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  Hybrid programming 
  MPI Jacobi iteration 
  Three hybrid versions of Jacobi iteration 
  Jacobi performance results 
  MPI and hybrid 3D FFT 
  FFT performance results 
  Comparison with HPC Challenge 3D FFT 
  Conclusions 
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  MPI designed for distributed memory parallelization 
  OpenMP designed for shared memory parallelization 
  Current HPC machines are interconnected SMP nodes 
  Hope is to use MPI between nodes and OpenMP within 

nodes and achieve better performance than using MPI 
among nodes and all cores. 

  MPI program obtained by compiling hybrid program without 
OpenMP support. 
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Jacobi Iteration 

  Used to solve Laplace’s equation in a rectangle. 
  We use the column blocked distribution described in figure 

2.4 of “MPI – The Complete Reference”. 
  The mpi_sendrecv version is used. 
  p = number of MPI processes 
  n = 24*1024 = the problem size 
  m = n/p 
  A(0:n+1,0:m+1), B(1:n,1:m) 
  The Jacobi iteration is performed 300 times 
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call mpi_barrier(comm, ierror) 
t = mpi_wtime() 
do iter = 1, 300  
     do j = 1, m 
          do i = 1, n 
               B(i,j) = 0.25*(A(i-1,j) + A(i+1,j) + A(i,j-1) + A(i,j+1)) 
           enddo 
      enddo    
      do j = 1, m 
           A(1:n,j) = B(1:n,j) 
      enddo 
      call mpi_sendrecv(B(1,m),n,dp,...,A(1,0), n,dp,...) 
      call mpi_sendrecv(B(1,1), n,dp,...,A(1,m+1),n,dp,...) 
 enddo 
 time = mpi_wtime() - t 
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!$omp  parallel shared(A,B,m) private(i,j) 
!$omp  do schedule(runtime) 
             do j = 1, m 
                 do i = 1, n 
                      B(i,j) = 0.25*(A(i-1,j) + A(i+1,j) + A(i,j-1) + A(i,j+1)) 
                 enddo 
             enddo ! implicit barrier   
!$omp  do schedule(runtime)       
             do j = 1, m 
                 A(1:n,j) = B(1:n,j) 
             enddo ! implicit barrier 
!$omp end parallel 
            call mpi_sendrecv(B(1,m),n,dp,...,A(1,0), n,dp,...) 
            call mpi_sendrecv(B(1,1), n,dp,...,A(1,m+1),n,dp,...) 
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  mpi calls are outside the parallel region 
  a new parallel region is created for each iteration  
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!$omp  parallel shared(A,B,m) private(i,j) 
!$omp  do schedule(runtime) 
             . . . 
!$omp     do schedule(runtime)       
               do j = 1, m 
                   A(1:n,j) = B(1:n,j) 
               enddo 
!$omp     end do nowait 
!$omp    single 
               call mpi_sendrecv(B(1,m),n,dp,...,A(1,0), n,dp,...) 
               call mpi_sendrecv(B(1,1), n,dp,...,A(1,m+1),n,dp,...) 
!$omp    end single 
            enddo 
!$omp end parallel 
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•  there is a nowait on the A = B loop 
•  MPI communication is within a single region 
•  one parallel region is created for all iterations 
•  setenv MPICH_MAX_THREAD_SAFETY serialized 
• call mpi_init_thread(mpi_thread_serialized, provided, 
ierror)  
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!$omp  parallel shared(A,B,m) private(i,j) 
!$omp  do schedule(runtime) 
             . . . 
!$omp     do schedule(runtime)       
               do j = 1, m 
                   A(1:n,j) = B(1:n,j) 
               enddo 
!$omp     end do nowait 
!$omp    sections 
               call mpi_sendrecv(B(1,m),n,dp,...,A(1,0), n,dp,...) 
!$omp     section 
               call mpi_sendrecv(B(1,1), n,dp,...,A(1,m+1),n,dp,...) 
!$omp    end sections 
            enddo 
!$omp end parallel 
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  Each mpi_sendrecv is executed by a different thread 
allowing the communication to execute concurrently. 

   The following option to link the libmpich_threadm library is 
needed:  -l mpich_threadm.   

  call mpi_init_thread(mpi_thread_multiple, provided, ierror)    
  setenv MPICH_MAX_THREAD_SAFETY multiple. 
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  2 AMD Istanbul 6 core Opteron processors, 6 MB shared L-3 
cache, 32 GB of memory/node. 

  Hybrid  performance problem using hybrid with 1 MPI process 
per node. 

  Hybrid with 1 or more MPI processes per socket will eliminate 
this problem assuming memory and CPU affinity to cores 

  ccNUMA is not a performance problem for pure MPI 
  OpenMP allows threads to be scheduled using:  static, dynamic 

and guided with each option having a “chunksize” option. 
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  To bind processing elements to CPUs, the “-cc cpu” option 
was used on the “aprun” command. (CPU affinity) 

  To ensure processing elements will allocate only the 
memory local to its assigned NUMA node, the “-ss” option 
was also used on the “aprun” command. (memory affinity) 

  The PGI “-mp=numa –fast” compiler options were used for 
hybrid programs and “-fast” was used for pure MPI 
programs. 

  To be able to run the hybrid programs, it was necessary to 
setenv OMP_STACKSIZE 1G 
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MPI time = 149.07 

Hybrid 1 dynamic dynamic 
1024 static guided 

1 MPI proc/node 394.35 278.12 222.65 253.11 
2 MPI proc/node 220.01 148.38 148.57 148.13 
4 MPI proc/node 221.30 147.55 149.08 148.22 
6 MPI proc/node 185.78 147.24 148.34 148.01 

Hybrid 2 
1 MPI proc/node 390.74 252.37 221.21 257.42 
2 MPI proc/node 219.04 148.37 147.70 147.99 
4 MPI proc/node 220.21 148.05 147.45 148.54 
6 MPI proc/node 182.98 148.25 147.82 148.34 

Hybrid 3 
1 MPI proc/node 394.33 235.91 220.10 250.74 
2 MPI proc/node 219.93 148.61 148.31 148.54 
4 MPI proc/node 229.26 147.73 148.24 149.63 
6 MPI proc/node 186.20 149.75 148.06 150.34 
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  Hybrid with 1 MPI proc/node:  much slower 
  Dynamic scheduling:  poor performance 
  Dynamic with chunksize=1024:  good performance 
  Static and guided with 2, 4 and 6 MPI proc/node:  about the 

same performance as pure MPI 
  Communication only 0.2% of total time 
  Note from the MPI algorithm that the communication time is 

independent of number of nodes, i.e. it doesn’t scale. 
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Nodes MPI static guided 
Hybrid 1 Hybrid 2 Hybrid 3 Hybrid 1 Hybrid 2 Hybrid 3 

2 nodes 149.07 148.57 147.70 148.31 148.13 147.99 148.54 
4 nodes 74.96 75.07 74.25 75.18 74.65 74.23 75.22 
8 nodes 37.65 37.42 37.01 37.34 37.61 37.61 37.76 

16 nodes 18.94 18.88 18.68 18.76 19.16 19.09 19.18 
32 nodes 9.37 9.58 9.65 9.51 9.85 9.87 9.73 
64 nodes 4.91 4.98 4.95 4.91 5.20 5.15 5.05 
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  Hybrid and pure MPI performed about the same 
  Good scaling 
  Notice that hybrid with 2 MPI proc/node has 6 times less 

communication = > rectangular Jacobi = > table 3 
  Table 3 shows hybrid gives about 16% improvement in 

time when about 25% of time spent in communication. 
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MPI = 279.92 time in seconds Speedup = MPI/
hybrid 

hybrid 1  ( static ) 258.12 1.08 

hybrid 1  (guided) 259.08 1.08 

hybrid 2  ( static ) 253.80 1.10 

hybrid 2  (guided) 252.16 1.11 

hybrid 3  ( static ) 239.79 1.17 

hybrid 3  (guided) 241.21 1.16 
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  Developed from Cooley-Tukey algorithm 
  Distributed FFT for problem size of n*n*n with calls to 1D FFT 

from AMD’s Core Math Library double complex routine. 
  There are 8 loops:  loops 1,3 and 6 perform n*m 1D FFT’s 
  Loops 2, 4, 5, 7 and 8 all transpose/rearrange data in x and y 
  There are two calls to mpi_alltoall  (when p divides n evenly) 
  Each loop was timed and independently optimized via loop 

reordering, OpenMP scheduling and loop collapsing 
  Recall m = n/p where p = number of MPI processes 
  n = 12*128, largest problem for 4 nodes scaling to 64 nodes 
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!$omp  parallel shared(x, y, m) private(i, j, k, comm)  
!$omp  do schedule(runtime)  
             do k = 0, m-1 
                  call zfft1m(-1, n, n, x(k*n*n), comm, info) 
             enddo 
  Loop collapsing did not help performance 
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!$omp  do schedule(guided) collapse(2) 
             do k = 0, m-1 
                 do j = 1, n-1 
                      do i = 1, n-1 
                           y(i + j*n + k*n*n) = x(j + i*n + k*n*n) 
                       enddo 
                 enddo 
            enddo 
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!$omp  do schedule(dynamic)  
            do j = 0, m-1 
                 do k = 0, n-1 
                      do i = 0, n-1 
                           x(i+j*m+k*n*m) = y(k+j*n+i*n*n) 
                       enddo 
                 enddo 
            enddo 
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!$omp  single 
            call mpi_alltoall(x, n*m*m, mpi_double_complex, y, & 

       n*m*m, mpi_double_complex, mpi_comm_world, ierror) 
!$omp  end single ! implicit barrier 

  Note:   message length = n*m*m = (n*n*n)/(p*p) 
  Hybrid with 2 MPI processes/node has 6 times fewer calls to 

mpi_alltoall with messages that are 36 times larger. 
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!$omp  do schedule(dynamic) collapse(3) 
             do k = 0, m-1 
                  do ip = 0, p-1 
                       do j = 0, m-1 
                            do i = 0, n-1 
                                 y(i + j*n + ip*n*m + k*n*n)  =  & 
                                                        x(i + j*n + (ip*m+k)*m*n) 
                            enddo 
                        enddo 
                  enddo 
              enddo 
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MPI time = 65.61 

Hybrid dynamic static guided 

2 MPI proc/node 58.98 58.19 58.18 

4 MPI proc/node 57.85 56.94 57.71 

6 MPI proc/node 69.46 69.61 69.08 
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  1 MPI proc/node would not run (2 GB message limit) 
  2 and 4 MPI proc/node performed about 13% better than MPI 
  6 MPI proc/node did not perform well 
  Dynamic, static and guided scheduling performed nearly the 

same 
  Notice that when using the hybrid FFT with 2 MPI processes per 

node instead of 12 in the pure MPI FFT, there are 6 times fewer 
processes calling mpi_alltoall, but the message size is 36 times 
greater.  However, the total amount of data sent is the same.  
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Nodes MPI 
Hybrid with 1 MPI proc/socket  

(2 MPI proc/socket) 
dynamic static guided 

4 65.61 58.98  (57.85) 58.19  (56.94) 58.18  (57.71) 

8 31.95 35.14  (34.06) 35.09  (33.94) 34.63  (34.14) 

16 16.93 16.94  (15.42) 16.73  (15.29) 16.78  (15.44) 

32 8.99 7.28  (8.07) 7.26  (7.96) 7.28  (8.06) 

64 5.28 3.95  (4.53) 3.92  (5.51) 3.92  (4.51) 
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  Hybrid is faster than pure MPI for 4 (13% faster), 32 (19% faster) 
and 64 (25% faster) nodes 

  2 MPI proc/socket is faster than 1 MPI proc/socket for 4, 8 and 16 
nodes and slower than 4 MPI proc/socket for 32 and 64 nodes  

  All scaled scaled well.   
  Time spent in mpi_alltoall ranged from about 60% to 70% of the 

total time. 
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Nodes HPCC 
MPI 

FFT MPI 
(speedup) 

HPCC 
hybrid 

FFT hybrid 
(speedup) 

4 57.57 65.61 (0.88) 61.87 58.18 (1.06) 

8 29.65 31.95 (0.93) 35.86 34.63 (1.04) 

16 15.47 16.93 (0.92) 16.87 16.73 (1.01) 

32 8.43 8.99 (0.94) 7.31 7.26 (1.01) 

64 4.71 5.28 (0.89) 3.96 3.92 (1.01) 
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  NPCC 3D FFT blocks for cache (D. Takashi, pzfft3d.f) 
  Our FFT does not block for cache 
  Uses default thread scheduling (likely, static) 
  No loop collapsing (OpenMP 3.0 is new) 
  Pure MPI program was obtained by compiling hybrid program 

without OpenMP support 
  Our hybrid performed nearly the same even though our FFT did 

not block for cache 
  Pure MPI HPCC FFT performed 8-12% faster 
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  Use 1 or 2 MPI processes per socket 
  Square Jacobi – hybrid and pure performed nearly the same 
  Rectangular Jacobi – hybrid faster 
  FFT:  hybrid is faster than pure for 4 (13% faster), 32 (19% 

faster) and 64 (25% faster) nodes 
  Hybrid FFT performed as well as the HPC Challenge FFT even 

though there is no blocking for cache 
  Pure MPI HPCC FFT also blocked for cache and performed 

8-12% faster 


