
Improving the Performance of COSMO-CLM
Matthew Cordery, William Sawyer

Swiss National Supercomputing Centre

Ulrich Schättler
Deutscher Wetterdienst

What is COSMO-CLM?

  COSMO is an operational non-hydrostatic meso-to-micro
scale NWP system.
•  Used by MeteoSwiss, DWD,etc.

  The COSMO model in CLimate Mode (COSMO-CLM or
CCLM) is a non-hydrostatic regional climate model.

COSMO NWP Applications

3

DWD
(Offenbach,
Germany):
NEC SX-8R,
SX-9

MeteoSwiss:
Cray XT4: COSMO-7 and
COSMO-2 use 800+4 MPI-
Tasks on 402 out of 448 dual
core AMD nodes

ARPA-SIM (Bologna, Italy):
IBM pwr5: up to 160 of 512
nodes at CINECA

COSMO-LEPS (at ECMWF):
running on ECMWF pwr6 as
member-state time-critical
application

HNMS (Athens, Greece):
IBM pwr4: 120 of 256 nodes

IMGW (Warsawa, Poland):
SGI Origin 3800:
uses 88 of 100 nodes

ARPA-SIM (Bologna, Italy):
Linux-Intel x86-64 Cluster for
testing (uses 56 of 120 cores)

USAM (Rome, Italy):
HP Linux Cluster
XEON biproc quadcore
System in preparation

Roshydromet (Moscow, Russia),
SGI

NMA (Bucharest, Romania):
Still in planning / procurement phase

CLM Community 2010

4

Sample NWP output

Precipitation 2m Temperature

Goal

  An operation NWP prediction forecast for 24 hours make
take half an hour of CPU time

  By extension, a 100 year climate simulation on a similar grid
would take several months of CPU time.

  Our goal is to examine different hybrid programming
schemes that will provide a substantial CPU time savings
without requiring extensive use of machine resources.

  First step:
•  Examine mixed programming model using MPI and OpenMP.

• The computational grid is a 3D rotated-latitude/longitude
structured grid.

• Communications are through 2- or 3-line halo exchanges.
• Many loops are of the form
 do k = 1, ke

 do j = 1, je

 do i = 1, ie

 …

 end do

 end do

 end do

• Some 2D and 4D arrays, but of the same basic structure.

COSMO characteristics

Main computational region is a time stepping loop over
 • a dynamical core that solves for fluid motion
 • a physical core that computes radiation transfer,
precipitation, etc.

  Examine scaling of 1-km to elucidate ‘hotspots’.
•  1142 longitude points
•  765 latitude points
•  90 vertical points
•  3 halo grid points
•  4 I/O tasks
•  1 hour of simulated time

1km observations

  Computational intensity is low (<1) for most top routines and
the cache hit ratio is > 95%.

  Good scaling out to several thousand cores, though
performance is rather low.

  Implies algorithms are memory-bandwidth limited.

Scaling observations

  Physical and dynamical cores scale well out to > 2000 cores
  Dynamical core takes approximately 3x more time than the

physical core, regardless of core count.
  I/O and MPI communications are not limiting factors
Profiling indicates that during the main time stepping loop

•  I/O and MPI communications are not limiting factors
•  The dynamical core requires 3x more time than the physical core,

regardless of core count

Hybridization path

  Most computational work is encapsulated in multiply-nested
loops in multiple subroutines that are called from a main
driver loop.

  Most outer loops are over the number of levels, inner loops
over latitude/longitude.

  Insert OpenMP PARALLEL DO directives on outermost loop
•  Also attempted use of OpenMP 3.0 COLLAPSE directive.
•  Over 600 directives inserted.
•  Also enabled use of SSE instructions on all routines (previously only

used on some routines).

Hybrid+fast

Hybrid

Observations

  Important to have as much of the code as possible compiled
to use SSE instructions.

  Important not to overuse COLLAPSE directive which may
interfere with compiler optimization

  Code runs approximately as fast as the MPI only version for
most core counts.

  Dynamical and physical cores scale well, though the physical
core shows a much more pronounced loss of scaling beyond
4 threads.

  Reducing the number of I/O tasks improves performance
(why?) and reduces idle cores.

‘Climate grid’

  In order to examine the results more similar to what will be
used for a 100 year climate science run:

  102 latitudes
  102 longitudes
  60 height levels
  1 I/O task
  Run for 24 simulated hours.

Observations

  Relatively weak (<10%) improvement over standard MPI
code.

  Best results at 3 or 6 threads.
  Performance decrease for 4 threads where threads from one

MPI task will span a node.
  Performance decrease going from six to twelve threads

indicates still some performance bottlenecks.

Summary

  Loop level parallelism can achieve some modest
performance gains
•  Can require many threaded loops -> OpenMP overhead
•  Can require a lot more software engineering to maintain

  Introducing new private variables into old loops
  Introducing new physics that needs to be threaded

•  Can be problematic when dealing with threads that include arrays
created using Fortran allocate statement.

  Next task is to examine threading and blocking at a higher
level. This will require more extensive work to the code.
•  Improve data re-use
•  Reduce memory footprint

  Investigate new algorithms

