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Improving the Performance of COSMO-CLM 

Matthew Cordery and Will Sawyer, CSCS-Swiss 
National Supercomputing Centre, and Ulrich Schättler, 
Deutscher Wetterdienst 

ABSTRACT: The COSMO-CLM model, originally developed by Deutscher 
Wetterdienst, is a non-hydrostatic regional atmospheric model which can be used for 
numerical weather prediction and climate simulations and is now in use by a number of 
weather services for operational forecasting (e.g. MeteoSwiss). One current software 
engineering goal is to improve its scaling characteristics on multicore architectures by 
making it a hybrid MPI-OpenMP code. We will present hybridization strategies for 
different components of the model, show some first performance results, and discuss the 
impact on further development of the model. 
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1. Introduction 
The COSMO-CLM (COsortium for Small-scale 

Modelling-CLimate Mode) model is a non-hydrostatic 
regional atmospheric model, originally designed for 
numerical weather prediction (COSMO) on vector 
architectures that has been extended for use by the climate 
modelling community.  While operational numerical 
weather prediction (NWP) models must reliably produce 
results for three-day forecasts on the order of half an hour 
of CPU time, extending the same performance to a 100-
year simulation of climate on a grid with similar 
resolution would require several months of CPU time. If a 
researcher requires numerous climate runs in order to 
extract useful science, then the need to improve the 
performance of climate models like COSMO-CLM 
becomes self-evident. 

Improving the performance of a mature and complex 
scientific application is, in general, no easy task. This is 
especially true if one desires to improve the performance 
by an order of magnitude.  Often, one attempts to either 
(a) exploit as much parallelism as possible, (b) reduce the 
memory footprint and access of data structures in order to 
improve cache performance, (c) improve communications 
protocols, (d) re-factor data structures and loops to exploit 

next generation hardware (e.g. GPGPUs), new algorithms,  
or some combination of all these.  

The goal of this work is to examine the performance 
characteristics of COSMO-CLM and to investigate the 
feasibility means of reducing the total run time of 
COSMO-CLM through exploiting additional parallelism. 
The code currently exploits coarse-grained parallelism 
through the use of MPI tasking. Our goal here is to exploit 
additional parallelism at the loop level through OpenMP 
directives.  

The code itself, like many atmospheric models, is 
designed around both a dynamical core, which solves for 
the motion of air and water in the atmosphere, and a 
physical core that approximates a number of physical 
processes, such as heating and cooling by radiation, 
precipitation, moist convection, and so forth that 
contribute significantly to heat and mass transfer in the 
dynamical core. These cores solve their respective 
equations on three-dimensional structured mesh, 
represented internally by Fortran arrays whose indices 
reflect rotated latitude (x), rotated longitude (y), and 
height (z), respectively. Information is shared between 
these arrays via simple packed halo exchanges with the 
surrounding MPI tasks.  

The main computational region of COSMO-CLM is 
centred on a time-stepping loop. Within this are the 
subroutine call controlling the updates to the dynamics 
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and to the physics. Ideally, at this stage, the data 
structures would be designed such that there would be 
loops over one of the indices noted above surrounding 
each of the subroutine calls. This would make exploiting 
parallelism quite easy as one could simply parallelize 
each loop without having to determine if many of the 
variables are private or shared or if any complex data 
dependencies exist. Rather, the main computational 
workload resides in the subroutines themselves, in 
numerous triply nested, and some doubly nested, loops. 
For triply nested loops, the outermost loop is over the 
number of height levels (typically 60 to 90) and for 
doubly nested loops, it is over the number of longitudes 
bands.  As an initial attempt, then, our hybridization 
strategy is to insert OpenMP directives before 
computationally intensive loops within the subroutines 
and keeping any software design changes to a minimum. 
This will give us some indication of the performance 
gains that might be expected and provide useful 
information for any future efforts towards refactoring the 
code for cache-based multi-processor architectures. 

 

2.  Performance Description 
The COSMO code and its related data sets have 

already been successfully ported and verified on Cray XT 
systems. The tests for this study were performed on the 
Cray XT5 Monte Rosa at the Swiss National 
Supercomputing Center. The system was upgraded in 
2009 and currently houses 3688 AMD hex-core Opteron 
processors running at 2.4 Ghz and has a total of 28.8 TB 
of DDR2 RAM and a 9.6 GB/s interconnect bandwidth.  

The code was compiled and linked with the Portland 
Group (PGI) Fortran compiler version 10.3 and linked to 
version 4 of the Cray MPT library.  None of the 
benchmarking or profiling runs were launched on a 
dedicated system.  

Key kernel performance. 
 
We performed a number of scaling benchmarks on a 

grid with a 1-km resolution (1142x765x90) using 
decompositions with different aspect ratios. The 1.5x1 
aspect ratio runs most closely match the global aspect 
ratio of the entire computational grid. The results show 
that, at this resolution, the code scales well out to over 
6000 cores and that sub-grids assigned to MPI tasks 
perform better if they closely match the aspect ratio of the 
global computation region. Moreover, sub-grids with an 
aspect ratio that is longer in the x-direction perform better 
than those in that are longer in the y-direction, indicating 
that the code is likely benefitting from longer vectors. 
There is a limit to this, however, as changing the aspect 

ratio from approximately 1.5x1 increases the inter-task 
communications. 

 
Figure 1. COSMO-CLM 1-hr run time with 1-km grid 
spacing and various decomposition aspect ratios. 
 

An examination of the performance and scaling of the 
physical and dynamical cores (Figure 2) shows that that 
both scale quite well for the grid and that the dynamical 
core takes about three times (3x) as much compute time 
as the physical core, regardless of core count.  

 
Figure 2. Breakdown of run time for physical and 
dynamical cores at various aspect ratios. 
 

Within this range, profiling indicates that few of the 
top computational routines are load-imbalanced and that 
the most of the top routines have a computational 
intensity < 1 and high cache hit/miss ratios (>95%), with 
the most expensive routine, fast_waves_runge_kutta 
(which controls sound and gravity-wave propagation), 
having a computational intensity of 0.2, regardless of core 
count. These features, along with the strong scaling, 
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indicates the computational part of the code is largely 
network-bandwidth limited rather than network-
bandwidth or cache limited. The percentage peak for 
these runs is in the range 3.5-4.0% For the remainder of 
this study, we no longer consider any aspect ratios other 
than the default for a particular grid. 
 

3. Hybridization Strategy and Results 

3.1 1-km grid 
In this study, we concentrated on performing loop-

level OpenMP threading within subroutines, without 
performing any large-scale restructuring of data structures 
or significant rewriting of code to allow for blocking. 
Thus, we simply inserted numerous OpenMP directives 
based on results from the Craypat profiling tool.  We 
concentrated our efforts on physics and dynamics routines 
called from the main time-stepping loop, ignoring 
routines involved in file I/O as they are not significant 
factors of the total run time. The current version involves 
over 600 OpenMP parallel directives in 11 module files.  

As part of our initial assessment of the performance 
assessment in this study, our first implementation of the 
OpenMP directives included the use of the new 
COLLAPSE directive.  The graph in Figure 3 shows the 
results for both the hybrid code and the MPI only code.  

 
 
Figure 3.  Scaling results for the hybrid code. Hybrid 
results begin at 512 MPI tasks and 1 OpenMP thread and 
increase to 2, 3, 4, 6, and 12 threads.  Hybrid code with 
collapse directives (red squares). Hybrid code with 
collapse directives and compiled with SSE instructions 
enabled (purple crosses). Hybrid code without collapse 
directives and compiled with SSE instructions enabled 
(light blue curve). Non-hybrid code compiled with SSE 
instructions enabled (green triangles).  
 

In performing the hybrid code runs, we chose the number 
of threads for each test case so that a node would be fully 
packed if there were enough tasks available. Thus, we 
only ran test cases where the number of threads times the 
number of MPI tasks on a node equalled twelve. A 
cursory examination of the results shows that this version 
of the hybrid code runs significantly slower than the non-
hybrid version. Removing the collapse directives, as well 
as making minor adjustments to some of the OpenMP 
directives to allow the global use of SSE instructions, 
results in a hybrid code that, in most cases at this 
resolution, runs as fast as the MPI-only version.  

If we examine the scaling of the physical and 
dynamical cores (Figure 4), we see that neither of the 
hybrid cores scales as well as the non-hybrid version at 
higher core counts. In fact, the physical core appears to be 
significantly more impacted by remaining load 
imbalances or lack of parallelism.  

Figure 4. Scaling of they dynamical and physical cores. 
Hyb = hybrid code, Dyn=dynamical core, Phys=physical 
core. 

We also examined the performance of the code using 
different OpenMP schedulers (static and dynamic) with 
different chunk sizes and found that variations other than 
the default did provide any significant performance 
benefit, if any.  

3.2 Small ‘Climate’ grid 
 

As mentioned above, of particular interest to us is the 
possibility of improving the performance of COSMO-
CLM when applied to the problem of performing climate 
simulations that require significant wall-clock and CPU 
time. To this end, we defined a 102x102 grid which, when 
run with around 50 cores, would approximate the per-core 
size of problem expected on future cloud-resolving 
climate simulations.  
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In Figure 5, we show the results for running a 24-
hour simulation. The pure MPI results scale linearly to 
approximately 100 cores and then the scaling begins to 
decline becoming flat after 576 cores. After 1152 cores, 
the performance actually decreases slightly.  
  
 

 

Conclusion 
Both the  

 

 

 

Figure 5. Scaling results for a small climate test grid. 
Shown are the results for a pure MPI test case, two hybrid 
code test cases using 8x12 and 12x16 decompositions and 
1, 2, 3, 4, 6, and 12 threads, respectively. Also shown are 
the results for the 12x16 hybrid test case when using only 
1 I/O task for the run, rather than 4.  

Also shown are the results for three different hybrid 
test cases. For the 8x12 decomposition, which begins 
where the linear scaling of the MPI runs ends, the hybrid 
test case runs about 10% better than the MPI-only run 
when two threads are used but is slower than the latter 
after that. The model runs best with six threads and two 
MPI tasks per node implying there are still some scaling 
issues to be resolved. There is also a slight decrease in 
performance going from three to four threads that is also 
seen in the other hybrid runs in the graph. This 
performance degradation is, perhaps, not surprising since 
when four threads are used per MPI task, the threads of 
one of the tasks must span the two cores on the node and 
implies there is memory bandwidth contention in this 
case. The 12x16 hybrid case scales further than the 8x12 
hybrid case but still shows the same performance 
degradation past 576 cores as the non-hybrid case. The 
performance degradation going from 3 to 4 threads is also 
most pronounced in this case. Compared to the non-
hybrid case, this model is, at best 7% faster using six 
threads.  

As an experiment, we also show the results for the 
same 12x16 hybrid model using only 1 MPI task for the 
I/O rather than 4 tasks. In COSMO-CLM, the user may 

specify a number of MPI tasks that will be reserved for 
writing results to disk. Previous benchmarking results on 
the non-hybrid code indicated that the optimal number of 
I/O tasks was about four. In this case, however, we 
achieved better performance when using only a single 
task for I/O. The reason for this performance 
improvement is not obvious at this time. However, using 
only a single task for I/O in the hybrid code makes better 
use of system resources, as fewer cores will be idle (e.g. 
using four I/O tasks and six threads uses only four cores 
in total with 20 cores doing nothing).  

If we examine a breakdown of the scaling for various 
sections of the code in the 12x16 case (Figure 6), we see 
that, regardless of thread count, the total time spent in the  

Figure 6. Breakdown of multi-thread scaling of important 
components in the dynamical and physical cores for the 
case of 192 MPI tasks (12x16 decomposition). 

 
dynamics per time step is still approximately three times 
that spent in the physics. Furthermore, All of the 
important sub-sections of the dynamical core show the 
same scaling characteristics with thread count, with 
minima at six threads per task. The physical core, and its 
sub-sections, show a much flatter profile, in general with 
the section covering precipitation showing a marked 
steady increase in computational time with thread count 
and the radiation showing a completely flat profile. While 
fixing these problems with the physical core need to be 
addressed, doing so would not alter that fact that the 
dynamical core ceases to scale significantly after three 
threads.  
 

3. Conclusions and Future Directions 
While some performance improvements have been 

realized by this study, it is clear that significant 
improvements will likely require a fundamental 
reorganization of the code and/or better algorithms. Even 
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though much loop-level parallelism has been exploited, 
the fact remains that the computational intensity is low in 
many subroutines implying low data reuse. Additional 
performance improvements in the existing version may be 
possible through custom placements of tasks, thread-core 
affinity, and blocking. Furthermore, there are enough 
OpenMP directives in the code to make blocking both 
tedious and error-prone to implement and a significant 
software engineering problem from the point of view of 
maintenance and addition of new physics.   

Another option is to reorganize the code and data 
structures to enable hoisting one of the loop indices out of 
the subroutines to a higher level. This would significantly 
reduce the amount of work necessary to implement loop-
level parallelism. This might also ameliorate the task of 
improving data reuse and give us an opportunity to reduce 
the memory footprint of each task/thread thereby taking 
pressure off the memory subsystem.  

Acknowledgments 
The authors wish to thank Oliver Fuhrer for input, 

advice, and for providing useful test cases. 
 

References 

COSMO Model Documentation 

About the Authors 
Matthew Cordery (Email: cordery@cscs.ch) is an 

HPC Applications Analyst in the National 
Supercomputing Service (NSS) section of the Swiss 
National Supercomputing Centre (CSCS). William 
Sawyer (Email: wsawyer@cscs.ch) is an HPC 
Applications Analyst in the Scientific Computing 
Research Section of the Swiss National Supercomputing 
Centre (CSCS). They can be reached at CSCS, Galleria 2 
- Via Cantonale, CH-6928 Manno, Switzerland. Ulrich 
Schättler (Email: Ulrich.Schaettler@dwd.de) is scientist 
in the Business Unit for Research and Development of the 
Deutscher Wetterdienst (German Weather Service). He is 
one of the primary developers of the COSMO code. He 
can be reached at Deutscher Wetterdienst, Frankfurter 
Straße 135, 63067 Offenbach.  

 
 

 



 

 
 

Cray User Group 2010 Proceedings 6 of 6 
 

 


