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ABSTRACT: Density Functional calculations have proven to be a powerful tool to study the ground
state of many materials. For finite temperatures the situation is less ideal and one is often forced to rely
on models with parameters either fitted to zero temperature first principles calculations or experimental
results. This approach is especially unsatisfactory in inhomogeneous systems, nano particles, or other
systems where the model parameters could vary significantly from one site to another. Here we describe
a possible solution to this problem by combining classical Monte Carlo calculations – the Wang-Landau
method[2] in this case – with a firs principles electronic structure calculation, specifically our locally self-
consistent multiple scattering code (LSMS)[3]. The combined code shows superb scaling behavior on
massively parallel computers. The code sustained 1.836 Petaflop/s on 223,232 cores of the Cray XT5 jaguar
system at Oak Ridge.
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1 Introduction

Density Functional based first principles electronic
structure calculations for condensed matter systems
have reached a high level of maturity over the last few
decades and are now a standard tool for the study
of ground state material properties.[1] While these
methods have evolved to provide greater accuracy
and deal with wider classes of materials by devel-
oping new approximations to the exchange correla-
tion functional, the importan field of finite tempera-
ture behavior has received less attention. The phase
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space of interesting systems is far too large to be dealt
with directly. The usual methods of treating the ther-
modynamics of a physical system involve either the
time evolution of an ensamble or the exploration of
the most relevant parts of phase space by means of
a Monte-Carlo method. Both these approaches re-
quire a large number of evaluations of the underlying
Hamiltonian that describes the system (> O(105)),
thus it is usually only feasible to treat severely sim-
plified models that have to be designed to capture the
essential physics, as opposed to a direct treatment of
the Density-Functional Hamiltonian of the system.

To overcome this limitation we have developed
the hybrid Wang-Landau/LSMS (WL-LSMS) code.
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This code combines revcent advances in compu-
tational statistical mechanics, namely the Wang-
Landau method [2], that will allow the most efficient
use of information obtained from individual evalua-
tions of the system’s Hamiltonian, with the LSMS
first principles that has already demonstrated superb
scalability on massively parallel machines.

In the following sections we will first give a brief
overview of the overall structure of the hybrid code,
then we will describe the Wang-Landau and LSMS
methods. Following this we will describe the ideas
that enable the high fraction of theoretical peak per-
formance that can be obtained with the block in-
version kernel of LSMS that accounts for ≈ 95%
of the total execution time of the code. Finally
we will present performance results for the hybrid
WL/LSMS code and conclude.

2 Structure of WL-LSMS

The WL-LSMS code uses a hybrid parallelization
scheme. At the top level, the code parallelizes over
concurrent random walkers, where we use a master-
slave scheme, with a master that accumulates the
density of states of the system, and the slaves that
execute the random walks, each running its own in-
stance of the LSMS method. The second paralleliza-
tion level is the LSMS portion of the code, where
domain decomposition is used with one atom per
processing core. In typical production runs, the WL
method would use a hundred to a few thousand con-
current walkers, and the LSMS portion would be par-
allelized over up to a few thousand processing cores.
The method hence will scale to hundred thousand or
millions of processing cores. The schematics of the
parallelization structure are shown in fig. 1.

3 The Wang-Landau Algo-
rithm

All thermodynamic potentials can be derived from
the partition function

Z(T ) =
∫
e−E(X)/(kBT )dX (1)
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Figure 1: Parallelization strategy of the combined
Wang-Landau/LSMS algorithm. The Wang-Landau
process (Alg. 1) generates random spin configurations
for M walkers and updates a single density of states
g(E). The energies for these N atom systems are
calculated by independent LSMS processes (Fig. 2).
This results in two levels of communication, between
the Wang-Landau driver and the LSMS instances,
and the internal communication inside the individual
LSMS instances spanning N processes each.

where E(X) is the internal energy of the system with
the phase space described by the variable X in some
high dimensional space consisting of all the micro-
scopic degrees of freedom of the system (atomic posi-
tions, velocities, and/or magnetic moments). In im-
portance sampling Monte Carlo simulations one per-
forms a random walk through phase space that is bi-
ased in such a way that the walker spends most of the
time where the integrand in equation 1 is largest, that
is, where the energy E(X) is small. In the Metropolis
algorithm, this is accomplished by accepting a pro-
posed move from point Xi to Xi+1 with the proba-
bility

min[1, exp (−kBT [E(Xi+1)− E(Xi)])]. (2)

This results in a very efficient computation of the
partition function at a particular temperature when
the energy function is not too complex. In many cases
that are common in nano-science and biology, the en-
ergy function can have many local minima that are
separated by large energy barriers. With the conven-

2



tional Metropolis algorithm, the random walk can be
trapped for very long time around local minima, and
sampling representative parts of phase space around
other local minima of the energy function can become
exceedingly difficult.

The partition function in equation 1 can be rewrit-
ten in the form

Z(T ) =
∫
g(E)e−E/(kBT )dE (3)

where the density of states is defined as

g(E) =
∫
δ(E − E(X))dX (4)

and δ(E) is the Dirac δ-function.
Flat histogram methods, such as the Wang-Landau

algorithm, use the density of states, g(E), for impor-
tance sampling. The analog of the Metropolis for-
mula in this case is to accept the new configuration
with probability

min[1, g(Ei)/g(Ei+1)]. (5)

The effect is to create an equal probability of visit-
ing each energy level in the system. In other words,
a histogram of where the random walk is at the end
of each Monte Carlo move would be essentially flat
(save for statistical 1/

√
(N) noise).

The main obstacle of flat-histogram methods is
that g(E) is not known. Instead, an estimate of
the density of states g̃(E) must be constructed self-
consistently as the Monte Carlo estimate is gener-
ated. The Wang-Landau algorithm accomplishes this
as follows. It begins with a prior estimate of the den-
sity of states, g̃0(E), which might be just a constant.
Assuming that a Monte Carlo move to a new con-
figuration with Energy Ei+1 is accepted according to
the criterion of equation 5, the density of states is
updated with

ln[g̃(Ei+1)]← ln[g̃(Ei+1)] + ln f (6)

where f is the modification factor that is initially set
to ln f = 1. For every accepted move, a histogram
H(E) is updated, which records where the random

walk has been. The estimate g̃(E) is considered con-
verged, when

min[H(E)] ≤ A mean[H(E)], (7)

where the flatness parameter 0 < A < 1 controls
the accuracy of the estimated g̃(E), with increas-
ing accuracy as A approaches unity. When this
criterion is met, the modification factor is reduced
such that ln(f) ← ln(f)/2 and the histogram re-
set. For each iteration in f , a new visit histogram
H(E) is calculated, and the process is repeated until
ln f ≤ 1 × 10−6 or smaller, and the estimated g̃(E)
is considered the converged density of states.

Since the systems we set out to study here have
continuous degrees of freedom, g(E) is a function of a
continuous variable as well. Hence, when the random
walk arrives at a particular configuration with energy
Ei, the estimated density of state g̃(E) is updated by
[8]

g̃(E)→ g̃(E)× fk((E−Ei)/δ) (8)

where k(x) ≥ 0 is a continuous function with compact
support. In particular we choose an Epanechnikov
kernel, k(x) = max[0, 1 − x2], and the width δ to be
2% of the difference between the minimal (ferromag-
netic) and maximal (anti-ferromagnetic) energies of
the system.

4 The LSMS Algorithm

For the energy evaluation, we employ the first prin-
ciples framework of density functional theory (DFT)
in in the local spin density approximation (LSDA).
To solve the Kohn-Sham equations arising in this
context, we use a real space implementation of the
multiple scattering formalism. The details of this
method for calculating the Green function and the
total ground state energy E[n(~r), ~m(~r)] are described
elsewhere [3, 4]. For the present discussion it is im-
portant to note that the computationally most in-
tensive part is the calculation of the scattering path
matrix τ for each atom in the system by inverting the
multiple scattering matrix.

τ = [I − tG0]−1
t
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Algorithm 1 Wang-Landau/LSMS algorithm
1: initialize logarithmic density of states ln g(E) ←

0, histogram h(E) ← 0, modification factor γ ←
1, and the set of magnetic moment directions for
the M walkers {ê}1...M

2: repeat
3: submit new random moment directions {ênew}

to idle LSMS instances
4: receive new energy Enew

n from walker n
5: accept new set of directions {ênew}n with prob-

ability min[1, g(Eold
n )/g(Enew

n )]
6: if Move accepted then
7: {êold}n ← {ênew}n
8: end if
9: update density of states ln g(En)← ln g(En) +

γ and histogram h(En)← h(En) + 1
10: if h(E) flat then
11: γ ← γ/2, h(E)← 0
12: end if
13: until g(E) converged, i.e. γ ≈ 0

The only part of τ that will be required in the sub-
sequent calculation of site diagonal observables (i.e.
magnetic moments, charge densities, and total en-
ergy) is a small (typically 32× 32) diagonal block of
this matrix who’s rank is O(4k). This will allow us
to employ the algorithm described in the next section
for maximum utilization of the on node floating point
compute capabilities.

Most importantly for the application in the hy-
brid Wang-Landau LSMS method, our Locally Self-
consistent Multiple Scattering (LSMS) method allows
the possibility of non-collinear magnetism [5].

The orientation êi of the magnetic moment for each
site is determined by

êi =
∫

Ωi

d~r ~mi(~r)/|
∫

Ωi

d~r ~mi(~r)|.

Since an arbitrary arrangement is not a DFT ground
state we will have to deal with a constrained gen-
eral state as presented by Stocks et al [6, 7]. In the
constrained local moment (CLM) model the LSDA

equations are solved subject to a constraint∫
Ωi

~mi(~r)× ~eid~r = 0 (9)

that ensures that the local magnetizations lie along
the directions prescribed by {~ei}. The result is that,
in order to maintain the specific orientational con-
figuration, a local transverse constraining field must
be applied at each site. The constraining field is ob-
tained from the condition

δEcon[{~ei}, { ~Bconi }]
δ~ei

= 0 (10)

applied to all sites and where E the generalized en-
ergy functional in the presence of the constraining
field. Thus this method enables the calculation of
the energies of arbitrary orientational states as gen-
erated by the Wang-Landau algoritm.

The Locally Self-consistent Multiple Scattering
(LSMS) method calculates the electronic properties
from first principles in reals space, but introduces
some approximations that make the treatment of in-
finite systems possible. Furthermore this method re-
sults in a code that scales linearly with the size of the
system.

The LSMS method is based on the observation
that good convergence can be obtained by solving the
Kohn-Sham equation of density functional theory at
a given atomic site by considering not the whole sys-
tem, but only a sufficiently large neighborhood, the
local interaction zone (LIZ), of each site.

5 Blockinversion in LSMS

The most time consuming part of the LSMS calcula-
tion is the inversion of the multiple scattering matrix.
The amount of computational effort can be reduced
by utilizing the fact that for each local interaction
zone only the left upper block (τ00) of the scattering
path matrix τ is required. In this section we de-
scribe an algorithm that reduces the amount of work
needed while providing excellent performance due to
its reliance on dense matrix-matrix multiplications
that are available in highly optimized form in vendor
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Figure 2: Schematic, Left: LIZ centered at processor/atom i; Right: message passing and computation.

or third party provided implementations (i.e ZGEMM
in the BLAS library).

The method employed in LSMS to calculate the
required block of the inverse relies on the well known
expression for writing the invers of a matrix in term
of inverses and products of subblocks:(

A B
C D

)−1

=
(

U V
W Y

)
where

U = (A−BD−1C)−1

V = −(A−BD−1C)−1BD−1

W = −D−1C(A−BD−1C)−1

Y = D−1 +D−1C(A−BD−1C)−1BD−1

This this method can be applied multiple times to the
subblock U until the desired block τ00 of the scatter-
ing path matrix is obtained.

To illustrate this algorithm we present the detailed
steps of a calculation for a matrix that has been sub-
divided into 3× 3 subblocks.

1. starting matrix A B C
D E F
G H J


2. LU factorization of J and calculation of product

of its invers with the bottom row. A B C
D E F
G′ H ′ J ′


where

J ′ = LU factorization of J
G′ = J−1G

H ′ = J−1H

3. multiplication of the rightmost column of the
next row with the botom row. A B C

D′ E′ F
G′ H ′ J ′
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where

D′ = D − FJ−1G

E′ = E − FJ−1H

4. multiply top row of the rightmost column with
the bottom row of the middle column. A B′ C

D′ E′ F
G′ H ′ J ′


where

B′ = B − CJ−1H

5. LU factorization of E′ and calculation of product
of its invers with the rest of the middle row. A B′ C

D′′ E′′ F
G′ H ′ J ′


where

E′′ = LU factorization of E′

D′′ = E′−1D′ = (E − FJ−1H)−1

(D − FJ−1G)

6. Multiply the top row and first column (final col-
lection step)  A′ B′ C

D′′ E′′ F
G′ H ′ J ′


where

A′ = A −B′D′′ − CG′

= A −CJ−1G

−(B − CJ−1H)
(E − FJ−1H)−1(D − FJ−1G)

7. Finally, the inversion of A′ will yield the corre-
sponding upper left block of the invers.

6 Performance

We analysed the performance of the code for systems
consisting of both 250 and 1024 Fe atoms respec-
tively. For these systems we study the scaling prop-
erties of the code as a function of number of walkers
used in the WL simulation. Every individual LSMS
calculation per walker can be distributed onto 250
or 1024 cores. On the Cray XT5 jaguarpf system
at ORNL’s National Center for Computational Sci-
ences (NCCS), we can thus scale these calculations
to up to 895 parallel WL walkers for 250 atoms on
223,752 cores and 218 walkers on 223,232 cores for
1024 Fe atoms. In these performance analysis runs,
each walker executes 20 WL steps, which is far fewer
than a real simulations. Since the setup time of the
calculations remains the same if the runs were longer,
the performance numbers and scaling properties we
report in this section are conservative estimates of the
real numbers one would measure during production
runs. This becomes most evident in the increased
startup time for large numbers of walkers in the 250
atom case.

In figure 3 we show how the time to solution scales
if we increase the number of WL walkers, and thus the
total number of samples taken in the WL-LSMS sim-
ulation. The result shown thus represent a weak scal-
ing plot, and the scaling behavior of the WL-LSMS
method looks close to optimal. We find a similarly
optimal strong scaling behavior, if we fix the number
of samples taken for every run and increase the num-
ber of walkers. With the available size of machines
today, we are still far from saturating the method in
terms of scaling behavior.

The sustained floating point performance of the
runs that correspond to the results presented in fig-
ure 3 are shown in figure 4. In order to estimate the
executed floating point operations of the benchmark
runs, we have instrumented the WL-LSMS code with
PAPI calls. The average number of floating point
operations per second reported in figure 4 is com-
puted from the total number of retired floating point
operations as reported by PAPI FP OPS events di-
vided by the measured execution time of the runs.
The run time has been measured with PAPI calls to
PAPI get real usec as well as calls to the C time rou-
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Figure 3: The weak scaling behavior of the WL-
LSMS code for 250 and 1024 atom systems with a
varying number of Wang-Landau walkers. The times
shown represent the total runtime of the code and
include the startup costs of the calculations. This ac-
counts for the jump in the runtime for the 250 atom
systems as each Wang-Landau walker reads its initial
input file.

tine. For the largest runs with 218 parallel Wang-
Landau walkers of 1024 atoms each and 20 steps
per walker, the measured sustained performances was
1.835 petaflop/s, which on the 223,232 AMD Opteron
cores running at 2.6 GHz corresponds to a fraction of
79.0% of the theoretical peak performance.

7 Summary and Outlook

In the present paper we have demonstrated our ap-
proach for the first principles treatment of finite tem-
perature behavior of magnetic systems. The combi-
nation of the most recent massively parallel super-
computing architectures and advances in both al-
gorithmic developments and most importantly new
computational methods have made this hybrid sta-
tistical mechanics/first principles method feasible.

The code presently is applicable to the evalua-
tion of magnetic transition temperatures of transition
metal alloys and has already reproduced the Curie

Figure 4: The sustained performance of the Wang-
Landau LSMS code on jaguarpf for systems of 250
iron atoms (blue squares) and 1024 atoms (red cir-
cles). The code reaches a performance of 1.755
Petaflop/s on 223,752 cores for 250 atoms and 1.835
Petaflop/s on 223,232 cores for a 1024 atom system.

temperature of bulk Iron [9].
The code is being actively developed, both for ex-

tended functionality as well as being ported to new
computer architectures. In particular the current
code is limited by the rigid mapping of one MPI pro-
cess to one atomic instance. To allow for an efficient
deployment on highly multithreaded architectures a
new version of LSMS is being developed that lifts this
limitation. Also better sampling schemes are investi-
gated that will minimize the number of first princi-
ples Hamiltonian evaluations that will be required to
reach convergence.

Finally the general concept described here is not
limited to magnetic systems or LSMS in particu-
lar and a combination of a Wang-Landau method
with different constrained first principles calculations
could be envisioned.
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