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Motivation

* Density Functional Calculations have proven to be a usetul tool to
study the ground state of many materials.

* For finite temperatures the situation 1s less ideal an one 1s often
forced to rely on model calculation with parameters either fitted to
first principles calculations or experimental results.

* Fitting to models 1s especially unsatistfactory in inhomogeneous
systems, nanoparticles or other systems where the model parameters
could vary significantly from one site to another.

Solution:
Combine First Principles calculations with statistical mechanics methods
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Nearsightedness and the locally self-consistent
multiple scattering (LSMS) method

® Nearsightedness of electronic
OOOOOOQ mermion
PNAS 102, 11635 (20095)
Q Q Q Q Q Q Q - Local electronic properties such
as density depend on effective
Q Q potential only at nearby points.
® Locally self-consistent multiple
scattering method - Wang et
al., PRL 75, 2867 (1999)

- Solve Kohn-Sham equation on a
cluster of a few atomic shells
around atom for which density is
computed

- Solve Poisson equation for
entire system - long range of
bare coulomb interaction
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Locally Self-consistent Multiple Scattering (LSMS) method

» Massively Parallel O[N] approach

» Approximate total electron density by sum of

locally determined site densities

» At each at each site / approximate scattering
path matrix for infinite sytem by that of a
finite localiteraction zone (LIZ) comprising

M-sites

TM(S) |ii=

( t1_11(8) K
M O
K_GMO(S) L

-G"M(e))
M
)

1

SATATLISR A,
OO00L®
O000®®
@000 ®
S0O000®




Locally Self-consistent Multiple Scattering (LSMS) method

» Massively Parallel O[N] approach

» Approximate total electron density by sum of

locally determined site densities

» At each at each site / approximate scattering
path matrix for infinite sytem by that of a
finite localiteraction zone (LIZ) comprising

M-sites

TM(S) |ii=

( t1_11(8) K
M O
K_GMO(S) L

-G"M(e))
M
)

1

SATATLISR A,
OO00L®
WISICIOLL
@000 ®
S0O000®




Locally Self-consistent Multiple Scattering (LSMS) method

» Massively Parallel O[N] approach

» Approximate total electron density by sum of
locally determined site densities

» At each at each site / approximate scattering
path matrix for infinite sytem by that of a
finite localiteraction zone (LIZ) comprising
M-sites

1

[ i) K -GM(e))
@)= M 0 M
K_GMO(S) L t]_MlM(S)/

000000
SATATASTR A
OO0 ®
ol 1 1 Kl
0001 ®
S0O000®




Locally Self-consistent Multiple Scattering (LSMS) method

» Massively Parallel O[N] approach

» Approximate total electron density by sum of
locally determined site densities

» At each at each site / approximate scattering
path matrix for infinite sytem by that of a
finite localiteraction zone (LIZ) comprising
M-sites

1

[ i) K -GM(e))
@)= M 0 M
K_GMO(S) L t]_MlM(S)/

000000
OO TO
ol 1 1 Kol
WISl 19K
@000 ®
S0O000®




Locally Self-consistent Multiple Scattering (LSMS) method

» Massively Parallel O[N] approach

» Approximate total electron density by sum of
locally determined site densities

» At each at each site / approximate scattering
path matrix for infinite sytem by that of a
finite localiteraction zone (LIZ) comprising
M-sites

1

[ i) K -GM(e))
@)= M 0 M
K_GMO(S) L t]_MlM(S)/

IO I
O000®®
S0000®
S0000®

NN




Locally Self-consistent Multiple Scattering (LSMS) method

» Massively Parallel O[N] approach

» Approximate total electron density by sum of
locally determined site densities

» At each at each site / approximate scattering
path matrix for infinite sytem by that of a
finite localiteraction zone (LIZ) comprising
M-sites

00000600
N

V@O OO
DO OO0
DOOOO
DOOO®

1

[ i) K -GM(e))
@)= M 0 M
K_GMO(S) L t]_MlM(S)/

ARYARYERYER




Locally Self-consistent Multiple Scattering (LSMS) method

» Massively Parallel O[N] approach

» Approximate total electron density by sum of

locally determined site densities

» At each at each site / approximate scattering
path matrix for infinite sytem by that of a
finite localiteraction zone (LIZ) comprising

M-sites

TM(S) |ii=

( t1_11(8) K
M O
K_GMO(S) L

-G"M(e))
M
)

1

EhY YAl

DO@OO
DO OO0
DOOOO
DOOO®




Locally Self-consistent Multiple Scattering (LSMS) method

» Massively Parallel O[N] approach

» Approximate total electron density by sum of

locally determined site densities

» At each at each site / approximate scattering
path matrix for infinite sytem by that of a
finite localiteraction zone (LIZ) comprising

M-sites

TM(S) |ii=

( t1_11(8) K
M O
K_GMO(S) L

-G"M(e))
M
)

1

SATATLISR A,
OO00L®
O000®®




Locally Self-consistent Multiple Scattering (LSMS) method

» Massively Parallel O[N] approach

» Approximate total electron density by sum of
locally determined site densities

» At each at each site / approximate scattering
path matrix for infinite sytem by that of a
finite localiteraction zone (LIZ) comprising
M-sites

1

[ i) K -GM(e))
@)= M 0 M
K_GMO(S) L t]_MlM(S)/

000000
SATATLISR A,
OO00L®
QO00L®
Q@OO0D®
0 1@
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Locally Self-consistent Multiple Scattering (LSMS) method

Atom i

Input:
Compute:

Receive:

Send:
Result:




A parallel implementation and scaling of the LSMS method:
perfectly scalable at high performance
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*Need only block i of 7

(H5) = (42
*Calculation dominated
by ZGEMM

*Sustained performance
similar to Linpack




Block Inverse

The LSMS method requires only the first diagonal block of the inverse matrix

Recursively apply

(A5 - (AmbRrart )

The block size is a performance tuning parameter:

* Smaller block size: less work
o | arger block size: higher performance of matrix-matrix multiply

Performance of LSMS dominated by double complex matrix matrix multiplication

ZGEMM



Thermodynamic Observables

o Thermodynamic observables are related to the
partition function Z and free energy F

Z(ﬁ) _ Z e BHAE:})
{&i}
F(T) = —kpTIn Z(1/kpT)

e If we can calculate Z(B) thermodynamic
observables can be calculated as logarithmic
derivatives.



Wang-Landau Method

Conventional Monte Carlo methods calculate
expectation values by sampling with a weight given by
the Bolzmann distribution

In the Wang-Landau Method we rewrite the partition
function in terms of the density of states which is
calculated by this algorithm

Z(8) = Ze—ﬁH({&:}) = o /g(E)e_ﬁEdE
{&:}

To derive an algorithm to estimate g(E) we note that
states are randomly generated with a probabillity
proportional to 1/g(E) each energy interval is visited with
the same frequency (flat histogram)



Metropolis Method Wand-Landau Method

Metropolis et al, JCP 21, 1087 (1953) Wang and Landau, PRL 86, 2050 (2001)

[ = /e_E[X]/kBTdX — /W(E)e_E/kBTdE
Compute partition function ana If configurations are accepted with
other averages with probability 1/ all energies are visited

configurations that are weighted equally (flat histogram)
with a Boltzmann factor
Sample configuration where Boltz- 1. Begin with prior estimate, eg W'(E) = 1

mann factor is large. , .
2. Propose move, accepted with probability

1. Select configuration . , ,
Air= 1, W'(E;)/ W' (E
. p = min{1, W/(E;)/W'(Ey)}
2. Modify configuration (move) 3. If move accepted increase DOS
Ef = E[Xf] W/(Ef) — W/(Ef) x f  f>1

3. Accept move with probability 4. lterate 2 & 3 until histogram is flat
A;_ ;= min{1,e’Fi=F)Y 5 Reduce f — f = +/f andgo back to 1



Wand-Landau Method

7 = /eE[X]/kBTdX 7 = /W(E)G_E/kBTdE
Sample configuration space with probability
e~ Elx|/kBT 1/ W (FE|x])
—_ Eb _______
Samples all
/ energies equally -
E, \

S
N/ __ 90 180 Y

L

Check validity of Wang-Landau method by estimating barrier
hight from Metropolis MC and fitting to KV sin” ©
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Quantitative test for bulk model of FePt

A 1(T)/N (K)

e—e Extended WL algorithm
O Metropolis Monte Carlo
10 — —
S _
0 ] | ] | ] | ] | ] | ] | ]
0 100 200 300 400 500 600

T(K)

700
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Not quite embarrassingly parallel

Metropolis MC acceptance: A F = min{ 1, P Li—FEy) }

random walker 1/\ANW

andom walker ZN/\—/V\/
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Not quite embarrassingly parallel

Metropolis MC acceptance: A F = min{ 1, P Li—FEy) }

Wang-Landau acceptance:

Az—>f — miﬂ{l, ea(wa(xf)_wa(xi)}

random walker 1/\ANW

I I I I . .« global update of joint DOS at every MC step

andom walker ZN/\—/\/\/
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Not quite embarrassingly parallel

Metropolis MC acceptance: A F = min{ 1, P Li—FEy) }

Wang-Landau acceptance:

Az—>f — min{l, 6a(wa(a:f)—wa(a:‘i)}

random walker 1WW

I I I I ... global update of joint DOS at every MC step

random walker 2W/\/

/ limited by latency ~ microseconds

local calculation of energy and observable ~ millisecond to minutes
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Test problem: ab initio simulation of magnetism in Fe

® Robust local magnetic moment
- Well reproduced by LDA calculation

® Ferromagnetic transition temperature 7.=1050K
- LDA + mean field on magnetic fluctuations overestimates 7.
- Adding Onsager cavity field corrections improves results

- What would a full ab initio Monte Carlo simulation give for T¢?
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Test problem: ab initio simulation of magnetism in Fe

® Robust local magnetic moment
- Well reproduced by LDA calculation

e Ferromagnetic transition temperature T.=1050K
- LDA + mean field on magnetic fluctuations overestimates 7.
- Adding Onsager cavity field corrections improves results
- What would a full ab initio Monte Carlo simulation give for T¢?

Excellent test for WL-LSMS method:
@ ® @ @ @ * Bulk Fe with V atoms (hundreds) in unit
cel
@ @ @ @ @ * Sample non-collinear magnetic moment
configurations ~ {my, Mo, ..., My}
@ @ @ @ @ * Compute energy with LSMS method using
(LSDA) and frozen potential approx.
@ @ @ @ @ o Accumulate density of states with
extended Wang Landau algorithm
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Organization of the WL-LSMS code using a
master-slave approach

P8
N\

E "

Master/driver node controlling WL
acceptance, DOS, and histogram

Communicate moment
directions and energy

LSMS running
on N
processors to
compute
energy of
particular
spin-
configurations
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Scaling test with WL-LSMS code

400
e Time to solution
p— —— |deal
N =128 Fe atoms and 800 s ©
Monte Carlo samples running §
5 200-
on Cray XT4 (Jaguar) 3
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What it takes to compute a converged DOS on a
Cray XTS5

1000 = 16 atoms 60000;_ 250 atomS.
(2x2x2 unit cells) | **F (5x9x5 uniticells)
69.05 691 69.15 E6E3R2y] 69.25 69.3 69.35 ?079I — ‘IIO79.5I 1080 ‘IIEO[SFC;ySI:I — I1081I I 11081.5I — I1082
| 6 atoms 250 atoms
WL walkers 200 400
total cores 3,208 100,008
WL samples 23,200 590,000
CPU-core hours 12,300 4,885,720




Calculation of thermodynamic quantities

*  Note: g(E) as calculated by the algorithm described has
an unknown normalization factor

Z =902’ Z'(5) = [ g(E)ePaE
*  Free Energy:

F=—-kgThhZ=kgTlnZ — kgTln g

* Internal Energy

Oln Z 1
= kpT? = — [ Eg(E)e PPdE

U=keT" =50 = 7 | Ba(B)e
»  Specific Heat

U
*  Entropy or

OF 1 _3E
S — =T = Z/T/Eg(E)e PEAE + kpIn Z' + kg 1n gq
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SpeC|f|c Heat (16 sites)

With the DOS we have the partition function and
everything else!

Z'(T) = go /Q(E)B_E/(kBT)dE = goZ |
unknown normalization factor £ |
OF g
F — —kBTln Z S = _@_T §1075_8:_
U=F+TS=F +T5 [
8U :8(1)0 I I I I 9(l)O I I I I 10100 I I I I 11100 I I I I 12100
SpeCIfIC heat C - (9T Temperature [K]
0.01 0.8 . . . L TC
| 250 atoms | WL simulations for cubic V)
oson [ ——— o oxox cell) | Heisenberg model 2 1105
| T=980K 1% J 3 1.340
| Experiment: T = 1050K : BU{S)) = Z JS;S; 1 1 370
o4 % 1#£] .
! g 5 1.420
0.0 - 16 atoms g
| (2x2x2 cell) | 5 J 1465
oone | Te=670K 1 7 1.460
[ j i 8 1.490
%0 20 a0 T;m;e?c;(:urle [};] 0 1000 1200 O 144




Cray XTS5 portion of Jaguar @ NCCS

=

Peak: 2.331 PF/s
Hex-Core AMD
~req.. 2.6 GHz
224 162 cores
Memory: 300 TB

For more details,goto @

www.nces.gov.

VR
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Weak scaling on Cray XT5 (Jaguar)

6000
m 1024 atom cell
5500 - e 250 atom cell
m)
g 5000 - o @
B3 | _L BN - o o L
K2
O i
= 4500
|_
4000

0 50000 100000 150000 200000 250000

Number of cores
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Sustained performance of WL-LSMS

on Cray XTS5

2500
R 1.8306 Petaflop/s
£ 2000- = 1024 atoms on 223,232 cores
2 e 250 atoms
l\:;1500- 1.755 Petaflop/s
= & on 223,752 cores
(O O
£ 1000- | |
5
_g- 500 - | 829 Teraflop/s
D . = on 100,008 cores
= O
= 0#E . . , '
= 0 50000 100000 150000 200000 250000

Number

of cores




Conclusions

e |tis now possible to compute free energies in nanoscale
systems

— using ab initio methods based on Density Functional Theory

- fully taking into account entropy

e First ab initio calculation of ferromagnetic transition
temperature in Fe that does not rely on mean-field
approximation

- LDA answer based on WL-LSMS underestimate Tc by (only) 7%

e WL-LSMS code sustained 1.836 Petaflop/s (double
precision) on 223,232 cores of the Cray XT5 system Jaguar
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