
Analyzing the Effect of Different
Programming Models Upon

Performance and Memory Usage on
Cray XT5 Platorms

 Hongzhang Shan,
Berkeley Lab/NERSC

Haoqiang Jin
NASA Arms Research Center

Karl Fuerlinger
U.C. Berkeley

Alice Koniges, Nicholas J. Wright
NERSC

CUG 2010 2

Despite continued “packing” of
transistors, performance is flatlining

• New Constraints
– 15 years of exponential clock

rate growth has ended

• But Moore’s Law
continues!

– How do we use all of those
transistors to keep
performance increasing at
historical rates?

– Industry Response: #cores
per chip doubles every 18
months instead of clock
frequency!

Figure courtesy of Kunle Olukotun,
Lance Hammond, Herb Sutter, and
Burton Smith

CUG 2010 3

Computer Centers and Vendors are
Responding with Multi-core Designs

• Baker Node Details : 24-core “Magny Cours”
• 2 Multi-Chip Modules, 4 Opteron Dies
• 8 Channels of DDR3 Bandwidth to 8 DIMMs
• 24 (or 16) Computational Cores, 24 MB of L3 cache

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

6MB L3
Cache

Greyhound
Greyhound
Greyhound
Greyhound
Greyhound
Greyhound

6MB L3
Cache

Greyhound
Greyhound
Greyhound
Greyhound
Greyhound
Greyhound

6MB L3
Cache

Greyhound
Greyhound
Greyhound
Greyhound
Greyhound
Greyhound

6MB L3
Cache

Greyhound
Greyhound
Greyhound
Greyhound
Greyhound
GreyhoundH

T3

H
T3

To Interconnect

HT3HT
3

HT3

HT3

HT1 / HT3

CUG 2010 4

What’s Wrong with MPI with Multi-core

• We can run 1 MPI process per core (flat model for parallelism)
– This works now and will work for a while
– But this is wasteful of intra-chip latency and bandwidth (100x lower

latency and 100x higher bandwidth on chip than off-chip)
– Model has diverged from reality (the machine is NOT flat)

• How long will it continue working?
– 4 - 8 cores? Probably. 128 - 1024 cores? Probably not.
– Depends on performance expectations

• What is the problem?
– Latency: some copying required by semantics
– Memory utilization: partitioning data for separate address space requires

some replication
 How big is your per core subgrid? At 10x10x10, over 1/2 of the points are

surface points, probably replicated
– Memory bandwidth: extra state means extra bandwidth
– Weak scaling: success model for the “cluster era;” will not be for the many

core era -- not enough memory per core
– Heterogeneity: MPI per CUDA thread-block?

CUG 2010 5

Changing Programming Models to
Accommodate the Multi-core Revolution

• We Need to research on other programming
models, understand their advantages and
disadvantages
– OpenMP
– UPC
– Hybrid MPI+OpenMP
– Etc.

• Our Work is focus on Cray XT5

CUG 2010 6

Outline

• Quantify Memory Usage for Different
Programming Models

• Using Detailed Time Breakdown to
Investigate Performance Effects of
Different Programming Models

• Compare the Performance of Hopper
and Jaguar to evaluate the hex-core
and quad-core difference

• Conclusion and Future Work

CUG 2010 7

Memory Usage : OpenMP, UPC, MPI

• MPI uses most memory, UPC uses slightly less
• OpenMP saves great due to direct data access

CUG 2010 8

Memory Usage : MPI+OpenMP

• Using more OpenMP threads could reduce the
memory usage substantially, up to five times on
Hopper (eight-core nodes)

CUG 2010 9

Performance: Using One Node on Hopper

• Similar performance for CG, EP, LU, MG
• For FT, IS, OpenMP delivers significantly better

performance due to efficient programming

CUG 2010 10

Performance: MPI vs. UPC

• UPC performs better for EP and IS, close to CG,
and worse for others

CUG 2010 11

Time Breakdown: MPI vs. UPC

• For LU, the longer communication time for UPC is
probably due to lack o efficient point-to-point
synchronization

• For IS, the one-sided upc_memget/upc_memput is
much more efficient than the MPI_alltoallv function

CUG 2010 12

Performance: BT-MZ (MPI+OpenMP)

• MPI suffers loan imbalance for higher number of
MPI tasks

• Best performance obtained when OpenMP=2

CUG 2010 13

Performance: SP-MZ (MPI+OpenMP)

• Time is dominated by OpenMP
• Performance scales well
• Best performance obtained when OpenMP=2

CUG 2010 14

Performance: LU-MZ (MPI+OpenMP)

• Best performance obtained when OpenMP=8 due
to larger cache size and enough work in OpenMP
region to amortize the OpenMP overhead

CUG 2010 15

Jaguar vs. Hopper: Single Node

• Using 8 cores on Jaguar, deliver similar performance
• Using 12 cores on Jaguar:

– EP 1.6 times better due to higher CPU frequency
– CG, IS, better performance due to larger aggregate cache size
– MG, SP worse performance due to memory contention

CUG 2010 16

Jaguar vs. Hopper: MPI Across Nodes

• EP, computation intensive application, consistently better
• IS performs worst due to higher communication contention

CUG 2010 17

Jaguar vs. Hopper:
Time Breakdown for MPI on 1024 Cores

• Computation time similar between Jaguar and Hopper
• Communication time higher on jaguar except EP

CUG 2010 18

Jaguar vs. Hopper: Hybrid (MPI+OpenMP)

• For BT-MZ, similar performance
• For SP-MZ, Jaguar is worse due to higher network contention
• Using more OpenMP threads could reduce the performance gap

CUG 2010 19

Conclusion and Future Work (1)

• Memory Usage
– MPI consumes most, UPC is slightly less, OpenMP saves

greatly
– Using more OpenMP threads could save up to several times

amount of memory usage for MPI+OpenMP hybrid model
• Performance

– On single node, OpenMP performs best due to its efficient
programming and direct data access

– Across nodes, overall, UPC performs slightly worse now, but
delivers much better performance for IS, the communication
intensive application

– Hybrid MPI+OpenMP codes in favor of using more OpenMP
threads, the best performance depends on the tradeoff between
OpenMP overhead and larger cache effects

CUG 2010 20

Conclusion and Future Work (2)

• Jaguar vs. Hopper
– Using hex-core may cause more memory contention, slowing

down the performance
– Using hex-core may cause more network contention, degrading

the performance, hurting the scalability
– Only favors computation intensive applications, such as EP.

• Future Work
– Examine on larger node architectures
– New Programming Models or MPI + x or ?

