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Despite continued “packing” of
transistors, performance is flatlining

• New Constraints
– 15 years of exponential clock

rate growth has ended

• But Moore’s Law
continues!

– How do we use all of those
transistors to keep
performance increasing at
historical rates?

– Industry Response: #cores
per chip doubles every 18
months instead of clock
frequency!

Figure courtesy of Kunle Olukotun,
Lance Hammond, Herb Sutter, and
Burton Smith
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Computer Centers and Vendors are
Responding with Multi-core Designs

• Baker Node Details : 24-core “Magny Cours”
• 2 Multi-Chip Modules, 4 Opteron Dies
• 8 Channels of DDR3 Bandwidth to 8 DIMMs
• 24 (or 16) Computational Cores, 24 MB of L3 cache
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What’s Wrong with MPI with Multi-core

• We can run 1 MPI process per core (flat model for parallelism)
– This works now and will work for a while
– But this is wasteful of intra-chip latency and bandwidth (100x lower

latency and 100x higher bandwidth on chip than off-chip)
– Model has diverged from reality (the machine is NOT flat)

• How long will it continue working?
– 4 - 8 cores? Probably.  128 - 1024 cores? Probably not.
– Depends on performance expectations

• What is the problem?
– Latency: some copying required by semantics
– Memory utilization: partitioning data for separate address space requires

some replication
 How big is your per core subgrid?  At 10x10x10, over 1/2 of the points are

surface points, probably replicated
– Memory bandwidth: extra state means extra bandwidth
– Weak scaling: success model for the “cluster era;” will not be for the many

core era -- not enough memory per core
– Heterogeneity: MPI per CUDA thread-block?
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Changing Programming Models to
Accommodate the Multi-core Revolution

• We Need to research on other programming
models, understand their advantages and
disadvantages
– OpenMP
– UPC
– Hybrid MPI+OpenMP
– Etc.

• Our Work is focus on Cray XT5
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Outline

• Quantify Memory Usage for Different
Programming Models

• Using Detailed Time Breakdown to
Investigate Performance Effects of
Different Programming Models

• Compare the Performance of Hopper
and Jaguar to evaluate the hex-core
and quad-core difference

• Conclusion and Future Work
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Memory Usage : OpenMP, UPC, MPI

• MPI uses most memory, UPC uses slightly less
• OpenMP saves great due to direct data access
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Memory Usage : MPI+OpenMP

• Using more OpenMP threads could reduce the
memory usage substantially, up to five times on
Hopper (eight-core nodes)
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Performance: Using One Node on Hopper

• Similar performance for CG, EP, LU, MG
• For FT, IS, OpenMP delivers significantly better

performance due to efficient programming
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Performance: MPI vs. UPC

• UPC performs better for EP and IS, close to CG,
and worse for others
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Time Breakdown: MPI vs. UPC

• For LU, the longer communication time for UPC is
probably due to lack o efficient point-to-point
synchronization

• For IS, the one-sided upc_memget/upc_memput is
much more efficient than the MPI_alltoallv function
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Performance: BT-MZ (MPI+OpenMP)

• MPI suffers loan imbalance for higher number of
MPI tasks

• Best performance obtained when OpenMP=2
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Performance: SP-MZ (MPI+OpenMP)

• Time is dominated by OpenMP
• Performance scales well
• Best performance obtained when OpenMP=2
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Performance: LU-MZ (MPI+OpenMP)

• Best performance obtained when OpenMP=8 due
to larger cache size and enough work in OpenMP
region to amortize the OpenMP overhead
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Jaguar vs. Hopper: Single Node

• Using 8 cores on Jaguar, deliver similar performance
• Using 12 cores on Jaguar:

– EP 1.6 times better due to higher CPU frequency
– CG, IS, better performance due to larger aggregate cache size
– MG, SP worse performance due to memory contention
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Jaguar vs. Hopper: MPI Across Nodes

• EP, computation intensive application, consistently better
• IS performs worst due to higher communication contention
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Jaguar vs. Hopper:
Time Breakdown for MPI on 1024 Cores

• Computation time similar between Jaguar and Hopper
• Communication time higher on jaguar except EP
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Jaguar vs. Hopper: Hybrid (MPI+OpenMP)

• For  BT-MZ, similar performance
• For SP-MZ, Jaguar is worse due to higher network contention
• Using more OpenMP threads could reduce the performance gap
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Conclusion and Future Work (1)

• Memory Usage
– MPI consumes most, UPC is slightly less, OpenMP saves

greatly
– Using more OpenMP threads could save up to several times

amount of memory usage for MPI+OpenMP hybrid model
•  Performance

– On single node, OpenMP performs best due to its efficient
programming and direct data access

– Across nodes, overall, UPC performs slightly worse now, but
delivers much better performance for IS, the communication
intensive application

– Hybrid MPI+OpenMP codes in favor of using more OpenMP
threads, the best performance depends on the tradeoff between
OpenMP overhead and larger cache effects
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Conclusion and Future Work (2)

• Jaguar vs. Hopper
– Using hex-core may cause more memory contention, slowing

down the performance
– Using hex-core may cause more network contention, degrading

the performance, hurting the scalability
– Only favors computation intensive applications, such as EP.

• Future Work
– Examine on larger node architectures
– New Programming Models or MPI + x or ?


