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ABSTRACT: As part of a HECToR distributed CSE support project, a general-purpose 
2D decomposition (also known as  'pencil'  or  'drawer'  decomposition)  communication  
library  has  been  developed.  This  Fortran  library  provides  a  powerful  and  flexible  
framework to build applications based on 3D Cartesian data structures and spatially  
implicit  numerical schemes (such as the compact finite difference method or spectral  
method).  The  library  also  supports  shared-memory  architecture  which  becomes 
increasingly  popular.  A  user-friendly  FFT  interface  has  been  built  on  top  of  the  
communication  library  to  perform  distributed  three-dimensional  FFTs.  Both  the 
decomposition library and the FFT interface scale well to tens of thousands of cores on  
Cray XT systems.  The library has been applied to  Incompact3D,  a  CFD application  
performing large-scale Direct  Numerical  Simulations of  turbulence,  enabling exciting  
scientific studies to be conducted. 
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1. Introduction

The  Computational  Science  and Engineering (CSE) 
support for Cray XT system HECToR, the UK's national 
supercomputing facility, is provided by  a team of HPC 
experts  at  NAG.  A  critical  part  of  the  service  is  the 
distributed  CSE  (dCSE)  programme,  which  delivers 
dedicated   software  engineering  support  to  research 
groups to improve their scientific software packages. 

The work presented in this paper is part of a dCSE 
project to modernise Incompact3D, a Computational Fluid 
Dynamics (CFD) application  for  Direct  and Large-eddy 
simulation  of  turbulence.  This  work  is  in  collaboration 
with the Turbulence, Mixing and Flow Control group at 
Imperial College London. The main objective is to update 
Incompact3D's communication framework, in particular, 
to  implement  a  new  domain  decomposition  strategy  to 
improve its scalability on modern supercomputers. After 
some  preliminary  work,  it  became  apparent  that  the 
outcome  of  this  project  can  benefit  many  other 
applications (such as many of the CFD applications that 
used by members of the UK Turbulence Consortium) and 
a  decision  was  made  to  pack  the  reusable  software 
components into a library. 

2DECOMP&FFT is a Fortran library to conduct two 
major  tasks.  First  of  all  it  implements  a  2D  domain 
decomposition  algorithm  (also  known  as  ‘pencil’  or 
‘drawer’  decomposition,  among  other  names)  for 
applications using 3D Cartesian data structures. On top of 
that it also provides a simple and efficient FFT interface 
to perform three-dimensional FFTs in parallel. The library 
is  optimised  for  large-scale  computations  on 
supercomputers and scales well  to tens of  thousands of 
processors on both Cray and non-Cray systems. It  relies 
on  MPI  but  provides  a  user-friendly  programming 
interface  that  hides  communication  details  from 
application developers.

2.  2D Domain Decomposition

For  a  large  category  of  applications  solving 
differential  equations  on  three-dimensional  Cartesian 
meshes,  their  numerical  algorithms  are  inherently 
implicit. For example, a compact finite difference scheme 
often results in solving a tridiagonal linear system when 
evaluating spatial derivatives or interpolations; a spectral 
code often involves performing Fast Fourier Transforms 
along global mesh lines.
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There  are  two  approaches  to  performing  such 
computations  on  distributed-memory  systems.  One  can 
either  develop  distributed  algorithms  (such  as  parallel 
tridiagonal solver or parallel FFT working on distributed 
data), or one can dynamically redistribute (transpose) data 
among processors in order  to apply serial algorithms in 
local  memory.  The  second  approach  is  often  preferred 
due  to  its  simplicity:  any  existing  serial  algorithms 
(hopefully  efficiently  implemented  already  for  a  single 
CPU) remain unchanged; porting serial code can be quite 
straight-forward as much of the original code logic still 
holds,  and  the  only  major  addition  is  the  data 
transposition procedures.  

In the past, many applications implemented the above 
idea  using  1D  domain  decomposition  (also  known  as 
‘slab’  decomposition).  In  Fig.  1,  a  3D  domain  is 
arbitrarily  chosen  to  be  decomposed  in  Y  and  X 
directions.  It  can  be  seen  that  in  state  (a),  any 
computations  in  the  X-Z  planes  can  be  done  in  local 
memories while data along a Y mesh-line is distributed. 
When it is necessary to calculate along Y mesh-lines (say 
to evaluate Y-derivatives, or to perform 1D FFTs along 
Y), one can redistribute the data to state (b), in which any 
computation  in  Y  becomes  ‘local’.  Swapping  between 
state  (a)  and  (b)  can  be  achieved  using  standard 
MPI_ALLTOALL(V) library.

A 1D decomposition,  while quite simple, has some 
limitations, especially for large-scale simulations. Given a 
cubic mesh of size N3, one obvious constraint is that the 
maximum number of processors Nproc that can be used in a 
1D decomposition is N as each slab has to contain at least 
one  plane.  For  a  cubic  mesh with  1  billion  points,  the 
constraint  is  Nproc<1000.  This  is  a  serious  limitation  as 
most  supercomputers  today  have  tens  of  thousands  of 
cores  and  some  have  more  than  100,000.1 Large 

1 The  November  2009  TOP500  list  shows  that  all  top  30 
systems have  more than  10,000  cores;  88  of  the  top  100 

applications are also likely to hit the memory limit when 
each processor handles too much workload.

As a result, a 2D decomposition strategy, a natural 
extension  to  the  1D idea,  becomes  practically  relevant 
now with many applications lagging behind. Fig. 2 shows 
that the same 3D domain as in Fig. 1 can be partitioned in 
two dimensions. From now on, states (a), (b) and (c) will 
be  referred  to  as  X-pencil,  Y-pencil  and  Z-pencil 
arrangements,  respectively.  While  a  1D  decomposition 
algorithm  swaps  between  two  states,  in  a  2D 
decomposition one needs to traverse three different states 
using four global transpositions ((a)→(b)→(c)→(b)→(a)) 
to complete a cycle.

Again  MPI_ALLTOALL(V) can  be  used  to  realise 
the  transpositions.  However  it  is  significantly  more 
complex  than  the  1D  case.  There  are  two  separate 
communicator groups. For a Prow × Pcol 2D processor grid: 
Prow groups  of  Pcol processors  need  to  exchange  data 
among  themselves  for  (a)↔(b);  Pcol groups  of  Prow 

processors need to exchange data among themselves for 
(b)↔(c).  It  is  also  worth  mentioning  that  the 
implementation of  the  communication routines  are very 
sensitive to the orientations of pencils and their associated 
memory patterns. The packing and unpacking of memory 
buffers for the MPI library needs to be handled with great 

systems  have  more  than  5,000  cores;  the  largest  IBM 
BlueGene has 294,912 cores.
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Figure 1: 1D domain decomposition using 4 processors: 
(a) decomposed in Y; (b) decomposed in X.

Figure 2: 2D domain decomposition using a 4 by 3 
processor grid.



care.  These  software  engineering  topics  are  almost 
certainly irrelevant to the scientific researches conducted 
by  the  applications.  This  is  one  of  the  motivations  to 
create  the  2DECOMP&FFT  library  -  to  handle  these 
technical issues properly and to hide all communication 
details  from  the  application  developers  who  can 
concentrate on their scientific studies.

3. Software Installation

The software is under active development. The source 
code and  documentations  are  available  from the  author 
upon request. There is no special installation procedure as 
this  software  is  meant  to  be  built  from source  together 
with the application code. Simply decompress the package 
in any location and it is ready to be compiled.

A Fortran 95 compatible  compiler  is  the minimum 
requirement.  In  addition,  the  code  also  relies  on 
allocatable  enhancement  features  (defined  in  ISO  TR 
15581)  and  Cray  pointers  (for  the  shared-memory 
implementation), which are almost universally supported 
by modern Fortran compilers. 

The library is designed to be very user-friendly. Most 
features are packed in a black box. Users are able to turn 
on/off software options from the main Makefile provided. 
For example, there are options to:

• switch  between  single  and  double  precision 
simulations.

• opt  to  use  MPI_ALLTOALL  calls  instead  of 
MPI_ALLTOALLV for data transpositions while 
data  is  evenly  distributed.  All  communication 
code in this library is written to support general 
uneven data distribution so MPI_ALLTOALLV 
is the default mode.

• turn  on  the  shared-memory  implementation  of 
the  communication  code  (see  Section  5  for 
details).

These  features  are  supported  through  preprocessing 
directives  built  in  the  Fortran  code.  Also  supplied  are 
platform  dependent  Makefiles  to  support  different 
hardware  and  compiler  combinations,  which  assist  end 
users to port the library.

For applications using the distributed FFT interface 
(as will be discussed in Section 6), an FFT engine may be 
selected in the main Makefile. The multi-dimensional FFT 
routines delegate 1D transforms to a 3rd-party library. The 
default FFT engine  is called 'generic', which does not rely 
on  any  external  3rd-party  libraries.  Also  released  are 

implementations  using  FFTW3,  ACML,  FFTPACK5, 
Intel MKL and IBM ESSL.

A few test applications are bundled with the package 
which not only validate the code, but also demonstrate the 
proper use of the library.

4. Using the Decomposition Library

2DECOMP&FFT  library  functions  are  provided  in 
several  Fortran  modules.  A  base  module  contains  2D 
decomposition  information  and  data  transposition 
routines. An FFT module is built on top to provide three 
dimensional  distributed  FFT  functions.  There  are  also 
other utility functions such as a MPI-IO module for proper 
parallel IO.  The decomposition library will be discussed 
in  this  section  while  the  FFT interface  will  be  covered 
later in Section 6. As only the key routines are discussed 
here, readers are referred to the user guild distributed with 
the software for full coverage of the APIs.

4.1 Basic programming interface

 First of all a Fortran module needs to be used:

use decomp_2d

A set of global variables
2
 are defined in the decomposition 

library  for  applications  to  define  their  data  structures. 
These  include  a  KIND variable  to  properly  define  data 
types in applications (single vs. double precision); a few 
MPI types should the applications need to call MPI library 
routines directly; a few MPI variables such as the current 
MPI  rank  and  the  size  of  the  MPI  communicator;  and 
most  importantly,  variables  to  describe  the  sub-domain 
held by the current processor – its starting index, ending 
index  and  size  for  all  three  pencil  orientations.   The 
preferred approach is for applications to define their data 
structures  using  allocatable  arrays  based  on  these 
decomposition  information.  The  starting/ending  indices, 
based on the global coordinate of the whole computation 
domain,  may  be  very  useful  in  many  situations  (for 
example to extract a 2D plane from the 3D domain).  

All  the  global  variables  are  initialised  by  an 
initialisation  routine  that  needs  to  be  called  at  the 
beginning of the application:

2 Defining public global variables in a Fortran module is not 
always a good practice. However such design is intentional 
in this library to simplify the building of applications. 
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call decomp_2d_init(nx,ny,nz, &  
     P_row,P_col)

The global size of the 3D domain and  a 2D processor grid 
need to be supplied. The global variables then should be 
treated  as  read-only  throughout  the  lifetime  of  the 
application.  The  library  also  contains  a  set  of 
communication  routines  that  actually  perform  the  data 
transpositions.  As mentioned in Section 2, one needs to 
perform four global transpositions to go through all three 
pencil orientations. Correspondingly, the library provides 
four communication subroutines in the form of:
      
      call transpose_x_to_y(in, out)
      call transpose_y_to_z(in, out)
      call transpose_z_to_y(in, out)
      call transpose_y_to_x(in, out)

where  input  array  in and  output  out should  have  been 
defined for  the correct  pencil  orientations in the calling 
program. Note that  the library is written using Fortran's 
generic  interface  so  different  data  types  are  supported 
without  user  intervention.  For  many  applications  both 
arrays simply contains real numbers. But in and out can be 
complex arrays for FFT-type of applications. 

Although it is not necessary for application developers to 
understand  the  internal  logic  of  these  transposition 
routines,  it  is  important  to  know  that  they  can  be 
expensive,  especially when running on large number of 
processors. So applications should minimize the number 
of calls to them, even sometimes at the cost of duplicating 
computations.

The  library  is  completed  by  a  finalisation  routine  to 
properly clean up the memory:

call decomp_2d_finalize

4.2 Advanced programming interface

While  the  basic  decomposition  API  is  very  user-
friendly,  there  may  be  situations  in  which  applications 
need  to  handle  more  complex  data  structures.  For 
example,  to  implement  a  3D  real-to-complex  FFT, 
applications need to store both the real  input (of global 
size nx*ny*nz) and the complex output (of smaller global 
size - such as (nx/2+1)*ny*nz - where roughly half the 
output needs not to be stored due to conjugate symmetry). 
Different global sizes need to be distributed as 2D pencils 
and  their  distribution  parameters  are  very  different. 
Similar  situations arise from many CFD applications in 

which main physical quantities are stored on a staggered 
mesh, resulting in slightly different global sizes. 

In order to handle the above situations, an advanced 
programming  interface  is  provided.  Applications  may 
define a decomposition object  (an instance of a Fortran 
derived data type), initialise it using any global size, and 
then  access  to  the  decomposition  information  of  that 
particular  global  size  afterwards.  Such  decomposition 
information can then be used to define data structures for 
the  distributed  data.  When  global  transpositions  are 
required, this decomposition object may be passed into the 
transposition routines  in  the basic interface  as  the third 
optional parameter  so that  data of  this  particular global 
size (rather than the default size nx*ny*nz) is transposed. 
This  is  implemented  using  Fortran  generic  interface  so 
that users of the basic interface only can safely ignore the 
complexity here.    

5. Shared-memory Implementation

Many  modern  supercomputers  use  multi-core 
processors and cores on same node often have shared local 
memory.  For  example,  this  library's  main  development 
platform HECToR is a Cray XT4 system using quad-core 
processors, sharing 8GB of memory.

For the ALLTOALL type of communication in which 
each MPI rank has to send/receive messages to/from all 
other MPI ranks, one can imagine that traffic from cores 
on  the  same  physical  node  compete  for  their  network 
interface.  One  possible  solution  is  to  create  shared 
send/recv buffers on each SMP node. Then only leaders of 
the  nodes  participate  MPI_ALLTOALL(V),  resulting in 
fewer  but  larger  messages  passing  within  the  system, 
hopefully improving the performance of communication.

The  actual  shared-memory  program  was  based  on 
code  supplied  by  David  Tanqueray  of  Cray  Inc.  who 
initially applied this idea to several molecular dynamics 
applications.  The  shared-memory  code  uses  the  Unix 
System V shared memory API which is widely available. 
Similar to the standard library, the shared-memory library 
has been implemented as a black box. So users can simply 
set  a  pre-processor  flag  when  compiling  the  library  to 
switch on the function.

Note that this shared-memory implementation is not 
automatically  portable  while  moving  to  a  new  system. 
There is a piece of low-level code which accesses system-
dependent information to gather vital information for the 
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shared-memory code (such as which MPI rank belongs to 
which node and who else shares the node). On Cray XT 
systems, this is done by checking the /proc file system of 
the computing nodes. This function needs to be rewritten 
for  different  hardware.  However,  one  can  reasonably 
expect  that  such function can be provided by hardware 
suppliers or system administrators familiar with the new 
hardware.  A  system-independent  version  of  the  shared-
memory code will be implemented in the future.

Finally, the performance of the shared-memory code 
is shown in Fig. 3. The data was collected on HECToR 
phase 2a hardware from a series of simulations using 256 
MPI  ranks  over  a  range  of  problem  sizes.  When  the 
problem  size  is  small  (so  is  the  message  size),  the 
transposition routines were called more times so that the 
total amount of data moving within the system remains a 
constant.  Fig.  3  shows  that  when  the  problem  size  is 
small, the overhead of setting up communications is very 
high  and  the  shared-memory  code  can  improve 
communication efficiency by up to 30%. As the problem 
size increases, the benefit of using shared-memory code 
becomes smaller. In fact for large message size (> 32Kb 
in  this  example),  the  shared-memory  code  is  actually 
slower  due  to  the  extra  memory  copying  operations 
required  to  assemble  the  shared  buffer

3
.  However,  do 

remember this test was performed on a quad-core system. 
HECToR is scheduled to be upgraded to 24-core system 
in  2010  and  the  general  trend  across  major 
supercomputing sites is to have more cores per node. Do 
expect the shared-memory code to play a more significant 
role in the very near future.

3 Sometimes  packing  and  unpacking  of  buffers  are  not 
required for ordinary MPI_ALLTOALL(V) operation due to 
the memory pattern of 3D arrays.   

6. Fast Fourier Transform

Having developed the decomposition library, one can 
apply  it  to  many  applications  using  3D  Cartesian  data 
structures,  in  particular  those  whose  algorithms  can  be 
split into a sequence of one dimensional operations. It is 
well  known  that  a  multiple-dimensional  FFT  is 
mathematically equivalent to a series of 1D FFTs. As a 
demonstration, a distributed FFT library is implemented 
using this framework. 

6.1 Review of parallel FFT libraries

Being  an  extremely  useful  research  tool,  FFT 
software  packages are available everywhere.  Almost  all 
hardware vendors produce their own FFT products tuned 
for particular hardware. There are also many open-source 
codes  implementing  various  algorithms.  Unfortunately, 
when  working  on  large-scale  distributed  systems,  the 
options  are  very  limited  and  many  famous  scientific 
packages  have  to  implement  their  customised  FFT 
libraries.  In  this  section,  only  those  libraries  closely 
related to this project, especially those available on Cray 
XT systems are reviewed.

FFTW[2] is one of the most popular FFT packages 
available and is officially supported by Cray. It is open-
source,  supporting  arbitrary  input  size,  portable  and 
delivers  good performance due  to  its  self-tuning design 
(planning before execution). There are two major versions 
of  FFTW.  Version  2.x  actually  has  a  reliable  MPI 
interface  to  transform  distributed  data.  However,  it 
internally  uses  a  1D  (slab)  decomposition  which,  as 
discussed  earlier,  limits  the  scalability  of  large 
applications. Its serial performance is also inferior to that 
of version 3.x, which has a redesign that better supports 
the SIMD instructions on modern CPUs.  Unfortunately, 
the MPI interface of version 3.x is in unstable alpha stage 
and has been so for many years. So there is no reliable 
way to compute multi-dimensional FFTs in parallel. 

Cray has its own CRAFFT (CRay Adaptive FFT), for 
example,  as  part  of  xt-libsci  library  on  XT systems.  It 
provides a simplified interface to delegate computations to 
other  FFT  kernels  (including  FFTW).  Being  'adaptive' 
means  that  it  can  dynamically  select  the  fastest  FFT 
kernels available on a system. However, it only supports 
very limited distributed routines (only 2D/3D complex-to-
complex  transforms  are  supported  as  of  version  xt-
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libsci/10.4.0) and those routines are based on an evenly-
distributed 1D decomposition. 

As XT systems are based on AMD CPUs, obviously 
one  can  use  the  FFT routines  provided  by  AMD Core 
Math Library (ACML) which is  specially tuned for  the 
AMD processors.  AMD does  provide  a  multi-threading 
version of the library but there is no distributed support.

There  are  several  open-source  packages  available 
which  implement  2D-decomposition  based  distributed 
FFTs. For example,  Plimpton's parallel FFT package[6] 
provides  a  set  of  C  routines  to  perform  2d  and  3d 
complex-to-complex FFTs together with very flexible data 
remapping  routines  for  data  transpositions.  The 
communications are implemented using MPI_SEND and 
MPI_IRECV. 

Takahashi's  FFTE  package[1]  in  Fortran  contains 
both serial and distributed version of complex-to-complex 
FFT  routines.  It  supports  transform  lengths  with  small 
prime  factors  only  and  uses  MPI_ALLTOALL  to 
transpose evenly distributed data. There is no user callable 
communication routines. 

Finally there is the well-known open-source package 
P3DFFT[7], which has been widely adopted by scientists 
doing large-scale simulations in many research areas such 
as cutting-edge turbulence studies.  The P3DFFT project 
was  initiated  at  San  Diego  Supercomputer  Center  by 
Dmitry Pekurovsky. It is quite efficient, as can be seen in 
Fig.  4  showing  the  parallel  scaling  of  its  sample 
application on HECToR's phase 1 dual-core hardware. 

However, initial attempts to adapt this library to use 
in the present project proved to be impractical. P3DFFT is 
targeting purely spectral applications

4
, with its public API 

performing  only  real-to-complex  and  complex-to-real 
FFTs and its  communication routines handling complex 
data  type.  There  are  FFT-specific  features  (such  as  the 
padding of real input for in-place transforms) built in its 
logic and data structure which are not relevant to general 
applications. The CFD application being refactored in this 
project,  based  on  a  compact  finite  difference  schemes, 
require a more general domain decomposition library to 
handle its global data transpositions.  This motivated the 
authors  to  develop  the  2DECOMP&FFT  library  from 
scratch and provide a two-layer design – with a general-
purpose 2D decomposition library as the foundation and a 
distributed FFT library built on the top. Taking advantage 
of  the  advanced  programming  interface  discussed  in 
section 4.2, the FFT library is also a general-purpose one, 
supporting  both  complex-to-complex  and  real-to-
complex/complex-to-real transforms.

 

6.2 FFT API

Like the decomposition library, the FFT API is also 
designed  to  have  user-friendliness  as  one  of  the  top 
priorities. First of all, one additional Fortran module has 
to be referred to in order to use the FFT interface:

use decomp_2d_fft

Then one needs to initialise the FFT interface by:

call decomp_2d_fft_init

The  initialisation  routine  handles  planing  for  the 
underlying FFT engine (if supported) and defines globally 
work spaces for the FFTs. By default, it is assumed that 
physical-space  data  is  stored  in  X-pencil.  The spectral-
space  data  is  then stored  in  transposed  Z-pencil  format 
after  the  forward  FFT.  To  give  applications  more 
flexibility, the library also supports the opposite direction, 
if  an  optional  parameter  is  passed  to  the  initialisation 
routine. Physical-space data in Y-pencil is not an option as 
it would require additional expensive transpositions which 
does not make economical sense.

The main functionality this FFT package provides is  to 
perform  3D  FFTs  where  the  distributed  input  data  is 
stored in ordinary ijk-ordered 3D arrays across processors. 
For complex-to-complex (c2c) FFTs, the user interface is:

4 Fourier-based spectral applications only require a distributed 
FFT library and no other explicit data transposition.  
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Figure 4: P3DFFT scaling on HECToR.



call decomp_2d_fft_3d(in, out,    & 
     direction)

where direction can be either forward or backward. The 
input array in and output array out are both distributed 3D 
complex  arrays  and  have  to  be  either  in  a  X-pencil/Z-
pencil  combination  or  vice  versa,  depending  on  the 
direction of FFT and how the FFT interface is initialised. 

While the c2c interface is already in the simplest possible 
form, for many applications involving real quantities, the 
3D FFT interface can be used in a more compact form:

call decomp_2d_fft_3d(in, out)

Here if  in is a real array and out a complex array, then a 
forward  FFT  is  implied.  Similarly  a  backward  FFT  is 
computed if in is a complex array and out a real array.

When real input is involved, the corresponding complex 
output  satisfies  so-called  `Hermitian  redundancy'  -  i.e. 
some  output  values  are  complex  conjugates  of  others. 
Taking advantage of  this,  FFT algorithms can normally 
compute  r2c  and  c2r  transforms  twice  as  fast  as  c2c 
transforms while  only using about  half  of  the  memory. 
Unfortunately, the price to pay is that  application's  data 
structures have to become slightly more complex. For a 
3D  real  input  data  set  of  size  nx×ny×nz,  the  complex 
output can be held in an array of size (nx/2+1)×ny×nz, 
with the first dimension being cut roughly in half (for Z-
pencil  input,  the  complex  output  is  of  size 
nx×ny×(nz/2+1)  instead).  2DECOMP&FFT library  uses 
the advanced programming interface discussed in section 
4.2  to  distribute  both  global  arrays  and  hides  as  many 
details as possible from end users. One utility subroutine 
is provided to help applications properly allocate memory 
space to store the complex data when using the r2c/c2r 
interface.  Please  note  that  the  complex  output  arrays 
obtained from X-pencil and Z-pencil input do not contain 
identical information. However, if `Hermitian redundancy' 
is taken into account, no physical information is lost and 
the  real  input  can  be  fully  recovered  through  the 
corresponding inverse FFT from either complex array.

Finally, to release the memory used by the FFT interface:

call decomp_2d_fft_finalize

It is possible to re-initialise the FFT interface in the same 
application at the later stage after it has been finalised, if 
this becomes necessary.

6.3 FFT engines

The  distributed  FFT  interface  only  performs  data 
management  and  communications.  The  actual 
computations – a lot of 1D FFTs – are delegated to a 3rd-
party FFT library and are always performed using data in 
local memory. 

Users have the freedom to choose from 6 different 
FFT engines  supported  by  2DECOMP&FFT:  a  generic 
algorithm,  FFTW  (version  3.x),  ACML,  FFTPACK 
(version 5), Intel MKL and IBM ESSL. The advantages 
and disadvantaged of these FFT libraries are summarised 
in Table 1.

Library Open-
source

Hardware
tuned

Complete & 
general API5

Easy parallel
coding6

generic Y N N Y

FFTW3 Y Y Y N

ACML N Y N Y

fftpack Y N N Y

MKL N Y Y N

ESSL N Y N N

Table 1: Comparison of FFT libraries

The  generic  implementation  is  extended  from  an 
algorithm  proposed  by  Glassman[3][9].  'fftpack'  is 
included because it is widely used by legacy applications 
and  is  quite  relevant  to  the  PDE  solver  discussed  in 
Section 7. FFTW (version 3.x) is the most popular open-
source packages. Others are all highly optimised vendor 
libraries  with  ACML  specially  tuned  for  AMD  CPUs, 
MKL for  Intel  CPUs,  and  ESSL widely  used  on  IBM 
Power-x based systems and BlueGenes.   

All vendor libraries provide highly efficient APIs to 
computed multiple 1D FFTs in  one call,  a  feature very 
useful  in  the parallel  implementation.  These all  involve 

5 ACML has much limited r2c and c2r support with its storage 
format  inconvenient  to  use  in  the  parallel  library.  ESSL 
assumes stride-1 storage in its r2c/c2r interface.  

6 FFTW's planning, although very powerful, is not easy to use 
in  the  parallel  implementation  because  it  requires  proper 
memory alignment which can not be guaranteed in Fortran. 
So one either plans every transform before execution (time 
consuming)  or  plans  on  globally  defined  data  arrays 
(memory consuming).  MKL has improperly designed API 
which does not directly accept multi-dimensional arrays as 
input/output.   
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specification  of  a  stride parameter  and  a  distance 
parameter  to  describe  the  memory  pattern  of  the  data 
structures.  When  functions  are  missing  from  the  FFT 
engines  (such  as  ESSL's  lack  of  support  to  arbitrary 
transform length), they are implemented with the parallel 
code so that 2DECOMP&FFT can be universally applied. 

7. Distributed Poisson Solver

The 2D decomposition library and the FFT interface 
are  not  only themselves  useful  in  applications,  but  also 
serve as building blocks to develop higher-level libraries. 
This  section  discusses  a  general-purpose  elliptic  PDE 
solver, which applies a Fourier-based spectral method to 
solve Poisson's equations. This is particularly relevant to 
the  current  CFD application  solving  the  incompressible 
Navier-Stokes  system  in  which  mass  conservation  is 
enforced by solving a pressure Poisson equation. 

There  are  various  numerical  algorithms  solving 
Poisson's equations, broadly classified into two categories: 
iterative  solvers  and  direct  solvers.  The  Multigrid 
approach  is  often  considered  most  efficient  iterative 
method while  FFT-based  solvers  are  the  most  efficient 
direct methods. In the context of parallel computing, FFT-
based methods are often relatively easier to implement. 

There  are  actually  two  types  of  FFT-based 
approaches  to  solve  Poisson's  equations.  The first  type, 
sometimes  referred  to  as  matrix  decomposition,  uses 
Fourier's  method  to  treat  the  finite  difference 
discretisation  of  Poisson's  equations.  Using  ordinary 
central differencing, a finite difference discretisation of a 
3D  Poisson's  equation  results  in  a  linear  system  with 
seven diagonal lines. To solve the system quickly, one can 
apply  Fourier  analysis  in  one  dimension,  reducing  the 
system  to  a  number  of  pentadiagonal  systems.  Fourier 
analysis  in  a  second  dimension  further  reduces  the 
problem to many  tridiagonal systems which can be solved 
efficiently.  The  mathematical  formulations  of  such 
method, in particular the proper treatment of non-periodic 
boundary  conditions  and  the  applications  on  different 
mesh configurations (staggered vs. collocated mesh), were 
established  in  1970's[13][14]  and  there  are  open-source 
software  implementations  available,  such  as 
FFTPACK[4],  containing  optimised  FFT,  fast  sine  and 
cosine transform routines, and FISHPACK[5], containing 
several  Poisson  solvers  among  other  algorithms.  This 
method actually fits in the present library framework very 
well  –  one  can  apply  1D  FFTs  and  tridiagonal  solver 
direction by direction in local memory, given that the data 

involved is properly redistributed using the transposition 
routines.

The numerical method adopted in this project is of a 
second type - a fully spectral treatment of the Poisson's 
equation,  in  order  to  directly  take advantage of  the  3D 
distributed FFT library developed. The algorithm involves 
the following steps:

• Pre-processing in physical space
• 3D forward FFT
• Pre-processing in spectral space
• Solving the Poisson's equation by a division of 

modified wave numbers 
• Post-processing in spectral space
• 3D inverse FFT
• Post-processing in physical space

The forward and backward transforms are standard FFTs 
(even  for  data  sets  with  non-periodic  boundary 
conditions). Depending on different boundary conditions, 
some of the pre- or post-processing steps may be optional. 
Without  giving  any  mathematical  details,  the  pre-  and 
post-processing involves operations which evaluate wave 
numbers and package the Discrete Cosine Transforms into 
a  suitable  form  so  that  standard  FFT  routines  can  be 
applied. The Discrete Cosine Transforms are required to 
represent  data  with  symmetric  boundary  conditions: 
∂p/∂n=0,  exactly  the  boundary  condition  that  describes 
the pressure boundary in CFD applications. 

This  pre-  and  post-processing  can  be  either  local  – 
meaning  that  operations  can  be  done  regardless  of  the 
parallel  distribution  of  data,  or  global –  meaning  that 
calculations are only possible when data sets involved are 
all local in memory (i.e. the operations have to be done in 
a particular pencil-orientation). Fortunately, for the global 
case,  whenever  the  data  required  is  not  available,  the 
global transposition routines provided by the base library 
can be used to redistribute the data. The number of global 
transpositions  required  is  dependent  on  the  boundary 
conditions, which are summarised in Table 2.

B.C. # Global 
Transpositions

1024^3
128 cores

2048^3
1024 cores

4096^3
8192 cores

000 FFT 4.81 6.26 7.59

100 FFT+8 7.38 10.38 14.41

010 FFT+6 6.81 8.86 12.63

110
FFT+12

8.23 11.56 16.31

111 8.41 11.67 16.48

Table 2: Poisson solver performance
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Here  the  boundary  type  0 represents  periodic  boundary 
conditions and type 1 represents homogeneous Neumann 
(or symmetric) conditions. As can be seen, as many as 12 
additional transpositions may be required for the pre- and 
post-processing  while  the  3D  Fast  Fourier  Transforms 
themselves (one forward and backward pair) contains only 
4  global  transpositions.  The  number  of  communication 
calls appears to be high. However, because FFT is such as 
a computational intensive algorithm, the actual benchmark 
results on three large problem sizes (1024^3, 2048^3 and 
4096^3) show that the communication cost is only a small 
proportion of the total runtime. 

It is possible to extend this solver to additional boundary 
conditions which would involve discrete sine transforms 
and quarter-wave transforms. 

8. Library Performance

8.1 FFT library performance

The  performance  of  a  distributed  FFT  library  is 
determined  by  both  the  computation  efficiency  of  the 
underlying  1D  FFT  algorithm  and  the  communication 
efficiency  of  the  data  transposition  algorithm.  Table  3 
shows the speed-up that this library can achieve over the 
serial  runs  using  FFTW's  3D FFT interface.  The times 
reported (in seconds) are for forward c2c transforms and 
all  the  transforms  were  planned  using 
FFTW_ESTIMATE.

N^3 Serial FFTW Distributed FFT

plan execution 16-core 64-core 256-core

64^3 0.359 0.00509 0.00222 * *

128^3 1.98 0.0525 0.0223 0.00576 0.00397

256^3 8.03 0.551 0.179 0.0505 0.0138

512^3 37.5 5.38 1.74 0.536 0.249

1024^3 # # - 4.59 1.27

2048^3 # # - - 17.9

Table 3: Serial vs. distributed performance of the FFT 
interface

It can be seen that due to the communication cost, the 
absolute speed-up over the serial library isn't great (only 
about 20-40 times on 256 cores).  However,  the parallel 
library does allow much larger problems to be computed 
efficiently.  In particular, for smaller core count (16 and 

64), each time the problem size is increased by 8 times, 
the computing time increases by 8-10 times, following the 
trend of the underlying serial library very well.

Large-scale parallel  scaling benchmarks of the FFT 
interface  were  done  on  HECToR  and  Jaguar,  using 
problem size up to 8192^3 . The timing results presented 
here are the time spent to compute a pair of forward and 
backward transforms on a  random signal,  both c2c  and 
r2c/c2r.  The  underlying  FFT  engine  is  version  4.3  of 
ACML  FFT.  In  all  cases,  the  original  signals  were 
recovered  to  machine  accuracy  after  the  backward 
transforms - a good validation for the library itself. Up to 
16384 cores were used on HECToR and each case was 
repeated 3 times and the fastest results were recorded. On 
Jaguar, the world No. 1 system at the moment, fewer but 
larger  tests  were  arranged  using  up  to  131072  cores. 
Please  note  that  runtime  does  vary  a  lot  for 
communication  intensive  jobs  on  busy  production 
systems. 

It  can be seen that  the FFT interface scales  almost 
perfectly on HECToR for all the tests done. As expected, 
the  r2c/c2r  transforms  are  nearly  twice  as  fast  as  the 
corresponding c2c ones. On Jaguar, the scaling is less than 
perfect for larger core counts but the efficiency is still at a 
respectable  81% for  the  largest  test.  For  one  particular 
problem  size,   16384-core  job  on  the  4096^3  mesh, 
Jaguar took twice as much time to run. This is no surprise. 
While HECToR has quad-core processors at the moment, 
Jaguar  has  two  6-core  chips  built  on  each  node.  The 
problems  set  up  for  these  benchmarks  really  prefer  a 
power-of-2  core  count  to  run  efficiently  as  the 
communication network can be used in a balanced way. 
For example, a communicator with 4 members always sits 
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on the same physical chip on HECToR XT4 when using 
the system's default SMP-style rank placement. This is not 
the case on either Jaguar or the 24-core HECToR phase 2b 
XT6 system currently being built.  

8.2 Practical advices

Application  performance  can  be  affected  by  many 
factors. For example, depending on the network hardware, 
the MPI library might prefer certain message size. Some 
runtime  tuning  through  system  environmental  variables 
can  often improve code performance.  Application users 
are encouraged to run tests before engaging in any large-
scale  simulations.  This  section  discusses  some 
performance  issues  which  are  known  to  affect  the 
behaviour of 2DECOMP&FFT.

The global transpositions and MPI_ALLTOALL type 
of communications are known to be very demanding for 
network  bandwidth.  So  it  is  almost  certain  that  large 
applications can run faster on multi-core chips if not using 
all  the  cores  from  each  physical  node.  This  may  also 
improve  the  computational  efficiency  due  to  improved 
memory bandwidth. Unfortunately this is rarely practical 
on most supercomputers where the resource charging is on 
per-node  basis.  Shared-memory  programming,  as 
discussed in Section 5, may improve the situation. 

Application users need to be aware that they have the 
freedom to  choose  the  shape  of  the  2D processor  grid 
Prow×Pcol when  using  this  library.  Depending  on  the 
hardware, in particular the network layout, some processor 
grid option deliver much better performance than others. 
Application  users  are  highly  recommended  to  test  this 
issue before running large simulations. 

Fig.  6  shows the  performance of  a  test  application 
using 256 MPI  ranks  on  HECToR. It  can be  seen that 
subject to constraint max(Prow, Pcol) < min(nx, ny, nz) , Prow 

< < Pcol is the best possible combination for this particular 
hardware  (using  Torus  interconnection  network).  There 
are several technical reasons for such behaviour. First of 
all the hardware is equipped with quad-core processors (4-
way SMP). When Prow is smaller than or equal to 4, half of 
the MPI_ALLTOALLV communications are done entirely 
within physical nodes which can be very fast. Second, as 
the  communication  library  handles  ijk-ordered  arrays, 
larger nx/Prow leads to better use of system cache. Similar 
results were also reported by P3DFFT authors[7]. 

Please note however, that this result is by no mean 
representative.  In  fact  the  behaviour  is  also  highly 
dependent on the time-varying system workload and the 
size and shape of the global mesh, among other factors. 
An  auto-tuning  algorithm  may  be  included  in  a  future 
release to allow the best processor grid to be determined at 
runtime.

9. Application – Incompact3D 

This  project  concerns  the  development  of  a  unique 
research code  Incompact3D to make the best use of the 
recent unprecedented developments  in  HPC technology, 
and to improve our understanding of fluid turbulence. The 
Turbulence, Mixing and Flow Control group at Imperial 
College London has been working on cutting-edge energy 
problems for nearly a decade. One very recent example of 
a new flow concept originating from this group concerns 
turbulence  generated  by  multiscale/fractal  objects  (as 
shown  in  Fig.  7).  This  class  of  new  flow  concepts  is 
offering possibilities for brand-new flow solutions useful 
in industrial mixers, silent air-brakes, new ventilation and 
combustion  devices.  Many  wind  tunnel  measurements 
have been performed with impressive results[10][12]. To 
complement  these  experimental  results,  high-resolution 
simulations of multiscale generated flows are required in 
order to understand the underlying physics. These are very 
large-scale  billion-mesh  simulations  that  demand 
significant  software  development  in  order  to  use  the 
supercomputing facilities available. 
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The  old  Incompact3D was  parallelised  using  a  1D 
slab decomposition. This seriously limited its applications 
to  large-scale  simulations.  For  example,  a  typical 
simulation using a 2048*515*512 mesh can only use up to 
512 cores. On HECToR, this translates to a runtime of 25 
days (wall-clock time) or 50 12-hour sessions, excluding 
queueing time. Obviously at this rate it is impossible to 
conduct productive scientific studies.

The new Incompact3D has been completely rewritten 
using the 2DECOMP&FFT library, making it scalable to 
tens of thousands of cores. The finite difference part of the 
code evaluates the convection and diffusion terms of the 
Navier-Stokes equation using 6-order  compact schemes. 
This  results  in  solving tridiagonal  systems along global 
mesh lines when evaluating spatial derivatives, applying 
spatial  filters and doing spatial  interpolations.  The base 
decomposition library is used to move the data, while the 
advanced user interface is  used extensively to transpose 
quantities of slightly different global sizes, a consequence 
of using a staggered mesh for the pressure field. On the 
other hand, the pressure-Poisson equation is solved using 
a spectral solver similar to the Poisson solver discussed in 
Section 7 but with customised formulation for modified 
wave numbers in order to have the equivalence between 
physical and spectral operators which are suitable for the 
numerical framework and mesh configurations[11].

To  examine  the  performance  of  the  new 
Incompact3D, several simulations were set up on meshes 
up  to  4096^3 points  and  ran  on  HECToR using  up  to 
16384 cores (72% of the full capacity). The strong scaling 
results are very satisfactory for all three problem sizes. As 
the computational part of Incompact3D are all based on 
tightly  nested  3D  loops  which  are  easily  vectorisable, 
there is no surprise that all performance results inherit the 
good scaling from the underlying communication library. 

For comparison purpose,  the scaling of the spectral 
DNS  code  by  P.K.  Yeung[8],  which  uses  P3DFFT 
internally,  is  reproduced  in  Fig.  9.  What  is  directly 
comparable  is  the  data  set  taken  from  supercomputer 
Franklin (was also a Cray XT4) shown as green triangles, 
exhibiting very similar scaling behaviour as Incompact3D 
on HECToR.

Fig. 10 shows the weak scaling of Incompact3D at a 
workload  of  4191304  mesh  points  per  MPI  rank.   A 
performance  comparison  between  the  old  and  the  new 
code is given. The old Incompact3D, implemented using a 
simple 1D decomposition, is faster on smaller core counts. 
But the new Incompact3D outperforms the old code for 
larger cases, partly because the communications are only 
among  subsets  of  MPI  ranks  which  is  more  efficient. 
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Figure 9: Scaling of spectral DNS code by P. K. Yeung[8] 
using P3DFFT.

Figure 8: Strong scaling of Incompact3D on HECToR. 



Also the constraint applied by the decomposition method 
on the old code (1024 cores) does not apply to the new 
code.  Fig.  10  also  presents  the  new  code  performance 
using  only  2  cores  per  quad-core  node,  which  is 
consistently  30%  faster  due  to  improved  network 
bandwidth. 

Finally,  some scientific results  are given in Fig.  11 
showing  the  simulated  vorticity  field  downstream  of  a 
square-shaped fractal grid in a wind tunnel. Comparing to 
the conventional grid, the fractal grid can generate much 
more turbulence while introducing much smaller pressure 
drop to the flow – a more energy efficient configuration 
that can be explored in applications such as combustion 
devices. 

 

Conclusion

Through  a  dedicated  software-development  project 
sponsored by the HECToR dCSE programme,  the CFD 
application  Incompact3D  has  been  transformed  into  a 
software package which can make good use of the modern 
HPC resources. High scalability has been demonstrated on 
HECToR and additional benchmarks are being carried out 
on  several  other  supercomputing  sites.  This  work  will 
enable cutting-edge turbulence research to be conducted. 

The reusable software components, in particular a 2D 
decomposition  module  and  a  distributed  FFT  module, 
have been packed into a library, which will hopefully help 
scientists to develop other applications which are highly 
efficient, scalable and portable.
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