
Professor Glenn Luecke - Iowa State University 2010	
 1	

Glenn Luecke, Olga Weiss, Marina Kraeva, James Coyle, James Hoekstra
High Performance Computing Group
Iowa State University
Ames, Iowa, USA
May 2010

Professor Glenn Luecke - Iowa State University 2010	
 2	

Cray for use of their XT5 and their support of this project.

Professor Glenn Luecke - Iowa State University 2010	
 3	

  Hybrid programming
  MPI Jacobi iteration
  Three hybrid versions of Jacobi iteration
  Jacobi performance results
  MPI and hybrid 3D FFT
  FFT performance results
  Comparison with HPC Challenge 3D FFT
  Conclusions

Professor Glenn Luecke - Iowa State University 2010	
 4	

  MPI designed for distributed memory parallelization
  OpenMP designed for shared memory parallelization
  Current HPC machines are interconnected SMP nodes
  Hope is to use MPI between nodes and OpenMP within

nodes and achieve better performance than using MPI
among nodes and all cores.

  MPI program obtained by compiling hybrid program without
OpenMP support.

Professor Glenn Luecke - Iowa State University 2010	
 5	

Jacobi Iteration

  Used to solve Laplace’s equation in a rectangle.
  We use the column blocked distribution described in figure

2.4 of “MPI – The Complete Reference”.
  The mpi_sendrecv version is used.
  p = number of MPI processes
  n = 24*1024 = the problem size
  m = n/p
  A(0:n+1,0:m+1), B(1:n,1:m)
  The Jacobi iteration is performed 300 times

Professor Glenn Luecke - Iowa State University 2010	
 6	

call mpi_barrier(comm, ierror)
t = mpi_wtime()
do iter = 1, 300
 do j = 1, m
 do i = 1, n
 B(i,j) = 0.25*(A(i-1,j) + A(i+1,j) + A(i,j-1) + A(i,j+1))
 enddo
 enddo
 do j = 1, m
 A(1:n,j) = B(1:n,j)
 enddo
 call mpi_sendrecv(B(1,m),n,dp,...,A(1,0), n,dp,...)
 call mpi_sendrecv(B(1,1), n,dp,...,A(1,m+1),n,dp,...)
 enddo
 time = mpi_wtime() - t

Professor Glenn Luecke - Iowa State University 2010	
 7	

!$omp parallel shared(A,B,m) private(i,j)
!$omp do schedule(runtime)
 do j = 1, m
 do i = 1, n
 B(i,j) = 0.25*(A(i-1,j) + A(i+1,j) + A(i,j-1) + A(i,j+1))
 enddo
 enddo ! implicit barrier
!$omp do schedule(runtime)
 do j = 1, m
 A(1:n,j) = B(1:n,j)
 enddo ! implicit barrier
!$omp end parallel
 call mpi_sendrecv(B(1,m),n,dp,...,A(1,0), n,dp,...)
 call mpi_sendrecv(B(1,1), n,dp,...,A(1,m+1),n,dp,...)

Professor Glenn Luecke - Iowa State University 2010	
 8	

  mpi calls are outside the parallel region
  a new parallel region is created for each iteration

Professor Glenn Luecke - Iowa State University 2010	
 9	

!$omp parallel shared(A,B,m) private(i,j)
!$omp do schedule(runtime)
 . . .
!$omp do schedule(runtime)
 do j = 1, m
 A(1:n,j) = B(1:n,j)
 enddo
!$omp end do nowait
!$omp single
 call mpi_sendrecv(B(1,m),n,dp,...,A(1,0), n,dp,...)
 call mpi_sendrecv(B(1,1), n,dp,...,A(1,m+1),n,dp,...)
!$omp end single
 enddo
!$omp end parallel

Professor Glenn Luecke - Iowa State University 2010	
 10	

•  there is a nowait on the A = B loop
•  MPI communication is within a single region
•  one parallel region is created for all iterations
•  setenv MPICH_MAX_THREAD_SAFETY serialized
• call mpi_init_thread(mpi_thread_serialized, provided,
ierror)

Professor Glenn Luecke - Iowa State University 2010	
 11	

!$omp parallel shared(A,B,m) private(i,j)
!$omp do schedule(runtime)
 . . .
!$omp do schedule(runtime)
 do j = 1, m
 A(1:n,j) = B(1:n,j)
 enddo
!$omp end do nowait
!$omp sections
 call mpi_sendrecv(B(1,m),n,dp,...,A(1,0), n,dp,...)
!$omp section
 call mpi_sendrecv(B(1,1), n,dp,...,A(1,m+1),n,dp,...)
!$omp end sections
 enddo
!$omp end parallel

Professor Glenn Luecke - Iowa State University 2010	
 12	

  Each mpi_sendrecv is executed by a different thread
allowing the communication to execute concurrently.

  The following option to link the libmpich_threadm library is
needed: -l mpich_threadm.

  call mpi_init_thread(mpi_thread_multiple, provided, ierror)
  setenv MPICH_MAX_THREAD_SAFETY multiple.

Professor Glenn Luecke - Iowa State University 2010	
 13	

  2 AMD Istanbul 6 core Opteron processors, 6 MB shared L-3
cache, 32 GB of memory/node.

  Hybrid performance problem using hybrid with 1 MPI process
per node.

  Hybrid with 1 or more MPI processes per socket will eliminate
this problem assuming memory and CPU affinity to cores

  ccNUMA is not a performance problem for pure MPI
  OpenMP allows threads to be scheduled using: static, dynamic

and guided with each option having a “chunksize” option.

Professor Glenn Luecke - Iowa State University 2010	
 14	

  To bind processing elements to CPUs, the “-cc cpu” option
was used on the “aprun” command. (CPU affinity)

  To ensure processing elements will allocate only the
memory local to its assigned NUMA node, the “-ss” option
was also used on the “aprun” command. (memory affinity)

  The PGI “-mp=numa –fast” compiler options were used for
hybrid programs and “-fast” was used for pure MPI
programs.

  To be able to run the hybrid programs, it was necessary to
setenv OMP_STACKSIZE 1G

Professor Glenn Luecke - Iowa State University 2010	
 15	

MPI time = 149.07

Hybrid 1 dynamic dynamic
1024 static guided

1 MPI proc/node 394.35 278.12 222.65 253.11
2 MPI proc/node 220.01 148.38 148.57 148.13
4 MPI proc/node 221.30 147.55 149.08 148.22
6 MPI proc/node 185.78 147.24 148.34 148.01

Hybrid 2
1 MPI proc/node 390.74 252.37 221.21 257.42
2 MPI proc/node 219.04 148.37 147.70 147.99
4 MPI proc/node 220.21 148.05 147.45 148.54
6 MPI proc/node 182.98 148.25 147.82 148.34

Hybrid 3
1 MPI proc/node 394.33 235.91 220.10 250.74
2 MPI proc/node 219.93 148.61 148.31 148.54
4 MPI proc/node 229.26 147.73 148.24 149.63
6 MPI proc/node 186.20 149.75 148.06 150.34

Professor Glenn Luecke - Iowa State University 2010	
 16	

  Hybrid with 1 MPI proc/node: much slower
  Dynamic scheduling: poor performance
  Dynamic with chunksize=1024: good performance
  Static and guided with 2, 4 and 6 MPI proc/node: about the

same performance as pure MPI
  Communication only 0.2% of total time
  Note from the MPI algorithm that the communication time is

independent of number of nodes, i.e. it doesn’t scale.

Professor Glenn Luecke - Iowa State University 2010	
 17	

Nodes MPI static guided
Hybrid 1 Hybrid 2 Hybrid 3 Hybrid 1 Hybrid 2 Hybrid 3

2 nodes 149.07 148.57 147.70 148.31 148.13 147.99 148.54
4 nodes 74.96 75.07 74.25 75.18 74.65 74.23 75.22
8 nodes 37.65 37.42 37.01 37.34 37.61 37.61 37.76

16 nodes 18.94 18.88 18.68 18.76 19.16 19.09 19.18
32 nodes 9.37 9.58 9.65 9.51 9.85 9.87 9.73
64 nodes 4.91 4.98 4.95 4.91 5.20 5.15 5.05

Professor Glenn Luecke - Iowa State University 2010	
 18	

  Hybrid and pure MPI performed about the same
  Good scaling
  Notice that hybrid with 2 MPI proc/node has 6 times less

communication = > rectangular Jacobi = > table 3
  Table 3 shows hybrid gives about 16% improvement in

time when about 25% of time spent in communication.

Professor Glenn Luecke - Iowa State University 2010	
 19	

MPI = 279.92 time in seconds Speedup = MPI/
hybrid

hybrid 1 (static) 258.12 1.08

hybrid 1 (guided) 259.08 1.08

hybrid 2 (static) 253.80 1.10

hybrid 2 (guided) 252.16 1.11

hybrid 3 (static) 239.79 1.17

hybrid 3 (guided) 241.21 1.16

Professor Glenn Luecke - Iowa State University 2010	
 20	

  Developed from Cooley-Tukey algorithm
  Distributed FFT for problem size of n*n*n with calls to 1D FFT

from AMD’s Core Math Library double complex routine.
  There are 8 loops: loops 1,3 and 6 perform n*m 1D FFT’s
  Loops 2, 4, 5, 7 and 8 all transpose/rearrange data in x and y
  There are two calls to mpi_alltoall (when p divides n evenly)
  Each loop was timed and independently optimized via loop

reordering, OpenMP scheduling and loop collapsing
  Recall m = n/p where p = number of MPI processes
  n = 12*128, largest problem for 4 nodes scaling to 64 nodes

Professor Glenn Luecke - Iowa State University 2010	
 21	

!$omp parallel shared(x, y, m) private(i, j, k, comm)
!$omp do schedule(runtime)
 do k = 0, m-1
 call zfft1m(-1, n, n, x(k*n*n), comm, info)
 enddo
  Loop collapsing did not help performance

Professor Glenn Luecke - Iowa State University 2010	
 22	

!$omp do schedule(guided) collapse(2)
 do k = 0, m-1
 do j = 1, n-1
 do i = 1, n-1
 y(i + j*n + k*n*n) = x(j + i*n + k*n*n)
 enddo
 enddo
 enddo

Professor Glenn Luecke - Iowa State University 2010	
 23	

!$omp do schedule(dynamic)
 do j = 0, m-1
 do k = 0, n-1
 do i = 0, n-1
 x(i+j*m+k*n*m) = y(k+j*n+i*n*n)
 enddo
 enddo
 enddo

Professor Glenn Luecke - Iowa State University 2010	
 24	

!$omp single
 call mpi_alltoall(x, n*m*m, mpi_double_complex, y, &

 n*m*m, mpi_double_complex, mpi_comm_world, ierror)
!$omp end single ! implicit barrier

  Note: message length = n*m*m = (n*n*n)/(p*p)
  Hybrid with 2 MPI processes/node has 6 times fewer calls to

mpi_alltoall with messages that are 36 times larger.

Professor Glenn Luecke - Iowa State University 2010	
 25	

!$omp do schedule(dynamic) collapse(3)
 do k = 0, m-1
 do ip = 0, p-1
 do j = 0, m-1
 do i = 0, n-1
 y(i + j*n + ip*n*m + k*n*n) = &
 x(i + j*n + (ip*m+k)*m*n)
 enddo
 enddo
 enddo
 enddo

Professor Glenn Luecke - Iowa State University 2010	
 26	

MPI time = 65.61

Hybrid dynamic static guided

2 MPI proc/node 58.98 58.19 58.18

4 MPI proc/node 57.85 56.94 57.71

6 MPI proc/node 69.46 69.61 69.08

Professor Glenn Luecke - Iowa State University 2010	
 27	

  1 MPI proc/node would not run (2 GB message limit)
  2 and 4 MPI proc/node performed about 13% better than MPI
  6 MPI proc/node did not perform well
  Dynamic, static and guided scheduling performed nearly the

same
  Notice that when using the hybrid FFT with 2 MPI processes per

node instead of 12 in the pure MPI FFT, there are 6 times fewer
processes calling mpi_alltoall, but the message size is 36 times
greater. However, the total amount of data sent is the same.

Professor Glenn Luecke - Iowa State University 2010	
 28	

Nodes MPI
Hybrid with 1 MPI proc/socket

(2 MPI proc/socket)
dynamic static guided

4 65.61 58.98 (57.85) 58.19 (56.94) 58.18 (57.71)

8 31.95 35.14 (34.06) 35.09 (33.94) 34.63 (34.14)

16 16.93 16.94 (15.42) 16.73 (15.29) 16.78 (15.44)

32 8.99 7.28 (8.07) 7.26 (7.96) 7.28 (8.06)

64 5.28 3.95 (4.53) 3.92 (5.51) 3.92 (4.51)

Professor Glenn Luecke - Iowa State University 2010	
 29	

  Hybrid is faster than pure MPI for 4 (13% faster), 32 (19% faster)
and 64 (25% faster) nodes

  2 MPI proc/socket is faster than 1 MPI proc/socket for 4, 8 and 16
nodes and slower than 4 MPI proc/socket for 32 and 64 nodes

  All scaled scaled well.
  Time spent in mpi_alltoall ranged from about 60% to 70% of the

total time.

Professor Glenn Luecke - Iowa State University 2010	
 30	

Nodes HPCC
MPI

FFT MPI
(speedup)

HPCC
hybrid

FFT hybrid
(speedup)

4 57.57 65.61 (0.88) 61.87 58.18 (1.06)

8 29.65 31.95 (0.93) 35.86 34.63 (1.04)

16 15.47 16.93 (0.92) 16.87 16.73 (1.01)

32 8.43 8.99 (0.94) 7.31 7.26 (1.01)

64 4.71 5.28 (0.89) 3.96 3.92 (1.01)

Professor Glenn Luecke - Iowa State University 2010	
 31	

  NPCC 3D FFT blocks for cache (D. Takashi, pzfft3d.f)
  Our FFT does not block for cache
  Uses default thread scheduling (likely, static)
  No loop collapsing (OpenMP 3.0 is new)
  Pure MPI program was obtained by compiling hybrid program

without OpenMP support
  Our hybrid performed nearly the same even though our FFT did

not block for cache
  Pure MPI HPCC FFT performed 8-12% faster

Professor Glenn Luecke - Iowa State University 2010	
 32	

  Use 1 or 2 MPI processes per socket
  Square Jacobi – hybrid and pure performed nearly the same
  Rectangular Jacobi – hybrid faster
  FFT: hybrid is faster than pure for 4 (13% faster), 32 (19%

faster) and 64 (25% faster) nodes
  Hybrid FFT performed as well as the HPC Challenge FFT even

though there is no blocking for cache
  Pure MPI HPCC FFT also blocked for cache and performed

8-12% faster

