson,
G. Brown, J. M. Larkin, and T. C. Schulthess. A scal-
able method for ab initio computation of free energies

in nanoscale systems. In SC, Portland, Oregon, USA,
November 14-20 2009. ACM.

[7] Message Passing Interface Forum. MPI: A Message-
Passing Interface Standard, Version 2.2, September
2009.

[8] Dan Bonachea Paul H. Hargrove, Michael Welcome,
and Katherine Yelick. Porting GASNet to Portals:
Partitioned Global Address Space (PGAS) language
support for the Cray XT. In Cray User Group Con-
ference, May 4–7 2009.

[9] Terry Jones and et al. MPI Peruse – an MPI extension
for revealing unexposed implementation information.
Internet, May 2006. http://www.mpi-peruse.org.

[10] Rainer Keller, George Bosilca, Graham Fagg,
Michael M. Resch, and Jack J. Dongarra. Implemen-
tation and usage of the PERUSE-interface in Open
MPI. In B. Mohr, J. Larsson Träff, J. Worringen, and
J.J. Dongarra, editors, Proceedings of the 13th Euro-
pean PVM/MPI Users’ Group Meeting, volume 4192
of Lecture Notes in Computer Science (LNCS), pages
347–355, Bonn, Germany, September 2006. Springer.

[11] Zhihong Lin, Taik Soo Hahm, Wei-li W. Lee,
William M. Tang, and Roscoe B. White. Turbulent
transport reduction by zonal flows: Massively parallel
simulations. Science, 281:1835–1837, September 1998.

[12] Yang Wang, G. M. Stocks, W. A. Shelton, D.M.C.
Nicholson, W.M. Temmerman, and Z. Szotek. Order-
n multiple scattering approach to electronic structure
calculations. Phys. Rev. Lett., 75(11):2867–2870, Oc-
tober 1995.

[13] Xingfu Wu and Valerie Taylor. Using processor par-
titioning to evaluate the performance of mpi, openmp
and hybrid parallel applications on dual- and quad-
core Cray XT4 systems. In Cray User Group Confer-
ence, May 4–7 2009.

8

http://www.mpi-peruse.org

6 Addendum

6.1 Maximum Queue length of UMQ

0

10

20

30

40

50

60

70

80

90

0 100 200 300 400 500 600

L
e
n
g
th

Process

Maximum UMQ of S3D with 600 processes

0

50

100

150

200

250

300

0 20 40 60 80 100

N
u

m
b

e
r

o
f

p
ro

c
e

s
s
e

s
 i
n

 b
in

Max. length of UMQ

Histogram of S3D: Max. length of UMQ with 600 processes

0

20

40

60

80

100

0 500 1000 1500 2000

L
e

n
g

th

Process

Maximum UMQ of S3D with 2400 processes

0

100

200

300

400

500

600

700

800

0 20 40 60 80 100 120

N
u

m
b

e
r

o
f

p
ro

c
e

s
s
e

s
 i
n

 b
in

Max. length of UMQ

Histogram of S3D: Max. length of UMQ with 2400 processes

20

40

60

80

100

120

140

0 1000 2000 3000 4000 5000 6000

L
e
n
g
th

Process

Maximum UMQ of S3D with 6000 processes

0

500

1000

1500

2000

2500

3000

0 50 100 150 200

N
u

m
b

e
r

o
f

p
ro

c
e

s
s
e

s
 i
n

 b
in

Max. length of UMQ

Histogram of S3D: Max. length of UMQ with 6000 processes

20

40

60

80

100

120

140

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

L
e

n
g

th

Process

Maximum UMQ of S3D with 9600 processes

0

1000

2000

3000

4000

5000

6000

0 50 100 150 200

N
u

m
b

e
r

o
f

p
ro

c
e

s
s
e

s
 i
n

 b
in

Max. length of UMQ

Histogram of S3D: Max. length of UMQ with 9600 processes

0

20

40

60

80

100

120

140

160

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

L
e

n
g

th

Process

Maximum UMQ of S3D with 18000 processes

0

1000

2000

3000

4000

5000

6000

7000

8000

0 50 100 150 200

N
u

m
b

e
r

o
f

p
ro

c
e

s
s
e

s
 i
n

 b
in

Max. length of UMQ

Histogram of S3D: Max. length of UMQ with 18000 processes

Figure 7: S3D on JaguarPF

9

5

10

15

20

25

2 4 6 8 10 12 14 16

L
e

n
g

th

Process

Maximum UMQ of lsms with 16 processes

0

20

40

60

80

100

50 100 150 200 250 300 350 400 450 500

P
e

rc
e

n
ta

g
e

 o
f

p
ro

c
e

s
s
e

s
 i
n

 b
in

Length

Normalized histogram of lsms: Max. length of UMQ with 16 processes
(Max. length: 27 clamped at 500)

10

20

30

40

50

60

10 20 30 40 50 60

L
e
n
g

th

Process

Maximum UMQ of lsms with 64 processes

0

20

40

60

80

100

50 100 150 200 250 300 350 400 450 500

P
e

rc
e

n
ta

g
e

 o
f

p
ro

c
e

s
s
e

s
 i
n

 b
in

Length

Normalized histogram of lsms: Max. length of UMQ with 64 processes
(Max. length: 62 clamped at 500)

20

40

60

80

100

120

20 40 60 80 100 120

L
e

n
g

th

Process

Maximum UMQ of lsms with 128 processes

0

20

40

60

80

100

50 100 150 200 250 300 350 400 450 500

P
e

rc
e

n
ta

g
e

 o
f

p
ro

c
e

s
s
e

s
 i
n

 b
in

Length

Normalized histogram of lsms: Max. length of UMQ with 128 processes
(Max. length: 126 clamped at 500)

50

100

150

200

250

50 100 150 200 250

L
e

n
g

th

Process

Maximum UMQ of lsms with 256 processes

0

20

40

60

80

100

50 100 150 200 250 300 350 400 450 500

P
e

rc
e

n
ta

g
e

 o
f

p
ro

c
e

s
s
e

s
 i
n

 b
in

Length

Normalized histogram of lsms: Max. length of UMQ with 256 processes
(Max. length: 254 clamped at 500)

50

100

150

200

250

300

350

400

450

500

0 100 200 300 400 500

L
e

n
g

th

Process

Maximum UMQ of lsms with 512 processes

0

20

40

60

80

100

50 100 150 200 250 300 350 400 450 500

P
e

rc
e

n
ta

g
e

 o
f

p
ro

c
e

s
s
e

s
 i
n

 b
in

Length

Normalized histogram of lsms: Max. length of UMQ with 512 processes
(Max. length: 510 clamped at 500)

100

200

300

400

500

600

700

800

900

1000

0 200 400 600 800 1000

L
e
n
g
th

Process

Maximum UMQ of lsms with 1024 processes

0

20

40

60

80

100

50 100 150 200 250 300 350 400 450 500

P
e

rc
e

n
ta

g
e

 o
f

p
ro

c
e

s
s
e

s
 i
n

 b
in

Length

Normalized histogram of lsms: Max. length of UMQ with 1024 processes
(Max. length: 1022 clamped at 500)

200

400

600

800

1000

1200

1400

1600

1800

2000

0 500 1000 1500 2000

L
e
n
g
th

Process

Maximum UMQ of lsms with 2048 processes

0

20

40

60

80

100

50 100 150 200 250 300 350 400 450 500

P
e

rc
e

n
ta

g
e

 o
f

p
ro

c
e

s
s
e

s
 i
n

 b
in

Length

Normalized histogram of lsms: Max. length of UMQ with 2048 processes
(Max. length: 2010 clamped at 500)

500

1000

1500

2000

2500

3000

3500

0 500 1000 1500 2000 2500 3000 3500 4000

L
e
n
g
th

Process

Maximum UMQ of lsms with 4096 processes

0

20

40

60

80

100

50 100 150 200 250 300 350 400 450 500

P
e

rc
e

n
ta

g
e

 o
f

p
ro

c
e

s
s
e

s
 i
n

 b
in

Length

Normalized histogram of lsms: Max. length of UMQ with 4096 processes
(Max. length: 3906 clamped at 500)

Figure 8: LSMS on JaguarPF

10

3

4

5

6

7

8

9

10

10 20 30 40 50 60

L
e
n
g

th

Process

Maximum UMQ of gtc with 64 processes

0

10

20

30

40

50

3 4 5 6 7 8 9 10

N
u
m

b
e
r

o
f
p
ro

c
e
s
s
e
s
 i
n
 b

in

Max. length of UMQ

Histogram of gtc: Max. length of UMQ with 64 processes

3

4

5

6

7

8

9

10

11

12

20 40 60 80 100 120

L
e
n
g

th

Process

Maximum UMQ of gtc with 128 processes

0

10

20

30

40

50

2 4 6 8 10 12

N
u
m

b
e
r

o
f
p
ro

c
e
s
s
e
s
 i
n
 b

in

Max. length of UMQ

Histogram of gtc: Max. length of UMQ with 128 processes

4

6

8

10

12

14

50 100 150 200 250

L
e
n
g

th

Process

Maximum UMQ of gtc with 256 processes

0

20

40

60

80

100

120

140

4 6 8 10 12 14

N
u

m
b

e
r

o
f

p
ro

c
e

s
s
e

s
 i
n
 b

in

Max. length of UMQ

Histogram of gtc: Max. length of UMQ with 256 processes

4

5

6

7

8

9

10

11

12

0 100 200 300 400 500

L
e
n
g

th

Process

Maximum UMQ of gtc with 512 processes

0

50

100

150

200

4 5 6 7 8 9 10 11 12

N
u

m
b

e
r

o
f

p
ro

c
e

s
s
e

s
 i
n
 b

in

Max. length of UMQ

Histogram of gtc: Max. length of UMQ with 512 processes

4

6

8

10

12

14

16

18

0 200 400 600 800 1000

L
e

n
g

th

Process

Maximum UMQ of gtc with 1024 processes

0

50

100

150

200

250

300

350

4 6 8 10 12 14 16 18

N
u

m
b

e
r

o
f

p
ro

c
e

s
s
e

s
 i
n

 b
in

Max. length of UMQ

Histogram of gtc: Max. length of UMQ with 1024 processes

4

5

6

7

8

9

10

11

12

13

0 500 1000 1500 2000

L
e

n
g

th

Process

Maximum UMQ of gtc with 2048 processes

0

100

200

300

400

500

600

4 6 8 10 12 14

N
u

m
b

e
r

o
f

p
ro

c
e

s
s
e

s
 i
n

 b
in

Max. length of UMQ

Histogram of gtc: Max. length of UMQ with 2048 processes

3

4

5

6

7

8

9

10

11

12

0 500 1000 1500 2000 2500 3000 3500 4000

L
e

n
g

th

Process

Maximum UMQ of gtc with 4096 processes

0

200

400

600

800

1000

2 4 6 8 10 12

N
u
m

b
e
r

o
f
p
ro

c
e
s
s
e
s
 i
n
 b

in

Max. length of UMQ

Histogram of gtc: Max. length of UMQ with 4096 processes

6

8

10

12

14

16

18

20

22

24

0 1000 2000 3000 4000 5000 6000 7000 8000

L
e

n
g

th

Process

Maximum UMQ of gtc with 8192 processes

0

500

1000

1500

2000

2500

5 10 15 20 25

N
u
m

b
e
r

o
f
p
ro

c
e
s
s
e
s
 i
n
 b

in

Max. length of UMQ

Histogram of gtc: Max. length of UMQ with 8192 processes

Figure 9: GTC on JaguarPF

11

6.2 Total search time of UMQ

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0 100 200 300 400 500 600

T
im

e
 [
s
]

Process

Total search time of UMQ of S3D over 600 processes

0

50

100

150

200

250

0 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007

N
u

m
b

e
r

o
f
p

ro
c
e
s
s
e
s
 i
n

 b
in

Total search time

Histogram of S3D: Total search time of UMQ with 600 processes

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0 500 1000 1500 2000

T
im

e
 [
s
]

Process

Total search time of UMQ of S3D over 2400 processes

0

500

1000

1500

2000

0 0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014

N
u

m
b

e
r

o
f

p
ro

c
e

s
s
e

s
 i
n

 b
in

Total search time

Histogram of S3D: Total search time of UMQ with 2400 processes

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0 1000 2000 3000 4000 5000 6000

T
im

e
 [
s
]

Process

Total search time of UMQ of S3D over 6000 processes

0

500

1000

1500

2000

2500

0 0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014

N
u

m
b

e
r

o
f

p
ro

c
e

s
s
e

s
 i
n

 b
in

Total search time

Histogram of S3D: Total search time of UMQ with 6000 processes

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

T
im

e
 [
s
]

Process

Total search time of UMQ of S3D over 9600 processes

0

1000

2000

3000

4000

5000

6000

0 0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014

N
u

m
b

e
r

o
f

p
ro

c
e

s
s
e

s
 i
n

 b
in

Total search time

Histogram of S3D: Total search time of UMQ with 9600 processes

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

T
im

e
 [
s
]

Process

Total search time of UMQ of S3D over 18000 processes

0

2000

4000

6000

8000

10000

12000

0 0.0005 0.001 0.0015 0.002

N
u
m

b
e
r

o
f
p
ro

c
e
s
s
e
s
 i
n
 b

in

Total search time

Histogram of S3D: Total search time of UMQ with 18000 processes

Figure 10: S3D on JaguarPF

12

0.0015

0.002

0.0025

0.003

2 4 6 8 10 12 14 16

T
im

e
 [

s
]

Process

Total search time of UMQ of lsms over 16 processes

0

0.5

1

1.5

2

2.5

3

0.001 0.0015 0.002 0.0025 0.003 0.0035

N
u

m
b

e
r

o
f
p

ro
c
e
s
s
e
s
 i
n
 b

in

Total search time

Histogram of lsms: Total search time of UMQ with 16 processes

0.004

0.005

0.006

0.007

0.008

0.009

0.01

10 20 30 40 50 60

T
im

e
 [
s
]

Process

Total search time of UMQ of lsms over 64 processes

0

2

4

6

8

10

0.002 0.004 0.006 0.008 0.01 0.012

N
u

m
b

e
r

o
f

p
ro

c
e

s
s
e

s
 i
n

 b
in

Total search time

Histogram of lsms: Total search time of UMQ with 64 processes

0.008

0.01

0.012

0.014

0.016

20 40 60 80 100 120

T
im

e
 [
s
]

Process

Total search time of UMQ of lsms over 128 processes

0

5

10

15

20

25

0.006 0.008 0.01 0.012 0.014 0.016 0.018

N
u

m
b

e
r

o
f

p
ro

c
e

s
s
e

s
 i
n

 b
in

Total search time

Histogram of lsms: Total search time of UMQ with 128 processes

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

50 100 150 200 250

T
im

e
 [
s
]

Process

Total search time of UMQ of lsms over 256 processes

0

10

20

30

40

50

0.005 0.01 0.015 0.02 0.025

N
u

m
b

e
r

o
f

p
ro

c
e

s
s
e

s
 i
n

 b
in

Total search time

Histogram of lsms: Total search time of UMQ with 256 processes

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 100 200 300 400 500

T
im

e
 [
s
]

Process

Total search time of UMQ of lsms over 512 processes

0

50

100

150

200

0 0.01 0.02 0.03 0.04 0.05

N
u
m

b
e
r

o
f
p
ro

c
e
s
s
e
s
 i
n
 b

in

Total search time

Histogram of lsms: Total search time of UMQ with 512 processes

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 200 400 600 800 1000

T
im

e
 [
s
]

Process

Total search time of UMQ of lsms over 1024 processes

0

200

400

600

800

1000

0 0.05 0.1 0.15 0.2

N
u
m

b
e
r

o
f
p
ro

c
e
s
s
e
s
 i
n
 b

in

Total search time

Histogram of lsms: Total search time of UMQ with 1024 processes

0.1

0.2

0.3

0.4

0.5

0 500 1000 1500 2000

T
im

e
 [

s
]

Process

Total search time of UMQ of lsms over 2048 processes

0

500

1000

1500

2000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

N
u
m

b
e
r

o
f
p
ro

c
e
s
s
e
s
 i
n
 b

in

Total search time

Histogram of lsms: Total search time of UMQ with 2048 processes

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 500 1000 1500 2000 2500 3000 3500 4000

T
im

e
 [

s
]

Process

Total search time of UMQ of lsms over 4096 processes

0

500

1000

1500

2000

2500

3000

3500

4000

0 1 2 3 4 5

N
u

m
b

e
r

o
f

p
ro

c
e

s
s
e

s
 i
n

 b
in

Total search time

Histogram of lsms: Total search time of UMQ with 4096 processes

Figure 11: LSMS on JaguarPF

13

0.002

0.0022

0.0024

0.0026

0.0028

0.003

5 10 15 20 25 30

T
im

e
 [
s
]

Process

Total search time of UMQ of gtc over 32 processes

0

20

40

60

80

100

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

P
er

ce
nt

ag
e

of
 p

ro
ce

ss
es

 in
 b

in

Total search time

Normalized histogram of gtc: Total search time of UMQ with 32 processes
(Max. time: 0.003107)

0.0025

0.003

0.0035

0.004

0.0045

10 20 30 40 50 60

T
im

e
 [
s
]

Process

Total search time of UMQ of gtc over 64 processes

0

20

40

60

80

100

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

P
er

ce
nt

ag
e

of
 p

ro
ce

ss
es

 in
 b

in

Total search time

Normalized histogram of gtc: Total search time of UMQ with 64 processes
(Max. time: 0.004667)

0.0025

0.003

0.0035

0.004

20 40 60 80 100 120

T
im

e
 [
s
]

Process

Total search time of UMQ of gtc over 128 processes

0

20

40

60

80

100

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

P
er

ce
nt

ag
e

of
 p

ro
ce

ss
es

 in
 b

in

Total search time

Normalized histogram of gtc: Total search time of UMQ with 128 processes
(Max. time: 0.004426)

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

0.011

0.012

50 100 150 200 250

T
im

e
 [
s
]

Process

Total search time of UMQ of gtc over 256 processes

0

20

40

60

80

100

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

P
er

ce
nt

ag
e

of
 p

ro
ce

ss
es

 in
 b

in

Total search time

Normalized histogram of gtc: Total search time of UMQ with 256 processes
(Max. time: 0.012006)

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0 100 200 300 400 500

T
im

e
 [
s
]

Process

Total search time of UMQ of gtc over 512 processes

0

20

40

60

80

100

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

P
er

ce
nt

ag
e

of
 p

ro
ce

ss
es

 in
 b

in

Total search time

Normalized histogram of gtc: Total search time of UMQ with 512 processes
(Max. time: 0.038059)

0.01

0.02

0.03

0.04

0.05

0 200 400 600 800 1000

T
im

e
 [
s
]

Process

Total search time of UMQ of gtc over 1024 processes

0

20

40

60

80

100

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

P
er

ce
nt

ag
e

of
 p

ro
ce

ss
es

 in
 b

in

Total search time

Normalized histogram of gtc: Total search time of UMQ with 1024 processes
(Max. time: 0.058028)

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 500 1000 1500 2000

T
im

e
 [
s
]

Process

Total search time of UMQ of gtc over 2048 processes

0

20

40

60

80

100

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

P
er

ce
nt

ag
e

of
 p

ro
ce

ss
es

 in
 b

in

Total search time

Normalized histogram of gtc: Total search time of UMQ with 2048 processes
(Max. time: 0.143237)

0.05

0.1

0.15

0.2

0 500 1000 1500 2000 2500 3000 3500 4000

T
im

e
 [
s
]

Process

Total search time of UMQ of gtc over 4096 processes

0

20

40

60

80

100

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

P
er

ce
nt

ag
e

of
 p

ro
ce

ss
es

 in
 b

in

Total search time

Normalized histogram of gtc: Total search time of UMQ with 4096 processes
(Max. time: 0.221349)

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 1000 2000 3000 4000 5000 6000 7000 8000

T
im

e
 [
s
]

Process

Total search time of UMQ of gtc over 8192 processes

0

20

40

60

80

100

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

P
er

ce
nt

ag
e

of
 p

ro
ce

ss
es

 in
 b

in

Total search time

Normalized histogram of gtc: Total search time of UMQ with 8192 processes
(Max. time: 0.427667)

Figure 12: GTC on JaguarPF

14

6.3 Distance in Ranks

0

10

20

30

40

50

60

70

80

90

0 100 200 300 400 500 600

L
e
n
g
th

Process

Maximum UMQ of S3D with 600 processes

0

1

2

3

4

5

6

7

8

20 40 60 80 100 120 140

D
is

ta
n
c
e
 b

e
tw

e
e
n
 r

a
n
k
s

Difference between Ranks with UMQ length > 8.498333
(Based on UMQ Min:0 Max:96 Mean:8.498333 Stddev:12.350339)

Distance in ranks for S3D with 600 processes
(Ranks with UMQ length > 8.498333)

0

20

40

60

80

100

0 500 1000 1500 2000

L
e

n
g

th

Process

Maximum UMQ of S3D with 2400 processes

0

1

2

3

4

5

6

7

8

0 100 200 300 400 500 600

D
is

ta
n
c
e
 b

e
tw

e
e
n
 r

a
n
k
s

Difference between Ranks with UMQ length > 8.773333
(Based on UMQ Min:0 Max:109 Mean:8.773333 Stddev:12.605184)

Distance in ranks for S3D with 2400 processes
(Ranks with UMQ length > 8.773333)

20

40

60

80

100

120

140

0 1000 2000 3000 4000 5000 6000

L
e
n
g
th

Process

Maximum UMQ of S3D with 6000 processes

0

1

2

3

4

5

6

7

8

0 200 400 600 800 1000 1200 1400

D
is

ta
n
c
e
 b

e
tw

e
e
n
 r

a
n
k
s

Difference between Ranks with UMQ length > 8.842500
(Based on UMQ Min:1 Max:144 Mean:8.842500 Stddev:12.799440)

Distance in ranks for S3D with 6000 processes
(Ranks with UMQ length > 8.842500)

20

40

60

80

100

120

140

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
L

e
n

g
th

Process

Maximum UMQ of S3D with 9600 processes

0

1

2

3

4

5

6

7

8

0 500 1000 1500 2000

D
is

ta
n
c
e
 b

e
tw

e
e
n
 r

a
n
k
s

Difference between Ranks with UMQ length > 9.005625
(Based on UMQ Min:1 Max:156 Mean:9.005625 Stddev:12.859988)

Distance in ranks for S3D with 9600 processes
(Ranks with UMQ length > 9.005625)

0

20

40

60

80

100

120

140

160

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

L
e

n
g

th

Process

Maximum UMQ of S3D with 18000 processes

0

1

2

3

4

5

6

7

8

0 500 1000 1500 2000 2500 3000 3500 4000 4500

D
is

ta
n
c
e
 b

e
tw

e
e
n
 r

a
n
k
s

Difference between Ranks with UMQ length > 9.182500
(Based on UMQ Min:0 Max:168 Mean:9.182500 Stddev:12.864389)

Distance in ranks for S3D with 18000 processes
(Ranks with UMQ length > 9.182500)

Figure 13: S3D on JaguarPF

15

	Introduction
	Measurement Methodology
	Peruse Overview
	Library implementation
	Measurement

	Application Results
	GTC
	Locally Self-Consistent Multiple-Scattering
	S3D

	Related Work
	Conclusion
	Acknowledgments
	About the Authors

	Addendum
	Maximum Queue length of UMQ
	Total search time of UMQ
	Distance in Ranks

