
2DECOMP&FFT - A Highly Scalable 2D Decomposition
Library and FFT Interface

Ning Li, the Numerical Algorithms Group (NAG) and
Sylvain Laizet, Imperial College London

ABSTRACT: As part of a HECToR distributed CSE support project, a general-purpose
2D decomposition (also known as 'pencil' or 'drawer' decomposition) communication
library has been developed. This Fortran library provides a powerful and flexible
framework to build applications based on 3D Cartesian data structures and spatially
implicit numerical schemes (such as the compact finite difference method or spectral
method). The library also supports shared-memory architecture which becomes
increasingly popular. A user-friendly FFT interface has been built on top of the
communication library to perform distributed three-dimensional FFTs. Both the
decomposition library and the FFT interface scale well to tens of thousands of cores on
Cray XT systems. The library has been applied to Incompact3D, a CFD application
performing large-scale Direct Numerical Simulations of turbulence, enabling exciting
scientific studies to be conducted.

KEYWORDS: 2D decomposition, distributed FFT, Poisson solver, shared-memory

1. Introduction

The Computational Science and Engineering (CSE)
support for Cray XT system HECToR, the UK's national
supercomputing facility, is provided by a team of HPC
experts at NAG. A critical part of the service is the
distributed CSE (dCSE) programme, which delivers
dedicated software engineering support to research
groups to improve their scientific software packages.

The work presented in this paper is part of a dCSE
project to modernise Incompact3D, a Computational Fluid
Dynamics (CFD) application for Direct and Large-eddy
simulation of turbulence. This work is in collaboration
with the Turbulence, Mixing and Flow Control group at
Imperial College London. The main objective is to update
Incompact3D's communication framework, in particular,
to implement a new domain decomposition strategy to
improve its scalability on modern supercomputers. After
some preliminary work, it became apparent that the
outcome of this project can benefit many other
applications (such as many of the CFD applications that
used by members of the UK Turbulence Consortium) and
a decision was made to pack the reusable software
components into a library.

2DECOMP&FFT is a Fortran library to conduct two
major tasks. First of all it implements a 2D domain
decomposition algorithm (also known as ‘pencil’ or
‘drawer’ decomposition, among other names) for
applications using 3D Cartesian data structures. On top of
that it also provides a simple and efficient FFT interface
to perform three-dimensional FFTs in parallel. The library
is optimised for large-scale computations on
supercomputers and scales well to tens of thousands of
processors on both Cray and non-Cray systems. It relies
on MPI but provides a user-friendly programming
interface that hides communication details from
application developers.

2. 2D Domain Decomposition

For a large category of applications solving
differential equations on three-dimensional Cartesian
meshes, their numerical algorithms are inherently
implicit. For example, a compact finite difference scheme
often results in solving a tridiagonal linear system when
evaluating spatial derivatives or interpolations; a spectral
code often involves performing Fast Fourier Transforms
along global mesh lines.

Cray User Group 2010 Proceedings 1 of 13

There are two approaches to performing such
computations on distributed-memory systems. One can
either develop distributed algorithms (such as parallel
tridiagonal solver or parallel FFT working on distributed
data), or one can dynamically redistribute (transpose) data
among processors in order to apply serial algorithms in
local memory. The second approach is often preferred
due to its simplicity: any existing serial algorithms
(hopefully efficiently implemented already for a single
CPU) remain unchanged; porting serial code can be quite
straight-forward as much of the original code logic still
holds, and the only major addition is the data
transposition procedures.

In the past, many applications implemented the above
idea using 1D domain decomposition (also known as
‘slab’ decomposition). In Fig. 1, a 3D domain is
arbitrarily chosen to be decomposed in Y and X
directions. It can be seen that in state (a), any
computations in the X-Z planes can be done in local
memories while data along a Y mesh-line is distributed.
When it is necessary to calculate along Y mesh-lines (say
to evaluate Y-derivatives, or to perform 1D FFTs along
Y), one can redistribute the data to state (b), in which any
computation in Y becomes ‘local’. Swapping between
state (a) and (b) can be achieved using standard
MPI_ALLTOALL(V) library.

A 1D decomposition, while quite simple, has some
limitations, especially for large-scale simulations. Given a
cubic mesh of size N3, one obvious constraint is that the
maximum number of processors Nproc that can be used in a
1D decomposition is N as each slab has to contain at least
one plane. For a cubic mesh with 1 billion points, the
constraint is Nproc<1000. This is a serious limitation as
most supercomputers today have tens of thousands of
cores and some have more than 100,000.1 Large

1 The November 2009 TOP500 list shows that all top 30
systems have more than 10,000 cores; 88 of the top 100

applications are also likely to hit the memory limit when
each processor handles too much workload.

As a result, a 2D decomposition strategy, a natural
extension to the 1D idea, becomes practically relevant
now with many applications lagging behind. Fig. 2 shows
that the same 3D domain as in Fig. 1 can be partitioned in
two dimensions. From now on, states (a), (b) and (c) will
be referred to as X-pencil, Y-pencil and Z-pencil
arrangements, respectively. While a 1D decomposition
algorithm swaps between two states, in a 2D
decomposition one needs to traverse three different states
using four global transpositions ((a)→(b)→(c)→(b)→(a))
to complete a cycle.

Again MPI_ALLTOALL(V) can be used to realise
the transpositions. However it is significantly more
complex than the 1D case. There are two separate
communicator groups. For a Prow × Pcol 2D processor grid:
Prow groups of Pcol processors need to exchange data
among themselves for (a)↔(b); Pcol groups of Prow

processors need to exchange data among themselves for
(b)↔(c). It is also worth mentioning that the
implementation of the communication routines are very
sensitive to the orientations of pencils and their associated
memory patterns. The packing and unpacking of memory
buffers for the MPI library needs to be handled with great

systems have more than 5,000 cores; the largest IBM
BlueGene has 294,912 cores.

Cray User Group 2010 Proceedings 2 of 13

Figure 1: 1D domain decomposition using 4 processors:
(a) decomposed in Y; (b) decomposed in X.

Figure 2: 2D domain decomposition using a 4 by 3
processor grid.

care. These software engineering topics are almost
certainly irrelevant to the scientific researches conducted
by the applications. This is one of the motivations to
create the 2DECOMP&FFT library - to handle these
technical issues properly and to hide all communication
details from the application developers who can
concentrate on their scientific studies.

3. Software Installation

The software is under active development. The source
code and documentations are available from the author
upon request. There is no special installation procedure as
this software is meant to be built from source together
with the application code. Simply decompress the package
in any location and it is ready to be compiled.

A Fortran 95 compatible compiler is the minimum
requirement. In addition, the code also relies on
allocatable enhancement features (defined in ISO TR
15581) and Cray pointers (for the shared-memory
implementation), which are almost universally supported
by modern Fortran compilers.

The library is designed to be very user-friendly. Most
features are packed in a black box. Users are able to turn
on/off software options from the main Makefile provided.
For example, there are options to:

• switch between single and double precision
simulations.

• opt to use MPI_ALLTOALL calls instead of
MPI_ALLTOALLV for data transpositions while
data is evenly distributed. All communication
code in this library is written to support general
uneven data distribution so MPI_ALLTOALLV
is the default mode.

• turn on the shared-memory implementation of
the communication code (see Section 5 for
details).

These features are supported through preprocessing
directives built in the Fortran code. Also supplied are
platform dependent Makefiles to support different
hardware and compiler combinations, which assist end
users to port the library.

For applications using the distributed FFT interface
(as will be discussed in Section 6), an FFT engine may be
selected in the main Makefile. The multi-dimensional FFT
routines delegate 1D transforms to a 3rd-party library. The
default FFT engine is called 'generic', which does not rely
on any external 3rd-party libraries. Also released are

implementations using FFTW3, ACML, FFTPACK5,
Intel MKL and IBM ESSL.

A few test applications are bundled with the package
which not only validate the code, but also demonstrate the
proper use of the library.

4. Using the Decomposition Library

2DECOMP&FFT library functions are provided in
several Fortran modules. A base module contains 2D
decomposition information and data transposition
routines. An FFT module is built on top to provide three
dimensional distributed FFT functions. There are also
other utility functions such as a MPI-IO module for proper
parallel IO. The decomposition library will be discussed
in this section while the FFT interface will be covered
later in Section 6. As only the key routines are discussed
here, readers are referred to the user guild distributed with
the software for full coverage of the APIs.

4.1 Basic programming interface

 First of all a Fortran module needs to be used:

use decomp_2d

A set of global variables
2
 are defined in the decomposition

library for applications to define their data structures.
These include a KIND variable to properly define data
types in applications (single vs. double precision); a few
MPI types should the applications need to call MPI library
routines directly; a few MPI variables such as the current
MPI rank and the size of the MPI communicator; and
most importantly, variables to describe the sub-domain
held by the current processor – its starting index, ending
index and size for all three pencil orientations. The
preferred approach is for applications to define their data
structures using allocatable arrays based on these
decomposition information. The starting/ending indices,
based on the global coordinate of the whole computation
domain, may be very useful in many situations (for
example to extract a 2D plane from the 3D domain).

All the global variables are initialised by an
initialisation routine that needs to be called at the
beginning of the application:

2 Defining public global variables in a Fortran module is not
always a good practice. However such design is intentional
in this library to simplify the building of applications.

Cray User Group 2010 Proceedings 3 of 13

call decomp_2d_init(nx,ny,nz, &
 P_row,P_col)

The global size of the 3D domain and a 2D processor grid
need to be supplied. The global variables then should be
treated as read-only throughout the lifetime of the
application. The library also contains a set of
communication routines that actually perform the data
transpositions. As mentioned in Section 2, one needs to
perform four global transpositions to go through all three
pencil orientations. Correspondingly, the library provides
four communication subroutines in the form of:

 call transpose_x_to_y(in, out)
 call transpose_y_to_z(in, out)
 call transpose_z_to_y(in, out)
 call transpose_y_to_x(in, out)

where input array in and output out should have been
defined for the correct pencil orientations in the calling
program. Note that the library is written using Fortran's
generic interface so different data types are supported
without user intervention. For many applications both
arrays simply contains real numbers. But in and out can be
complex arrays for FFT-type of applications.

Although it is not necessary for application developers to
understand the internal logic of these transposition
routines, it is important to know that they can be
expensive, especially when running on large number of
processors. So applications should minimize the number
of calls to them, even sometimes at the cost of duplicating
computations.

The library is completed by a finalisation routine to
properly clean up the memory:

call decomp_2d_finalize

4.2 Advanced programming interface

While the basic decomposition API is very user-
friendly, there may be situations in which applications
need to handle more complex data structures. For
example, to implement a 3D real-to-complex FFT,
applications need to store both the real input (of global
size nx*ny*nz) and the complex output (of smaller global
size - such as (nx/2+1)*ny*nz - where roughly half the
output needs not to be stored due to conjugate symmetry).
Different global sizes need to be distributed as 2D pencils
and their distribution parameters are very different.
Similar situations arise from many CFD applications in

which main physical quantities are stored on a staggered
mesh, resulting in slightly different global sizes.

In order to handle the above situations, an advanced
programming interface is provided. Applications may
define a decomposition object (an instance of a Fortran
derived data type), initialise it using any global size, and
then access to the decomposition information of that
particular global size afterwards. Such decomposition
information can then be used to define data structures for
the distributed data. When global transpositions are
required, this decomposition object may be passed into the
transposition routines in the basic interface as the third
optional parameter so that data of this particular global
size (rather than the default size nx*ny*nz) is transposed.
This is implemented using Fortran generic interface so
that users of the basic interface only can safely ignore the
complexity here.

5. Shared-memory Implementation

Many modern supercomputers use multi-core
processors and cores on same node often have shared local
memory. For example, this library's main development
platform HECToR is a Cray XT4 system using quad-core
processors, sharing 8GB of memory.

For the ALLTOALL type of communication in which
each MPI rank has to send/receive messages to/from all
other MPI ranks, one can imagine that traffic from cores
on the same physical node compete for their network
interface. One possible solution is to create shared
send/recv buffers on each SMP node. Then only leaders of
the nodes participate MPI_ALLTOALL(V), resulting in
fewer but larger messages passing within the system,
hopefully improving the performance of communication.

The actual shared-memory program was based on
code supplied by David Tanqueray of Cray Inc. who
initially applied this idea to several molecular dynamics
applications. The shared-memory code uses the Unix
System V shared memory API which is widely available.
Similar to the standard library, the shared-memory library
has been implemented as a black box. So users can simply
set a pre-processor flag when compiling the library to
switch on the function.

Note that this shared-memory implementation is not
automatically portable while moving to a new system.
There is a piece of low-level code which accesses system-
dependent information to gather vital information for the

Cray User Group 2010 Proceedings 4 of 13

shared-memory code (such as which MPI rank belongs to
which node and who else shares the node). On Cray XT
systems, this is done by checking the /proc file system of
the computing nodes. This function needs to be rewritten
for different hardware. However, one can reasonably
expect that such function can be provided by hardware
suppliers or system administrators familiar with the new
hardware. A system-independent version of the shared-
memory code will be implemented in the future.

Finally, the performance of the shared-memory code
is shown in Fig. 3. The data was collected on HECToR
phase 2a hardware from a series of simulations using 256
MPI ranks over a range of problem sizes. When the
problem size is small (so is the message size), the
transposition routines were called more times so that the
total amount of data moving within the system remains a
constant. Fig. 3 shows that when the problem size is
small, the overhead of setting up communications is very
high and the shared-memory code can improve
communication efficiency by up to 30%. As the problem
size increases, the benefit of using shared-memory code
becomes smaller. In fact for large message size (> 32Kb
in this example), the shared-memory code is actually
slower due to the extra memory copying operations
required to assemble the shared buffer

3
. However, do

remember this test was performed on a quad-core system.
HECToR is scheduled to be upgraded to 24-core system
in 2010 and the general trend across major
supercomputing sites is to have more cores per node. Do
expect the shared-memory code to play a more significant
role in the very near future.

3 Sometimes packing and unpacking of buffers are not
required for ordinary MPI_ALLTOALL(V) operation due to
the memory pattern of 3D arrays.

6. Fast Fourier Transform

Having developed the decomposition library, one can
apply it to many applications using 3D Cartesian data
structures, in particular those whose algorithms can be
split into a sequence of one dimensional operations. It is
well known that a multiple-dimensional FFT is
mathematically equivalent to a series of 1D FFTs. As a
demonstration, a distributed FFT library is implemented
using this framework.

6.1 Review of parallel FFT libraries

Being an extremely useful research tool, FFT
software packages are available everywhere. Almost all
hardware vendors produce their own FFT products tuned
for particular hardware. There are also many open-source
codes implementing various algorithms. Unfortunately,
when working on large-scale distributed systems, the
options are very limited and many famous scientific
packages have to implement their customised FFT
libraries. In this section, only those libraries closely
related to this project, especially those available on Cray
XT systems are reviewed.

FFTW[2] is one of the most popular FFT packages
available and is officially supported by Cray. It is open-
source, supporting arbitrary input size, portable and
delivers good performance due to its self-tuning design
(planning before execution). There are two major versions
of FFTW. Version 2.x actually has a reliable MPI
interface to transform distributed data. However, it
internally uses a 1D (slab) decomposition which, as
discussed earlier, limits the scalability of large
applications. Its serial performance is also inferior to that
of version 3.x, which has a redesign that better supports
the SIMD instructions on modern CPUs. Unfortunately,
the MPI interface of version 3.x is in unstable alpha stage
and has been so for many years. So there is no reliable
way to compute multi-dimensional FFTs in parallel.

Cray has its own CRAFFT (CRay Adaptive FFT), for
example, as part of xt-libsci library on XT systems. It
provides a simplified interface to delegate computations to
other FFT kernels (including FFTW). Being 'adaptive'
means that it can dynamically select the fastest FFT
kernels available on a system. However, it only supports
very limited distributed routines (only 2D/3D complex-to-
complex transforms are supported as of version xt-

Cray User Group 2010 Proceedings 5 of 13

Figure 3: Shared-memory code performance

libsci/10.4.0) and those routines are based on an evenly-
distributed 1D decomposition.

As XT systems are based on AMD CPUs, obviously
one can use the FFT routines provided by AMD Core
Math Library (ACML) which is specially tuned for the
AMD processors. AMD does provide a multi-threading
version of the library but there is no distributed support.

There are several open-source packages available
which implement 2D-decomposition based distributed
FFTs. For example, Plimpton's parallel FFT package[6]
provides a set of C routines to perform 2d and 3d
complex-to-complex FFTs together with very flexible data
remapping routines for data transpositions. The
communications are implemented using MPI_SEND and
MPI_IRECV.

Takahashi's FFTE package[1] in Fortran contains
both serial and distributed version of complex-to-complex
FFT routines. It supports transform lengths with small
prime factors only and uses MPI_ALLTOALL to
transpose evenly distributed data. There is no user callable
communication routines.

Finally there is the well-known open-source package
P3DFFT[7], which has been widely adopted by scientists
doing large-scale simulations in many research areas such
as cutting-edge turbulence studies. The P3DFFT project
was initiated at San Diego Supercomputer Center by
Dmitry Pekurovsky. It is quite efficient, as can be seen in
Fig. 4 showing the parallel scaling of its sample
application on HECToR's phase 1 dual-core hardware.

However, initial attempts to adapt this library to use
in the present project proved to be impractical. P3DFFT is
targeting purely spectral applications

4
, with its public API

performing only real-to-complex and complex-to-real
FFTs and its communication routines handling complex
data type. There are FFT-specific features (such as the
padding of real input for in-place transforms) built in its
logic and data structure which are not relevant to general
applications. The CFD application being refactored in this
project, based on a compact finite difference schemes,
require a more general domain decomposition library to
handle its global data transpositions. This motivated the
authors to develop the 2DECOMP&FFT library from
scratch and provide a two-layer design – with a general-
purpose 2D decomposition library as the foundation and a
distributed FFT library built on the top. Taking advantage
of the advanced programming interface discussed in
section 4.2, the FFT library is also a general-purpose one,
supporting both complex-to-complex and real-to-
complex/complex-to-real transforms.

6.2 FFT API

Like the decomposition library, the FFT API is also
designed to have user-friendliness as one of the top
priorities. First of all, one additional Fortran module has
to be referred to in order to use the FFT interface:

use decomp_2d_fft

Then one needs to initialise the FFT interface by:

call decomp_2d_fft_init

The initialisation routine handles planing for the
underlying FFT engine (if supported) and defines globally
work spaces for the FFTs. By default, it is assumed that
physical-space data is stored in X-pencil. The spectral-
space data is then stored in transposed Z-pencil format
after the forward FFT. To give applications more
flexibility, the library also supports the opposite direction,
if an optional parameter is passed to the initialisation
routine. Physical-space data in Y-pencil is not an option as
it would require additional expensive transpositions which
does not make economical sense.

The main functionality this FFT package provides is to
perform 3D FFTs where the distributed input data is
stored in ordinary ijk-ordered 3D arrays across processors.
For complex-to-complex (c2c) FFTs, the user interface is:

4 Fourier-based spectral applications only require a distributed
FFT library and no other explicit data transposition.

Cray User Group 2010 Proceedings 6 of 13

Figure 4: P3DFFT scaling on HECToR.

call decomp_2d_fft_3d(in, out, &
 direction)

where direction can be either forward or backward. The
input array in and output array out are both distributed 3D
complex arrays and have to be either in a X-pencil/Z-
pencil combination or vice versa, depending on the
direction of FFT and how the FFT interface is initialised.

While the c2c interface is already in the simplest possible
form, for many applications involving real quantities, the
3D FFT interface can be used in a more compact form:

call decomp_2d_fft_3d(in, out)

Here if in is a real array and out a complex array, then a
forward FFT is implied. Similarly a backward FFT is
computed if in is a complex array and out a real array.

When real input is involved, the corresponding complex
output satisfies so-called `Hermitian redundancy' - i.e.
some output values are complex conjugates of others.
Taking advantage of this, FFT algorithms can normally
compute r2c and c2r transforms twice as fast as c2c
transforms while only using about half of the memory.
Unfortunately, the price to pay is that application's data
structures have to become slightly more complex. For a
3D real input data set of size nx×ny×nz, the complex
output can be held in an array of size (nx/2+1)×ny×nz,
with the first dimension being cut roughly in half (for Z-
pencil input, the complex output is of size
nx×ny×(nz/2+1) instead). 2DECOMP&FFT library uses
the advanced programming interface discussed in section
4.2 to distribute both global arrays and hides as many
details as possible from end users. One utility subroutine
is provided to help applications properly allocate memory
space to store the complex data when using the r2c/c2r
interface. Please note that the complex output arrays
obtained from X-pencil and Z-pencil input do not contain
identical information. However, if `Hermitian redundancy'
is taken into account, no physical information is lost and
the real input can be fully recovered through the
corresponding inverse FFT from either complex array.

Finally, to release the memory used by the FFT interface:

call decomp_2d_fft_finalize

It is possible to re-initialise the FFT interface in the same
application at the later stage after it has been finalised, if
this becomes necessary.

6.3 FFT engines

The distributed FFT interface only performs data
management and communications. The actual
computations – a lot of 1D FFTs – are delegated to a 3rd-
party FFT library and are always performed using data in
local memory.

Users have the freedom to choose from 6 different
FFT engines supported by 2DECOMP&FFT: a generic
algorithm, FFTW (version 3.x), ACML, FFTPACK
(version 5), Intel MKL and IBM ESSL. The advantages
and disadvantaged of these FFT libraries are summarised
in Table 1.

Library Open-
source

Hardware
tuned

Complete &
general API5

Easy parallel
coding6

generic Y N N Y

FFTW3 Y Y Y N

ACML N Y N Y

fftpack Y N N Y

MKL N Y Y N

ESSL N Y N N

Table 1: Comparison of FFT libraries

The generic implementation is extended from an
algorithm proposed by Glassman[3][9]. 'fftpack' is
included because it is widely used by legacy applications
and is quite relevant to the PDE solver discussed in
Section 7. FFTW (version 3.x) is the most popular open-
source packages. Others are all highly optimised vendor
libraries with ACML specially tuned for AMD CPUs,
MKL for Intel CPUs, and ESSL widely used on IBM
Power-x based systems and BlueGenes.

All vendor libraries provide highly efficient APIs to
computed multiple 1D FFTs in one call, a feature very
useful in the parallel implementation. These all involve

5 ACML has much limited r2c and c2r support with its storage
format inconvenient to use in the parallel library. ESSL
assumes stride-1 storage in its r2c/c2r interface.

6 FFTW's planning, although very powerful, is not easy to use
in the parallel implementation because it requires proper
memory alignment which can not be guaranteed in Fortran.
So one either plans every transform before execution (time
consuming) or plans on globally defined data arrays
(memory consuming). MKL has improperly designed API
which does not directly accept multi-dimensional arrays as
input/output.

Cray User Group 2010 Proceedings 7 of 13

specification of a stride parameter and a distance
parameter to describe the memory pattern of the data
structures. When functions are missing from the FFT
engines (such as ESSL's lack of support to arbitrary
transform length), they are implemented with the parallel
code so that 2DECOMP&FFT can be universally applied.

7. Distributed Poisson Solver

The 2D decomposition library and the FFT interface
are not only themselves useful in applications, but also
serve as building blocks to develop higher-level libraries.
This section discusses a general-purpose elliptic PDE
solver, which applies a Fourier-based spectral method to
solve Poisson's equations. This is particularly relevant to
the current CFD application solving the incompressible
Navier-Stokes system in which mass conservation is
enforced by solving a pressure Poisson equation.

There are various numerical algorithms solving
Poisson's equations, broadly classified into two categories:
iterative solvers and direct solvers. The Multigrid
approach is often considered most efficient iterative
method while FFT-based solvers are the most efficient
direct methods. In the context of parallel computing, FFT-
based methods are often relatively easier to implement.

There are actually two types of FFT-based
approaches to solve Poisson's equations. The first type,
sometimes referred to as matrix decomposition, uses
Fourier's method to treat the finite difference
discretisation of Poisson's equations. Using ordinary
central differencing, a finite difference discretisation of a
3D Poisson's equation results in a linear system with
seven diagonal lines. To solve the system quickly, one can
apply Fourier analysis in one dimension, reducing the
system to a number of pentadiagonal systems. Fourier
analysis in a second dimension further reduces the
problem to many tridiagonal systems which can be solved
efficiently. The mathematical formulations of such
method, in particular the proper treatment of non-periodic
boundary conditions and the applications on different
mesh configurations (staggered vs. collocated mesh), were
established in 1970's[13][14] and there are open-source
software implementations available, such as
FFTPACK[4], containing optimised FFT, fast sine and
cosine transform routines, and FISHPACK[5], containing
several Poisson solvers among other algorithms. This
method actually fits in the present library framework very
well – one can apply 1D FFTs and tridiagonal solver
direction by direction in local memory, given that the data

involved is properly redistributed using the transposition
routines.

The numerical method adopted in this project is of a
second type - a fully spectral treatment of the Poisson's
equation, in order to directly take advantage of the 3D
distributed FFT library developed. The algorithm involves
the following steps:

• Pre-processing in physical space
• 3D forward FFT
• Pre-processing in spectral space
• Solving the Poisson's equation by a division of

modified wave numbers
• Post-processing in spectral space
• 3D inverse FFT
• Post-processing in physical space

The forward and backward transforms are standard FFTs
(even for data sets with non-periodic boundary
conditions). Depending on different boundary conditions,
some of the pre- or post-processing steps may be optional.
Without giving any mathematical details, the pre- and
post-processing involves operations which evaluate wave
numbers and package the Discrete Cosine Transforms into
a suitable form so that standard FFT routines can be
applied. The Discrete Cosine Transforms are required to
represent data with symmetric boundary conditions:
∂p/∂n=0, exactly the boundary condition that describes
the pressure boundary in CFD applications.

This pre- and post-processing can be either local –
meaning that operations can be done regardless of the
parallel distribution of data, or global – meaning that
calculations are only possible when data sets involved are
all local in memory (i.e. the operations have to be done in
a particular pencil-orientation). Fortunately, for the global
case, whenever the data required is not available, the
global transposition routines provided by the base library
can be used to redistribute the data. The number of global
transpositions required is dependent on the boundary
conditions, which are summarised in Table 2.

B.C. # Global
Transpositions

1024^3
128 cores

2048^3
1024 cores

4096^3
8192 cores

000 FFT 4.81 6.26 7.59

100 FFT+8 7.38 10.38 14.41

010 FFT+6 6.81 8.86 12.63

110
FFT+12

8.23 11.56 16.31

111 8.41 11.67 16.48

Table 2: Poisson solver performance

Cray User Group 2010 Proceedings 8 of 13

Here the boundary type 0 represents periodic boundary
conditions and type 1 represents homogeneous Neumann
(or symmetric) conditions. As can be seen, as many as 12
additional transpositions may be required for the pre- and
post-processing while the 3D Fast Fourier Transforms
themselves (one forward and backward pair) contains only
4 global transpositions. The number of communication
calls appears to be high. However, because FFT is such as
a computational intensive algorithm, the actual benchmark
results on three large problem sizes (1024^3, 2048^3 and
4096^3) show that the communication cost is only a small
proportion of the total runtime.

It is possible to extend this solver to additional boundary
conditions which would involve discrete sine transforms
and quarter-wave transforms.

8. Library Performance

8.1 FFT library performance

The performance of a distributed FFT library is
determined by both the computation efficiency of the
underlying 1D FFT algorithm and the communication
efficiency of the data transposition algorithm. Table 3
shows the speed-up that this library can achieve over the
serial runs using FFTW's 3D FFT interface. The times
reported (in seconds) are for forward c2c transforms and
all the transforms were planned using
FFTW_ESTIMATE.

N^3 Serial FFTW Distributed FFT

plan execution 16-core 64-core 256-core

64^3 0.359 0.00509 0.00222 * *

128^3 1.98 0.0525 0.0223 0.00576 0.00397

256^3 8.03 0.551 0.179 0.0505 0.0138

512^3 37.5 5.38 1.74 0.536 0.249

1024^3 # # - 4.59 1.27

2048^3 # # - - 17.9

Table 3: Serial vs. distributed performance of the FFT
interface

It can be seen that due to the communication cost, the
absolute speed-up over the serial library isn't great (only
about 20-40 times on 256 cores). However, the parallel
library does allow much larger problems to be computed
efficiently. In particular, for smaller core count (16 and

64), each time the problem size is increased by 8 times,
the computing time increases by 8-10 times, following the
trend of the underlying serial library very well.

Large-scale parallel scaling benchmarks of the FFT
interface were done on HECToR and Jaguar, using
problem size up to 8192^3 . The timing results presented
here are the time spent to compute a pair of forward and
backward transforms on a random signal, both c2c and
r2c/c2r. The underlying FFT engine is version 4.3 of
ACML FFT. In all cases, the original signals were
recovered to machine accuracy after the backward
transforms - a good validation for the library itself. Up to
16384 cores were used on HECToR and each case was
repeated 3 times and the fastest results were recorded. On
Jaguar, the world No. 1 system at the moment, fewer but
larger tests were arranged using up to 131072 cores.
Please note that runtime does vary a lot for
communication intensive jobs on busy production
systems.

It can be seen that the FFT interface scales almost
perfectly on HECToR for all the tests done. As expected,
the r2c/c2r transforms are nearly twice as fast as the
corresponding c2c ones. On Jaguar, the scaling is less than
perfect for larger core counts but the efficiency is still at a
respectable 81% for the largest test. For one particular
problem size, 16384-core job on the 4096^3 mesh,
Jaguar took twice as much time to run. This is no surprise.
While HECToR has quad-core processors at the moment,
Jaguar has two 6-core chips built on each node. The
problems set up for these benchmarks really prefer a
power-of-2 core count to run efficiently as the
communication network can be used in a balanced way.
For example, a communicator with 4 members always sits

Cray User Group 2010 Proceedings 9 of 13

Figure 5: FFT library scaling on HECToR and Jaguar

on the same physical chip on HECToR XT4 when using
the system's default SMP-style rank placement. This is not
the case on either Jaguar or the 24-core HECToR phase 2b
XT6 system currently being built.

8.2 Practical advices

Application performance can be affected by many
factors. For example, depending on the network hardware,
the MPI library might prefer certain message size. Some
runtime tuning through system environmental variables
can often improve code performance. Application users
are encouraged to run tests before engaging in any large-
scale simulations. This section discusses some
performance issues which are known to affect the
behaviour of 2DECOMP&FFT.

The global transpositions and MPI_ALLTOALL type
of communications are known to be very demanding for
network bandwidth. So it is almost certain that large
applications can run faster on multi-core chips if not using
all the cores from each physical node. This may also
improve the computational efficiency due to improved
memory bandwidth. Unfortunately this is rarely practical
on most supercomputers where the resource charging is on
per-node basis. Shared-memory programming, as
discussed in Section 5, may improve the situation.

Application users need to be aware that they have the
freedom to choose the shape of the 2D processor grid
Prow×Pcol when using this library. Depending on the
hardware, in particular the network layout, some processor
grid option deliver much better performance than others.
Application users are highly recommended to test this
issue before running large simulations.

Fig. 6 shows the performance of a test application
using 256 MPI ranks on HECToR. It can be seen that
subject to constraint max(Prow, Pcol) < min(nx, ny, nz) , Prow

< < Pcol is the best possible combination for this particular
hardware (using Torus interconnection network). There
are several technical reasons for such behaviour. First of
all the hardware is equipped with quad-core processors (4-
way SMP). When Prow is smaller than or equal to 4, half of
the MPI_ALLTOALLV communications are done entirely
within physical nodes which can be very fast. Second, as
the communication library handles ijk-ordered arrays,
larger nx/Prow leads to better use of system cache. Similar
results were also reported by P3DFFT authors[7].

Please note however, that this result is by no mean
representative. In fact the behaviour is also highly
dependent on the time-varying system workload and the
size and shape of the global mesh, among other factors.
An auto-tuning algorithm may be included in a future
release to allow the best processor grid to be determined at
runtime.

9. Application – Incompact3D

This project concerns the development of a unique
research code Incompact3D to make the best use of the
recent unprecedented developments in HPC technology,
and to improve our understanding of fluid turbulence. The
Turbulence, Mixing and Flow Control group at Imperial
College London has been working on cutting-edge energy
problems for nearly a decade. One very recent example of
a new flow concept originating from this group concerns
turbulence generated by multiscale/fractal objects (as
shown in Fig. 7). This class of new flow concepts is
offering possibilities for brand-new flow solutions useful
in industrial mixers, silent air-brakes, new ventilation and
combustion devices. Many wind tunnel measurements
have been performed with impressive results[10][12]. To
complement these experimental results, high-resolution
simulations of multiscale generated flows are required in
order to understand the underlying physics. These are very
large-scale billion-mesh simulations that demand
significant software development in order to use the
supercomputing facilities available.

Cray User Group 2010 Proceedings 10 of 13

Figure 6: Communication library performance
dependency on the shape of the processor grid.

The old Incompact3D was parallelised using a 1D
slab decomposition. This seriously limited its applications
to large-scale simulations. For example, a typical
simulation using a 2048*515*512 mesh can only use up to
512 cores. On HECToR, this translates to a runtime of 25
days (wall-clock time) or 50 12-hour sessions, excluding
queueing time. Obviously at this rate it is impossible to
conduct productive scientific studies.

The new Incompact3D has been completely rewritten
using the 2DECOMP&FFT library, making it scalable to
tens of thousands of cores. The finite difference part of the
code evaluates the convection and diffusion terms of the
Navier-Stokes equation using 6-order compact schemes.
This results in solving tridiagonal systems along global
mesh lines when evaluating spatial derivatives, applying
spatial filters and doing spatial interpolations. The base
decomposition library is used to move the data, while the
advanced user interface is used extensively to transpose
quantities of slightly different global sizes, a consequence
of using a staggered mesh for the pressure field. On the
other hand, the pressure-Poisson equation is solved using
a spectral solver similar to the Poisson solver discussed in
Section 7 but with customised formulation for modified
wave numbers in order to have the equivalence between
physical and spectral operators which are suitable for the
numerical framework and mesh configurations[11].

To examine the performance of the new
Incompact3D, several simulations were set up on meshes
up to 4096^3 points and ran on HECToR using up to
16384 cores (72% of the full capacity). The strong scaling
results are very satisfactory for all three problem sizes. As
the computational part of Incompact3D are all based on
tightly nested 3D loops which are easily vectorisable,
there is no surprise that all performance results inherit the
good scaling from the underlying communication library.

For comparison purpose, the scaling of the spectral
DNS code by P.K. Yeung[8], which uses P3DFFT
internally, is reproduced in Fig. 9. What is directly
comparable is the data set taken from supercomputer
Franklin (was also a Cray XT4) shown as green triangles,
exhibiting very similar scaling behaviour as Incompact3D
on HECToR.

Fig. 10 shows the weak scaling of Incompact3D at a
workload of 4191304 mesh points per MPI rank. A
performance comparison between the old and the new
code is given. The old Incompact3D, implemented using a
simple 1D decomposition, is faster on smaller core counts.
But the new Incompact3D outperforms the old code for
larger cases, partly because the communications are only
among subsets of MPI ranks which is more efficient.

Cray User Group 2010 Proceedings 11 of 13

Figure 7: square-based fractal grid.

Figure 9: Scaling of spectral DNS code by P. K. Yeung[8]
using P3DFFT.

Figure 8: Strong scaling of Incompact3D on HECToR.

Also the constraint applied by the decomposition method
on the old code (1024 cores) does not apply to the new
code. Fig. 10 also presents the new code performance
using only 2 cores per quad-core node, which is
consistently 30% faster due to improved network
bandwidth.

Finally, some scientific results are given in Fig. 11
showing the simulated vorticity field downstream of a
square-shaped fractal grid in a wind tunnel. Comparing to
the conventional grid, the fractal grid can generate much
more turbulence while introducing much smaller pressure
drop to the flow – a more energy efficient configuration
that can be explored in applications such as combustion
devices.

Conclusion

Through a dedicated software-development project
sponsored by the HECToR dCSE programme, the CFD
application Incompact3D has been transformed into a
software package which can make good use of the modern
HPC resources. High scalability has been demonstrated on
HECToR and additional benchmarks are being carried out
on several other supercomputing sites. This work will
enable cutting-edge turbulence research to be conducted.

The reusable software components, in particular a 2D
decomposition module and a distributed FFT module,
have been packed into a library, which will hopefully help
scientists to develop other applications which are highly
efficient, scalable and portable.

References

1. http://www.ffte.jp/ - D. Takahashi's FFTE Fast
Fourier Transform package.

2. http://www.fftw.org/ - FFTW official website.
3. http://www.jjj.de/fft/glassman-fft.f - Source code

of Glassman's algorithm in Fortran.
4. http://www.netlib.org/fftpack/ - FFTPACK home

page at the Netlib Repository.
5. http://www.netlib.org/fishpack/ - FISHPACK

home page at the Netlib Repository.
6. http://www.sandia.gov/~sjplimp/docs/fft/READ

ME.html - Parallel FFT Package by S. Plimpton.
7. http://www.sdsc.edu/us/resources/p3dfft/ - SDSC

P3DFFT website.
8. D. A. Donzis, P. K. Yeung, and D. Pekurovsky,

“Turbulence simulation on o(10^4) processors”,
In TeraGrid'08, June, 2008.

9. W. E. Ferguson Jr., “Simple derivation of
Glassman's general N fast Fourier transform”,
Computers & Mathematics with Applications,
8(6):401-411, 1982.

10. D. Hurst and J.C. Vassilicos, “Scalings and
decay of fractal-generated turbulence”, Physics
of Fluids, 19(3), 2007.

11. S. Laizet and E. Lamballais, “High-order
compact schemes for incompressible flows: A
simple and efficient method with quasi-spectral
accuracy”, Journal of Computational Physics,
228(16):5989-6015, 2009.

12. R.E. Seoud and J.C. Vassilicos, “Dissipation and
decay of fractal-generated turbulence”, Physics
of Fluids, 19(10), 2007.

Cray User Group 2010 Proceedings 12 of 13

Figure 11: Vorticify field of flow after a fractal
square grid.

Figure 10: Weak scaling of Incompact3D on HECToR.

http://www.ffte.jp/
http://www.sdsc.edu/us/resources/p3dfft/
http://www.sandia.gov/~sjplimp/docs/fft/README.html
http://www.sandia.gov/~sjplimp/docs/fft/README.html
http://www.netlib.org/fishpack/
http://www.netlib.org/fftpack/
http://www.jjj.de/fft/glassman-fft.f
http://www.fftw.org/

13. P.N. Swarztrauber, “The methods of cyclic
reduction, Fourier analysis and the FACR
algorithm for the discrete solution of Poisson's
equation on a rectangle”, SIAM Review,
19(3):490-501, 1977.

14. R.B. Wilhelmson and J.H. Erickson, “Direct
solutions for Poisson's equation in three
dimensions”, Journal of Computational Physics,
25(4):319-331, 1977.

Acknowledgements

Ning Li would like to thank colleagues Chris
Armstrong and Ian Bush at NAG for their significant help
in developing this library. Most benchmarks presented in
this paper were carried out on HECToR - a Research
Councils UK High End Computing Service.

Sylvain Laizet acknowledges support from the
EPSRC grant EP/E029515/1 and the UK Turbulence
Consortium (EP/G069581/1) for the CPU time made
available on HECToR without which this work would not
have been possible. He also thanks Prof. Eric Lamballais
for very useful discussions.

This research used resources of the National Center
for Computational Sciences at Oak Ridge National
Laboratory, which is supported by the Office of Science
of the Department of Energy under Contract DE-AC05-
00OR22725.

About the Authors

Ning Li is an HPC software developer at the
Numerical Algorithms Group (NAG). He is a member of
the HECToR CSE team and he is the leading author of the
2DECOMP&FFT library. He can be reached at NAG Ltd,
Wilkinson House, Jordan Hill Road, Oxford, OX2 8DR,
United Kingdom, E-mail: ning.li@nag.co.uk.

Sylvain Laizet is a research associate at Imperial
College London. He is an expert in Computational Fluid
Dynamics and he is the main author of Incompact3D. He
can be reached at the Department of Aeronautics, Imperial
College London, South Kensington Campus, London,
SW7 2AZ, United Kingdom, E-mail:
s.laizet@imperial.ac.uk.

Cray User Group 2010 Proceedings 13 of 13

mailto:s.laizet@imperial.ac.uk
mailto:ning.li@nag.co.uk

	1. Introduction
	2. 2D Domain Decomposition
	3. Software Installation
	4. Using the Decomposition Library
	4.1 Basic programming interface
	4.2 Advanced programming interface

	5. Shared-memory Implementation
	6. Fast Fourier Transform
	6.1 Review of parallel FFT libraries
	6.2 FFT API
	6.3 FFT engines

	7. Distributed Poisson Solver
	8. Library Performance
	8.1 FFT library performance
	8.2 Practical advices

	9. Application – Incompact3D
	Conclusion
	References
	Acknowledgements
	About the Authors

