

Cray User Group 2010 Proceedings 1 of 6

Improving the Performance of COSMO-CLM

Matthew Cordery and Will Sawyer, CSCS-Swiss
National Supercomputing Centre, and Ulrich Schättler,
Deutscher Wetterdienst

ABSTRACT: The COSMO-CLM model, originally developed by Deutscher
Wetterdienst, is a non-hydrostatic regional atmospheric model which can be used for
numerical weather prediction and climate simulations and is now in use by a number of
weather services for operational forecasting (e.g. MeteoSwiss). One current software
engineering goal is to improve its scaling characteristics on multicore architectures by
making it a hybrid MPI-OpenMP code. We will present hybridization strategies for
different components of the model, show some first performance results, and discuss the
impact on further development of the model.

KEYWORDS: COSMO, weather, climate, hybrid programming

1. Introduction
The COSMO-CLM (COsortium for Small-scale

Modelling-CLimate Mode) model is a non-hydrostatic
regional atmospheric model, originally designed for
numerical weather prediction (COSMO) on vector
architectures that has been extended for use by the climate
modelling community. While operational numerical
weather prediction (NWP) models must reliably produce
results for three-day forecasts on the order of half an hour
of CPU time, extending the same performance to a 100-
year simulation of climate on a grid with similar
resolution would require several months of CPU time. If a
researcher requires numerous climate runs in order to
extract useful science, then the need to improve the
performance of climate models like COSMO-CLM
becomes self-evident.

Improving the performance of a mature and complex
scientific application is, in general, no easy task. This is
especially true if one desires to improve the performance
by an order of magnitude. Often, one attempts to either
(a) exploit as much parallelism as possible, (b) reduce the
memory footprint and access of data structures in order to
improve cache performance, (c) improve communications
protocols, (d) re-factor data structures and loops to exploit

next generation hardware (e.g. GPGPUs), new algorithms,
or some combination of all these.

The goal of this work is to examine the performance
characteristics of COSMO-CLM and to investigate the
feasibility means of reducing the total run time of
COSMO-CLM through exploiting additional parallelism.
The code currently exploits coarse-grained parallelism
through the use of MPI tasking. Our goal here is to exploit
additional parallelism at the loop level through OpenMP
directives.

The code itself, like many atmospheric models, is
designed around both a dynamical core, which solves for
the motion of air and water in the atmosphere, and a
physical core that approximates a number of physical
processes, such as heating and cooling by radiation,
precipitation, moist convection, and so forth that
contribute significantly to heat and mass transfer in the
dynamical core. These cores solve their respective
equations on three-dimensional structured mesh,
represented internally by Fortran arrays whose indices
reflect rotated latitude (x), rotated longitude (y), and
height (z), respectively. Information is shared between
these arrays via simple packed halo exchanges with the
surrounding MPI tasks.

The main computational region of COSMO-CLM is
centred on a time-stepping loop. Within this are the
subroutine call controlling the updates to the dynamics

Cray User Group 2010 Proceedings 2 of 6

and to the physics. Ideally, at this stage, the data
structures would be designed such that there would be
loops over one of the indices noted above surrounding
each of the subroutine calls. This would make exploiting
parallelism quite easy as one could simply parallelize
each loop without having to determine if many of the
variables are private or shared or if any complex data
dependencies exist. Rather, the main computational
workload resides in the subroutines themselves, in
numerous triply nested, and some doubly nested, loops.
For triply nested loops, the outermost loop is over the
number of height levels (typically 60 to 90) and for
doubly nested loops, it is over the number of longitudes
bands. As an initial attempt, then, our hybridization
strategy is to insert OpenMP directives before
computationally intensive loops within the subroutines
and keeping any software design changes to a minimum.
This will give us some indication of the performance
gains that might be expected and provide useful
information for any future efforts towards refactoring the
code for cache-based multi-processor architectures.

2. Performance Description
The COSMO code and its related data sets have

already been successfully ported and verified on Cray XT
systems. The tests for this study were performed on the
Cray XT5 Monte Rosa at the Swiss National
Supercomputing Center. The system was upgraded in
2009 and currently houses 3688 AMD hex-core Opteron
processors running at 2.4 Ghz and has a total of 28.8 TB
of DDR2 RAM and a 9.6 GB/s interconnect bandwidth.

The code was compiled and linked with the Portland
Group (PGI) Fortran compiler version 10.3 and linked to
version 4 of the Cray MPT library. None of the
benchmarking or profiling runs were launched on a
dedicated system.

Key kernel performance.

We performed a number of scaling benchmarks on a

grid with a 1-km resolution (1142x765x90) using
decompositions with different aspect ratios. The 1.5x1
aspect ratio runs most closely match the global aspect
ratio of the entire computational grid. The results show
that, at this resolution, the code scales well out to over
6000 cores and that sub-grids assigned to MPI tasks
perform better if they closely match the aspect ratio of the
global computation region. Moreover, sub-grids with an
aspect ratio that is longer in the x-direction perform better
than those in that are longer in the y-direction, indicating
that the code is likely benefitting from longer vectors.
There is a limit to this, however, as changing the aspect

ratio from approximately 1.5x1 increases the inter-task
communications.

Figure 1. COSMO-CLM 1-hr run time with 1-km grid
spacing and various decomposition aspect ratios.

An examination of the performance and scaling of the
physical and dynamical cores (Figure 2) shows that that
both scale quite well for the grid and that the dynamical
core takes about three times (3x) as much compute time
as the physical core, regardless of core count.

Figure 2. Breakdown of run time for physical and
dynamical cores at various aspect ratios.

Within this range, profiling indicates that few of the
top computational routines are load-imbalanced and that
the most of the top routines have a computational
intensity < 1 and high cache hit/miss ratios (>95%), with
the most expensive routine, fast_waves_runge_kutta
(which controls sound and gravity-wave propagation),
having a computational intensity of 0.2, regardless of core
count. These features, along with the strong scaling,

Cray User Group 2010 Proceedings 3 of 6

indicates the computational part of the code is largely
network-bandwidth limited rather than network-
bandwidth or cache limited. The percentage peak for
these runs is in the range 3.5-4.0% For the remainder of
this study, we no longer consider any aspect ratios other
than the default for a particular grid.

3. Hybridization Strategy and Results

3.1 1-km grid
In this study, we concentrated on performing loop-

level OpenMP threading within subroutines, without
performing any large-scale restructuring of data structures
or significant rewriting of code to allow for blocking.
Thus, we simply inserted numerous OpenMP directives
based on results from the Craypat profiling tool. We
concentrated our efforts on physics and dynamics routines
called from the main time-stepping loop, ignoring
routines involved in file I/O as they are not significant
factors of the total run time. The current version involves
over 600 OpenMP parallel directives in 11 module files.

As part of our initial assessment of the performance
assessment in this study, our first implementation of the
OpenMP directives included the use of the new
COLLAPSE directive. The graph in Figure 3 shows the
results for both the hybrid code and the MPI only code.

Figure 3. Scaling results for the hybrid code. Hybrid
results begin at 512 MPI tasks and 1 OpenMP thread and
increase to 2, 3, 4, 6, and 12 threads. Hybrid code with
collapse directives (red squares). Hybrid code with
collapse directives and compiled with SSE instructions
enabled (purple crosses). Hybrid code without collapse
directives and compiled with SSE instructions enabled
(light blue curve). Non-hybrid code compiled with SSE
instructions enabled (green triangles).

In performing the hybrid code runs, we chose the number
of threads for each test case so that a node would be fully
packed if there were enough tasks available. Thus, we
only ran test cases where the number of threads times the
number of MPI tasks on a node equalled twelve. A
cursory examination of the results shows that this version
of the hybrid code runs significantly slower than the non-
hybrid version. Removing the collapse directives, as well
as making minor adjustments to some of the OpenMP
directives to allow the global use of SSE instructions,
results in a hybrid code that, in most cases at this
resolution, runs as fast as the MPI-only version.

If we examine the scaling of the physical and
dynamical cores (Figure 4), we see that neither of the
hybrid cores scales as well as the non-hybrid version at
higher core counts. In fact, the physical core appears to be
significantly more impacted by remaining load
imbalances or lack of parallelism.

Figure 4. Scaling of they dynamical and physical cores.
Hyb = hybrid code, Dyn=dynamical core, Phys=physical
core.

We also examined the performance of the code using
different OpenMP schedulers (static and dynamic) with
different chunk sizes and found that variations other than
the default did provide any significant performance
benefit, if any.

3.2 Small ‘Climate’ grid

As mentioned above, of particular interest to us is the
possibility of improving the performance of COSMO-
CLM when applied to the problem of performing climate
simulations that require significant wall-clock and CPU
time. To this end, we defined a 102x102 grid which, when
run with around 50 cores, would approximate the per-core
size of problem expected on future cloud-resolving
climate simulations.

Cray User Group 2010 Proceedings 4 of 6

In Figure 5, we show the results for running a 24-
hour simulation. The pure MPI results scale linearly to
approximately 100 cores and then the scaling begins to
decline becoming flat after 576 cores. After 1152 cores,
the performance actually decreases slightly.

Conclusion
Both the

Figure 5. Scaling results for a small climate test grid.
Shown are the results for a pure MPI test case, two hybrid
code test cases using 8x12 and 12x16 decompositions and
1, 2, 3, 4, 6, and 12 threads, respectively. Also shown are
the results for the 12x16 hybrid test case when using only
1 I/O task for the run, rather than 4.

Also shown are the results for three different hybrid
test cases. For the 8x12 decomposition, which begins
where the linear scaling of the MPI runs ends, the hybrid
test case runs about 10% better than the MPI-only run
when two threads are used but is slower than the latter
after that. The model runs best with six threads and two
MPI tasks per node implying there are still some scaling
issues to be resolved. There is also a slight decrease in
performance going from three to four threads that is also
seen in the other hybrid runs in the graph. This
performance degradation is, perhaps, not surprising since
when four threads are used per MPI task, the threads of
one of the tasks must span the two cores on the node and
implies there is memory bandwidth contention in this
case. The 12x16 hybrid case scales further than the 8x12
hybrid case but still shows the same performance
degradation past 576 cores as the non-hybrid case. The
performance degradation going from 3 to 4 threads is also
most pronounced in this case. Compared to the non-
hybrid case, this model is, at best 7% faster using six
threads.

As an experiment, we also show the results for the
same 12x16 hybrid model using only 1 MPI task for the
I/O rather than 4 tasks. In COSMO-CLM, the user may

specify a number of MPI tasks that will be reserved for
writing results to disk. Previous benchmarking results on
the non-hybrid code indicated that the optimal number of
I/O tasks was about four. In this case, however, we
achieved better performance when using only a single
task for I/O. The reason for this performance
improvement is not obvious at this time. However, using
only a single task for I/O in the hybrid code makes better
use of system resources, as fewer cores will be idle (e.g.
using four I/O tasks and six threads uses only four cores
in total with 20 cores doing nothing).

If we examine a breakdown of the scaling for various
sections of the code in the 12x16 case (Figure 6), we see
that, regardless of thread count, the total time spent in the

Figure 6. Breakdown of multi-thread scaling of important
components in the dynamical and physical cores for the
case of 192 MPI tasks (12x16 decomposition).

dynamics per time step is still approximately three times
that spent in the physics. Furthermore, All of the
important sub-sections of the dynamical core show the
same scaling characteristics with thread count, with
minima at six threads per task. The physical core, and its
sub-sections, show a much flatter profile, in general with
the section covering precipitation showing a marked
steady increase in computational time with thread count
and the radiation showing a completely flat profile. While
fixing these problems with the physical core need to be
addressed, doing so would not alter that fact that the
dynamical core ceases to scale significantly after three
threads.

3. Conclusions and Future Directions
While some performance improvements have been

realized by this study, it is clear that significant
improvements will likely require a fundamental
reorganization of the code and/or better algorithms. Even

Cray User Group 2010 Proceedings 5 of 6

though much loop-level parallelism has been exploited,
the fact remains that the computational intensity is low in
many subroutines implying low data reuse. Additional
performance improvements in the existing version may be
possible through custom placements of tasks, thread-core
affinity, and blocking. Furthermore, there are enough
OpenMP directives in the code to make blocking both
tedious and error-prone to implement and a significant
software engineering problem from the point of view of
maintenance and addition of new physics.

Another option is to reorganize the code and data
structures to enable hoisting one of the loop indices out of
the subroutines to a higher level. This would significantly
reduce the amount of work necessary to implement loop-
level parallelism. This might also ameliorate the task of
improving data reuse and give us an opportunity to reduce
the memory footprint of each task/thread thereby taking
pressure off the memory subsystem.

Acknowledgments
The authors wish to thank Oliver Fuhrer for input,

advice, and for providing useful test cases.

References

COSMO Model Documentation

About the Authors
Matthew Cordery (Email: cordery@cscs.ch) is an

HPC Applications Analyst in the National
Supercomputing Service (NSS) section of the Swiss
National Supercomputing Centre (CSCS). William
Sawyer (Email: wsawyer@cscs.ch) is an HPC
Applications Analyst in the Scientific Computing
Research Section of the Swiss National Supercomputing
Centre (CSCS). They can be reached at CSCS, Galleria 2
- Via Cantonale, CH-6928 Manno, Switzerland. Ulrich
Schättler (Email: Ulrich.Schaettler@dwd.de) is scientist
in the Business Unit for Research and Development of the
Deutscher Wetterdienst (German Weather Service). He is
one of the primary developers of the COSMO code. He
can be reached at Deutscher Wetterdienst, Frankfurter
Straße 135, 63067 Offenbach.

Cray User Group 2010 Proceedings 6 of 6

