
Iain Bethune

EPCC

ibethune@epcc.ed.ac.uk

Improving the
Performance of

CP2K on the Cray XT

CUG 2010

27/05/2010

CUG2010: Improving the Performance of CP2K on the Cray XT 2

CP2K: Contents

• Introduction to CP2K

• MPI Optimisation

• Fast Fourier Transforms

• Load Balancing

• Introducing OpenMP into CP2K

• Summary

CUG2010: Improving the Performance of CP2K on the Cray XT 3

CP2K: Introduction

• Work funded by the HECToR Distributed Computational

Science & Engineering (dCSE) Support programme

• In Collaboration with:

– Slater, Watkins @ UCL (HECToR Users)

– VandeVondele et al @ PCI, University of Zurich (CP2K Developers)

• Aug 08 – Jul 09

– HECToR dCSE Project “Improving the performance of CP2K”

• Sep 09 – Aug 10

– Follow on dCSE Project “Improving the scalability of CP2K on multi-
core systems”

• Total of 1 FTE over 2 years

CUG2010: Improving the Performance of CP2K on the Cray XT 4

CP2K: Introduction

• Systems used during the projects

• EPCC, University of Edinburgh

– HECToR ‘Phase 1’

– Cray XT4, 5664 2.8GHz dual-core CPUs

– 2-way shared memory (OpenMP node)

– HECToR ‘Phase 2a’

– Cray XT4, 5664 2.3GHz quad-core ‘Budapest’ CPUs

– 4-way shared memory (OpenMP node)

• CSCS, Swiss National Supercomputing Centre

– Rosa

– Cray XT5, 3688 2.4GHz

hexa-core ‘Istanbul’ CPUs

– 12-way shared memory (OpenMP) node

– Thanks to J. Hutter (Zurich) for access

CUG2010: Improving the Performance of CP2K on the Cray XT 5

CP2K: Introduction

• CP2K is a freely available (GPL) Density Functional Theory

code (+ support for classical, empirical potentials) – can

perform MD, MC, geometry optimisation, normal mode

calculations…

• The “Swiss Army Knife of

Molecular Simulation”

(VandeVondele)

• c.f. CASTEP, VASP,

CPMD etc.

CUG2010: Improving the Performance of CP2K on the Cray XT 6

CP2K: Introduction

• CP2K is a freely available (GPL) Density Functional Theory

code (+ support for classical, empirical potentials) – can

perform MD, MC, geometry optimisation, normal mode

calculations…

• The “Swiss Army Knife of

Molecular Simulation”

(VandeVondele)

• c.f. CASTEP, VASP,

CPMD etc.

CUG2010: Improving the Performance of CP2K on the Cray XT 7

CP2K: Introduction

• Developed since 2000, open source approach, ~20

developers – mainly based in Univ Zurich / ETHZ / IBM

Zurich

• 600,000+ lines of Fortran 95, ~1,000 source files

• Employs a dual-basis (GPW1) method to calculate energies,

forces, K-S Matrix in linear time

– N.B. linear scaling in number of atoms, not processors!

1) J. VandeVondele, M. Krack, F. Mohamed, M.Parrinello, T. Chassaing, J. Hutter, Comp. Phys. Comm.
167, 103 (2005)

CUG2010: Improving the Performance of CP2K on the Cray XT 8

CP2K: Algorithm

• The Gaussian basis results in sparse matrices which can be

cheaply manipulated e.g. diagonalisation during SCF

calculation.

• The Plane wave basis (relying on FFTs) allows easy

calculation of long-range electrostatics.

• A key step in the algorithm is transforming from one

representation to the other (and back again) – this is done

once each way per SCF cycle.

CUG2010: Improving the Performance of CP2K on the Cray XT 9

CP2K: Algorithm

• (A,G) – distributed

matrices

• (B,F) – realspace

multigrids

• (C,E) – realspace data

on planewave

multigrids

• (D) – planewave grids

• (I,VI) – integration/

collocation of gaussian

products

• (II,V) – realspace-to-

planewave transfer

• (III,IV) – FFTs

(planewave transfer)

CUG2010: Improving the Performance of CP2K on the Cray XT 10

CP2K: MPI Optimisation

• The rs2pw halo swap step becomes a bottleneck as the

number of cores increases (e.g. on 512 cores, 125^3 grid,

90%+ of data is in the halo!)

• In CP2K, the halo region (containing Gaussian data

mapped locally) of a process is sent and summed into the

core region of a neighbouring process

• So, throw away any data that won’t end up in any core

region!

CUG2010: Improving the Performance of CP2K on the Cray XT 11

CP2K: MPI Optimisation

CUG2010: Improving the Performance of CP2K on the Cray XT 12

CP2K: MPI Optimisation

• Also added non-blocking MPI communication

• The result – a 14% speedup on 256 cores:

• bench_64 is a small test case of 64 water molecules,

40,000 basis functions, 50 MD steps

CUG2010: Improving the Performance of CP2K on the Cray XT 13

CP2K: Algorithm

• (A,G) – distributed

matrices

• (B,F) – realspace

multigrids

• (C,E) – realspace data

on planewave

multigrids

• (D) – planewave grids

• (I,VI) – integration/

collocation of gaussian

products

• (II,V) – realspace-to-

planewave transfer

• (III,IV) – FFTs

(planewave transfer)

CUG2010: Improving the Performance of CP2K on the Cray XT 14

CP2K: Fast Fourier Transforms

• CP2K uses a 3D Fourier Transform to turn real data on

the plane wave grids into g-space data on the plane wave

grids.

• The grids may be distributed as planes, or rays (pencils)

– so the FFT may involve one or two transpose steps

between the 3 1D FFT operations

• The 1D FFTs are performed via an interface which

supports many libraries e.g. FFTW 2/3 ESSL, ACML,

CUDA, FFTSG (in-built)

CUG2010: Improving the Performance of CP2K on the Cray XT 15

CP2K: Fast Fourier Transforms

• Initial profiling of the 3D FFT using CrayPAT showed

many expensive calls to MPI_Cart_sub to decompose the

cartesian topology – called every iteration, generating the

same set of sub-communicators each time!

CUG2010: Improving the Performance of CP2K on the Cray XT 16

CP2K: Fast Fourier Transforms

• CP2K already has a data structure fft_scratch which stores

buffers, coordinates etc. for reuse

• The communicators, and a number of other pieces of data were

added

• Number of MPI_Cart_sub calls reduced from 11722 to 5 (for 50 MD

steps)

• N.B. This speedup would increase for longer runs

CUG2010: Improving the Performance of CP2K on the Cray XT 17

CP2K: Fast Fourier Transforms

• Initially the FFTW interface did not use FFTW plans

effectively

– At each step a plan would be created, used, and

destroyed.

• But at least the interface was simple, and consistent with

the other FFT libraries

• Implemented storage and re-use of plans for FFTW 2 and

3 – for other libraries planning is a no-op

CUG2010: Improving the Performance of CP2K on the Cray XT 18

CP2K: Fast Fourier Transforms

• This allowed the more expensive plan types to used:

• Choice of plan type is exposed to user via

GLOBAL%FFTW_PLAN_TYPE input file option

• Default remains FFTW_ESTIMATE

CUG2010: Improving the Performance of CP2K on the Cray XT 19

CP2K: Algorithm

• (A,G) – distributed

matrices

• (B,F) – realspace

multigrids

• (C,E) – realspace data

on planewave

multigrids

• (D) – planewave grids

• (I,VI) – integration/

collocation of gaussian

products

• (II,V) – realspace-to-

planewave transfer

• (III,IV) – FFTs

(planewave transfer)

CUG2010: Improving the Performance of CP2K on the Cray XT 20

CP2K: Load balancing

• The sparse matrix representing the electronic density has

structure dependent on the physical problem

• For condensed-phase systems atoms are (relatively)

uniformly distributed over the simulation cell

• Therefore the work of mapping Gaussians to the real

space grid is fairly well load balanced

• What about interfaces, clusters, other non-homogeneous

systems?

CUG2010: Improving the Performance of CP2K on the Cray XT 21

CP2K: Load balancing

• We used the ‘W216’ test case – a cluster of 216 water

molecules in a large (34A^3) unit cell

• Severe load imbalance is encountered (6:1):

CUG2010: Improving the Performance of CP2K on the Cray XT 22

CP2K: Load balancing

• To address this, a new scheme was used where each

MPI process could hold a different spatial section of the

real space grid at each (distributed) grid level

• Once the loads on each MPI process were determined

(per grid level), underloaded regions would be matched

up with overloaded regions from another grid level

• Replicated tasks would be used as before to finely

balance the load

CUG2010: Improving the Performance of CP2K on the Cray XT 23

CP2K: Load balancing

• For the example shown above the load on the most

heavily loaded process is reduced by 30%, and there is

now a load imbalance of 3:1

CUG2010: Improving the Performance of CP2K on the Cray XT 24

CP2K: Load balancing

• In this case, there are still a single region(s) of one grid

level with more total work than the average across all

grid levels…

CUG2010: Improving the Performance of CP2K on the Cray XT 25

CP2K: Load balancing

• …but if it is possible to balance the load, this method will succeed:

• Can add more closely spaced grid levels (and so decrease the size

of the peaks) by decreasing

FORCE_EVAL%DFT%MGRID%PROGRESSION_FACTOR

CUG2010: Improving the Performance of CP2K on the Cray XT 26

CP2K: Summary

• Overall speedup for bench_64 – 30 % on 256 cores

(target was 10-15%)

• Overall speedup for W216 – 300 % on 1024 cores

(target was 40-50%)

CUG2010: Improving the Performance of CP2K on the Cray XT 27

CP2K: Introducing OpenMP

• Follow-on dCSE Project to implement mixed-mode

OpenMP and MPI parallelism (Sep 09 – Aug 10)

• Motivations:

– extremely scalable Hartree-
Fock Exchange (HFX1) code
uses OpenMP to access
more memory per task, and
is limited to 32,000 cores by
non-HFX part of the code

– Cray XT architecture going
increasingly multi-core ->
minimise contention for
network access by using
OpenMP on node, MPI
between nodes 1) M. Guidon, J. Hutter, J. VandeVondele, J. Chem. Theory

Compute. 5(11) (2009)

CUG2010: Improving the Performance of CP2K on the Cray XT 28

CP2K: Introducing OpenMP

• Taking a simple, targeted approach – OpenMP regions

only used in areas of the code that are known to take up

the majority of the runtime:

– rs2pw transfer �

– FFTs �

– Mapping gaussians <-> realspace grids �

– Functional Evaluation � (not yet)

CUG2010: Improving the Performance of CP2K on the Cray XT 29

CP2K: Introducing OpenMP

• Results so far (H2O-64):

– Fastest pure MPI run = 85s on 144 cores

– Fastest 2 threads/task = 72s on 288 cores

– Fastest 6 threads/task = 64s on 1152 cores

– Fastest 12 threads/task = 63s on 2304 cores

Bench_64 Performance

1

10

100

1000

10 100 1000 10000

Cores

P
e
rf

o
rm

a
n

c
e MPI Only

2 th

6 th

12 th

linear

CUG2010: Improving the Performance of CP2K on the Cray XT 30

CP2K: Introducing OpenMP

• Results so far (W216):

– Fastest pure MPI run = 1662s on 576 cores

– Fastest 2 threads/task = 1047s on 2304 cores

– Fastest 6 threads/task = 816s on 4608 cores

– Fastest 12 threads/task = 665s on 9216 cores (and more?)

W216 Performance

10

100

1000

10 100 1000 10000

C or e s

MPI Only

2 t h

6 t h

12 t h

linear

CUG2010: Improving the Performance of CP2K on the Cray XT 31

CP2K: Introducing OpenMP

• Some reasons to use mixed-mode OpenMP/MPI

– Using multiple threads per task increases scalability by factor of
nthreads

– Can get a faster time to solution (~25% at expense of more AUs)

– Small runs may be slower with more threads (as the unthreaded
sections are more significant)

– Benefits should increase as HECToR goes to 24-way multi-core
(Phase 2b)

– Even greater speedup when used in load-imbalanced case (less
MPI tasks -> better load balance)

• Also, new sparse matrix library DBCSR by Borstnik et al

(Zurich)

– High scalability

– Able to use OpenMP threads for matrix operations

– In the code since Autumn 2009

CUG2010: Improving the Performance of CP2K on the Cray XT 32

CP2K: Summary

• In the last 2 years, CP2K performance has more than

doubled in the 100s of cores region

• Scalability has been extended well into the 1,000s of

cores (for smallish systems)

• Demonstrated scalability into the 10,000s of cores (for

larger systems, and HFX calculations)

CUG2010: Improving the Performance of CP2K on the Cray XT 33

Questions?

If you are interested in collaborating to improve the
performance or functionality of scientific codes, please

get in touch!

ibethune@epcc.ed.ac.uk

www.epcc.ed.ac.uk/research-collaborations

CUG2010: Improving the Performance of CP2K on the Cray XT 34

Supplementary slides

CUG2010: Improving the Performance of CP2K on the Cray XT 35

CP2K: Realspace to planewave transfer

• Step 1 :

Gaussians are

mapped

CUG2010: Improving the Performance of CP2K on the Cray XT 36

CP2K: Realspace to planewave transfer

• Step 1 :

Gaussians are

mapped

• Step 2: Swap

halos in X

direction

CUG2010: Improving the Performance of CP2K on the Cray XT 37

CP2K: Realspace to planewave transfer

• Step 1 :

Gaussians are

mapped

• Step 2: Swap

halos in X

direction

• Step 3: Swap

halos in Y

direction

CUG2010: Improving the Performance of CP2K on the Cray XT 38

CP2K: Realspace to planewave transfer

• Step 1 :

Gaussians are

mapped

• Step 2: Swap

halos in X

direction

• Step 3: Swap

halos in Y

direction

• Step 4:

Redistribute

CUG2010: Improving the Performance of CP2K on the Cray XT 39

CP2K: Load balancing

• The result: 25% speedup on 128 cores, 10% on 1024

cores

CUG2010: Improving the Performance of CP2K on the Cray XT 40

CP2K: Fast Fourier Transforms

0

1

2

3

4

5

6

1 10 100 1000

C o res

4MB

1MB

64KB

4KB

1KB

512B

256B

