
Improving the Performance of COSMO-CLM
Matthew Cordery, William Sawyer

Swiss National Supercomputing Centre

Ulrich Schättler
Deutscher Wetterdienst

What is COSMO-CLM?

  COSMO is an operational non-hydrostatic meso-to-micro
scale NWP system.
•  Used by MeteoSwiss, DWD,etc.

  The COSMO model in CLimate Mode (COSMO-CLM or
CCLM) is a non-hydrostatic regional climate model.

COSMO NWP Applications

3

DWD
(Offenbach,
Germany):
NEC SX-8R,
SX-9

MeteoSwiss:
Cray XT4: COSMO-7 and
COSMO-2 use 800+4 MPI-
Tasks on 402 out of 448 dual
core AMD nodes

ARPA-SIM (Bologna, Italy):
IBM pwr5: up to 160 of 512
nodes at CINECA

COSMO-LEPS (at ECMWF):
running on ECMWF pwr6 as
member-state time-critical
application

HNMS (Athens, Greece):
IBM pwr4: 120 of 256 nodes

IMGW (Warsawa, Poland):
SGI Origin 3800:
uses 88 of 100 nodes

ARPA-SIM (Bologna, Italy):
Linux-Intel x86-64 Cluster for
testing (uses 56 of 120 cores)

USAM (Rome, Italy):
HP Linux Cluster
XEON biproc quadcore
System in preparation

Roshydromet (Moscow, Russia),
SGI

NMA (Bucharest, Romania):
Still in planning / procurement phase

 















 



 




 



CLM Community 2010

4

Sample NWP output

Precipitation 2m Temperature

Goal

  An operation NWP prediction forecast for 24 hours make
take half an hour of CPU time

  By extension, a 100 year climate simulation on a similar grid
would take several months of CPU time.

  Our goal is to examine different hybrid programming
schemes that will provide a substantial CPU time savings
without requiring extensive use of machine resources.

  First step:
•  Examine mixed programming model using MPI and OpenMP.

• The computational grid is a 3D rotated-latitude/longitude
structured grid.

• Communications are through 2- or 3-line halo exchanges.
• Many loops are of the form
 do k = 1, ke

 do j = 1, je

 do i = 1, ie

 …

 end do

 end do

 end do

• Some 2D and 4D arrays, but of the same basic structure.

COSMO characteristics

Main computational region is a time stepping loop over
 • a dynamical core that solves for fluid motion
 • a physical core that computes radiation transfer,
precipitation, etc.

  Examine scaling of 1-km to elucidate ‘hotspots’.
•  1142 longitude points
•  765 latitude points
•  90 vertical points
•  3 halo grid points
•  4 I/O tasks
•  1 hour of simulated time

1km observations

  Computational intensity is low (<1) for most top routines and
the cache hit ratio is > 95%.

  Good scaling out to several thousand cores, though
performance is rather low.

  Implies algorithms are memory-bandwidth limited.

Scaling observations

  Physical and dynamical cores scale well out to > 2000 cores
  Dynamical core takes approximately 3x more time than the

physical core, regardless of core count.
  I/O and MPI communications are not limiting factors
Profiling indicates that during the main time stepping loop

•  I/O and MPI communications are not limiting factors
•  The dynamical core requires 3x more time than the physical core,

regardless of core count

Hybridization path

  Most computational work is encapsulated in multiply-nested
loops in multiple subroutines that are called from a main
driver loop.

  Most outer loops are over the number of levels, inner loops
over latitude/longitude.

  Insert OpenMP PARALLEL DO directives on outermost loop
•  Also attempted use of OpenMP 3.0 COLLAPSE directive.
•  Over 600 directives inserted.
•  Also enabled use of SSE instructions on all routines (previously only

used on some routines).

Hybrid+fast

Hybrid

Observations

  Important to have as much of the code as possible compiled
to use SSE instructions.

  Important not to overuse COLLAPSE directive which may
interfere with compiler optimization

  Code runs approximately as fast as the MPI only version for
most core counts.

  Dynamical and physical cores scale well, though the physical
core shows a much more pronounced loss of scaling beyond
4 threads.

  Reducing the number of I/O tasks improves performance
(why?) and reduces idle cores.

‘Climate grid’

  In order to examine the results more similar to what will be
used for a 100 year climate science run:

  102 latitudes
  102 longitudes
  60 height levels
  1 I/O task
  Run for 24 simulated hours.

Observations

  Relatively weak (<10%) improvement over standard MPI
code.

  Best results at 3 or 6 threads.
  Performance decrease for 4 threads where threads from one

MPI task will span a node.
  Performance decrease going from six to twelve threads

indicates still some performance bottlenecks.

Summary

  Loop level parallelism can achieve some modest
performance gains
•  Can require many threaded loops -> OpenMP overhead
•  Can require a lot more software engineering to maintain

  Introducing new private variables into old loops
  Introducing new physics that needs to be threaded

•  Can be problematic when dealing with threads that include arrays
created using Fortran allocate statement.

  Next task is to examine threading and blocking at a higher
level. This will require more extensive work to the code.
•  Improve data re-use
•  Reduce memory footprint

  Investigate new algorithms

