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What is COSMO-CLM? 

  COSMO is an operational non-hydrostatic meso-to-micro 
scale NWP system. 
•  Used by MeteoSwiss, DWD,etc.  

  The COSMO model in CLimate Mode (COSMO-CLM or 
CCLM) is a non-hydrostatic regional climate model. 



COSMO NWP Applications 
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DWD 
(Offenbach, 
Germany): 
NEC SX-8R, 
SX-9 

MeteoSwiss: 
Cray XT4: COSMO-7 and 
COSMO-2 use 800+4 MPI-
Tasks on 402 out of 448 dual 
core AMD nodes 

ARPA-SIM (Bologna, Italy): 
IBM pwr5: up to 160 of 512 
nodes at CINECA 

COSMO-LEPS (at ECMWF): 
running on ECMWF pwr6 as 
member-state time-critical 
application 

HNMS (Athens, Greece): 
IBM pwr4: 120 of 256 nodes 

IMGW (Warsawa, Poland): 
SGI Origin 3800: 
uses 88 of 100 nodes 

ARPA-SIM (Bologna, Italy): 
Linux-Intel x86-64 Cluster for 
testing (uses 56 of 120 cores) 

USAM (Rome, Italy): 
HP Linux Cluster  
XEON biproc quadcore 
System in preparation 

Roshydromet (Moscow, Russia),  
SGI 

NMA (Bucharest, Romania): 
Still in planning / procurement phase 
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Sample NWP output 

Precipitation 2m Temperature 



Goal   

  An operation NWP prediction forecast for 24 hours make 
take half an hour of CPU time 

  By extension, a 100 year climate simulation on a similar grid 
would take several months of CPU time. 

  Our goal is to examine different hybrid programming 
schemes that will provide a substantial CPU time savings 
without requiring extensive use of machine resources.  

  First step: 
•  Examine mixed programming model using MPI and OpenMP. 



• The computational grid is a 3D rotated-latitude/longitude 
structured grid.  

• Communications are through 2- or 3-line halo exchanges. 
• Many loops are of the form 
  do k = 1, ke 

   do j = 1, je 

    do i = 1, ie 

     … 

    end do 

   end do 

  end do 

• Some 2D and 4D arrays, but of the same basic structure. 



COSMO characteristics 

Main computational region is a time stepping loop over  
 • a dynamical core that solves for fluid motion 
 • a physical core that computes radiation transfer, 
precipitation, etc. 

  Examine scaling of 1-km to elucidate ‘hotspots’. 
•  1142 longitude points 
•  765 latitude points 
•  90 vertical points 
•  3 halo grid points 
•  4 I/O tasks  
•  1 hour of simulated time 





1km observations 

  Computational intensity is low (<1) for most top routines and 
the cache hit ratio is > 95%.  

  Good scaling out to several thousand cores, though 
performance is rather low. 

  Implies algorithms are memory-bandwidth limited. 





Scaling observations 

  Physical and dynamical cores scale well out to > 2000 cores 
  Dynamical core takes approximately 3x more time than the 

physical core, regardless of core count. 
  I/O and MPI communications are not limiting factors 
Profiling indicates that during the main time stepping loop 

•  I/O  and MPI communications are not limiting factors 
•  The dynamical core requires 3x more time than the physical core, 

regardless of core count 



Hybridization path 

  Most computational work is encapsulated in multiply-nested 
loops in multiple subroutines that are called from a main 
driver loop. 

  Most outer loops are over the number of levels, inner loops 
over latitude/longitude.  

  Insert OpenMP PARALLEL DO directives on outermost loop 
•  Also attempted use of OpenMP 3.0 COLLAPSE directive. 
•  Over 600 directives inserted. 
•  Also enabled use of SSE instructions on all routines (previously only 

used on some routines). 



Hybrid+fast 

Hybrid 





Observations 

  Important to have as much of the code as possible compiled 
to use SSE instructions. 

  Important not to overuse COLLAPSE directive which may 
interfere with compiler optimization 

  Code runs approximately as fast as the MPI only version for 
most core counts. 

  Dynamical and physical cores scale well, though the physical 
core shows a much more pronounced loss of scaling beyond 
4 threads. 

  Reducing the number of I/O tasks improves performance 
(why?) and reduces idle cores. 



‘Climate grid’ 

  In order to examine the results more similar to what  will be 
used for a 100 year climate science run: 

  102 latitudes 
  102 longitudes 
  60 height levels 
  1 I/O task 
  Run for 24 simulated hours.  





Observations 

  Relatively weak (<10%) improvement over standard MPI 
code. 

  Best results at 3 or 6 threads.  
  Performance decrease for 4 threads where threads from one 

MPI task will span a node. 
  Performance decrease going from six to twelve threads 

indicates still some performance bottlenecks. 





Summary 

  Loop level parallelism can achieve some modest 
performance gains 
•  Can require many threaded loops -> OpenMP overhead 
•  Can require a lot more software engineering to maintain  

  Introducing new private variables into old loops  
  Introducing new physics that needs to be threaded 

•  Can be problematic when dealing with threads that include arrays 
created using Fortran allocate statement. 

  Next task is to examine threading and blocking at a higher 
level. This will require more extensive work to the code. 
•  Improve data re-use 
•  Reduce memory footprint 

  Investigate new algorithms 


