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CP2K: Introduction

• Work funded by the HECToR Distributed Computational 

Science & Engineering (dCSE) Support programme

• In Collaboration with:

– Slater, Watkins @ UCL (HECToR Users)

– VandeVondele et al @ PCI, University of Zurich (CP2K Developers)

• Aug 08 – Jul 09

– HECToR dCSE Project “Improving the performance of CP2K”

• Sep 09 – Aug 10

– Follow on dCSE Project “Improving the scalability of CP2K on multi-
core systems”

• Total of 1 FTE over 2 years
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CP2K: Introduction

• Systems used during the projects

• EPCC, University of Edinburgh

– HECToR ‘Phase 1’

– Cray XT4, 5664 2.8GHz dual-core CPUs

– 2-way shared memory (OpenMP node)

– HECToR ‘Phase 2a’

– Cray XT4, 5664 2.3GHz quad-core ‘Budapest’ CPUs

– 4-way shared memory (OpenMP node)

• CSCS, Swiss National Supercomputing Centre

– Rosa

– Cray XT5, 3688 2.4GHz

hexa-core ‘Istanbul’ CPUs

– 12-way shared memory (OpenMP) node

– Thanks to J. Hutter (Zurich) for access
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CP2K: Introduction

• CP2K is a freely available (GPL) Density Functional Theory 

code (+ support for classical, empirical potentials) – can 

perform MD, MC, geometry optimisation, normal mode 

calculations…

• The “Swiss Army Knife of 

Molecular Simulation”

(VandeVondele)

• c.f. CASTEP, VASP, 

CPMD etc.
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CP2K: Introduction

• Developed since 2000, open source approach, ~20 

developers – mainly based in Univ Zurich / ETHZ / IBM 

Zurich

• 600,000+ lines of Fortran 95, ~1,000 source files

• Employs a dual-basis (GPW1) method to calculate energies, 

forces, K-S Matrix in linear time

– N.B. linear scaling in number of atoms, not processors!

1) J. VandeVondele, M. Krack, F. Mohamed, M.Parrinello, T. Chassaing, J. Hutter, Comp. Phys. Comm. 
167, 103 (2005)
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CP2K: Algorithm

• The Gaussian basis results in sparse matrices which can be 

cheaply manipulated e.g. diagonalisation during SCF 

calculation.

• The Plane wave basis (relying on FFTs) allows easy 

calculation of long-range electrostatics.

• A key step in the algorithm is transforming from one 

representation to the other (and back again) – this is done 

once each way per SCF cycle.
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CP2K: Algorithm

• (A,G) – distributed 

matrices

• (B,F) – realspace

multigrids

• (C,E) – realspace data 

on planewave

multigrids

• (D) – planewave grids

• (I,VI) – integration/ 

collocation of gaussian

products

• (II,V) – realspace-to-

planewave transfer

• (III,IV) – FFTs

(planewave transfer)
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CP2K: MPI Optimisation

• The rs2pw halo swap step becomes a bottleneck as the 

number of cores increases (e.g. on 512 cores, 125^3 grid, 

90%+ of data is in the halo!)

• In CP2K, the halo region (containing Gaussian data 

mapped locally) of a process is sent and summed into the 

core region of a neighbouring process

• So, throw away any data that won’t end up in any core 

region!
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CP2K: MPI Optimisation
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CP2K: MPI Optimisation

• Also added non-blocking MPI communication

• The result – a 14% speedup on 256 cores:

• bench_64 is a small test case of 64 water molecules, 

40,000 basis functions, 50 MD steps
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CP2K: Fast Fourier Transforms

• CP2K uses a 3D Fourier Transform to turn real data on 

the plane wave grids into g-space data on the plane wave 

grids.

• The grids may be distributed as planes, or rays (pencils) 

– so the FFT may involve one or two transpose steps 

between the 3 1D FFT operations

• The 1D FFTs are performed via an interface which 

supports many libraries e.g. FFTW 2/3 ESSL, ACML, 

CUDA, FFTSG (in-built)
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CP2K: Fast Fourier Transforms

• Initial profiling of the 3D FFT using CrayPAT showed 

many expensive calls to MPI_Cart_sub to decompose the 

cartesian topology – called every iteration, generating the 

same set of sub-communicators each time!
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CP2K: Fast Fourier Transforms

• CP2K already has a data structure fft_scratch which stores 

buffers, coordinates etc. for reuse

• The communicators, and a number of other pieces of data were 

added

• Number of MPI_Cart_sub calls reduced from 11722 to 5 (for 50 MD 

steps)

• N.B.  This speedup would increase for longer runs



CUG2010: Improving the Performance of CP2K on the Cray XT 17

CP2K: Fast Fourier Transforms

• Initially the FFTW interface did not use FFTW plans 

effectively

– At each step a plan would be created, used, and 

destroyed.

• But at least the interface was simple, and consistent with 

the other FFT libraries

• Implemented storage and re-use of plans for FFTW 2 and 

3 – for other libraries planning is a no-op
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CP2K: Fast Fourier Transforms

• This allowed the more expensive plan types to used:

• Choice of plan type is exposed to user via 

GLOBAL%FFTW_PLAN_TYPE input file option

• Default remains FFTW_ESTIMATE
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CP2K: Algorithm

• (A,G) – distributed 

matrices

• (B,F) – realspace

multigrids

• (C,E) – realspace data 

on planewave

multigrids

• (D) – planewave grids

• (I,VI) – integration/ 

collocation of gaussian

products

• (II,V) – realspace-to-

planewave transfer

• (III,IV) – FFTs

(planewave transfer)
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CP2K: Load balancing

• The sparse matrix representing the electronic density has 

structure dependent on the physical problem

• For condensed-phase systems atoms are (relatively) 

uniformly distributed over the simulation cell

• Therefore the work of mapping Gaussians to the real 

space grid is fairly well load balanced

• What about interfaces, clusters, other non-homogeneous 

systems?
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CP2K: Load balancing

• We used the ‘W216’ test case – a cluster of 216 water 

molecules in a large (34A^3) unit cell

• Severe load imbalance is encountered (6:1):
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CP2K: Load balancing

• To address this, a new scheme was used where each 

MPI process could hold a different spatial section of the 

real space grid at each (distributed) grid level

• Once the loads on each MPI process were determined 

(per grid level), underloaded regions would be matched 

up with overloaded regions from another grid level

• Replicated tasks would be used as before to finely 

balance the load
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CP2K: Load balancing

• For the example shown above the load on the most 

heavily loaded process is reduced by 30%, and there is 

now a load imbalance of 3:1
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CP2K: Load balancing

• In this case, there are still a single region(s) of one grid 

level with more total work than the average across all 

grid levels…
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CP2K: Load balancing

• …but if it is possible to balance the load, this method will succeed:

• Can add more closely spaced grid levels (and so decrease the size 

of the peaks) by decreasing 

FORCE_EVAL%DFT%MGRID%PROGRESSION_FACTOR
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CP2K: Summary

• Overall speedup for bench_64 – 30 % on 256 cores 

(target was 10-15%)

• Overall speedup for W216 – 300 % on 1024 cores 

(target was 40-50%)
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CP2K: Introducing OpenMP

• Follow-on dCSE Project to implement mixed-mode 

OpenMP and MPI parallelism (Sep 09 – Aug 10)

• Motivations:

– extremely scalable Hartree-
Fock Exchange (HFX1) code 
uses OpenMP to access 
more memory per task, and 
is limited to 32,000 cores by 
non-HFX part of the code

– Cray XT architecture going 
increasingly multi-core -> 
minimise contention for 
network access by using 
OpenMP on node, MPI 
between nodes 1) M. Guidon, J. Hutter, J. VandeVondele, J. Chem. Theory 

Compute. 5(11) (2009)
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CP2K: Introducing OpenMP

• Taking a simple, targeted approach – OpenMP regions 

only used in areas of the code that are known to take up 

the majority of the runtime:

– rs2pw transfer �

– FFTs �

– Mapping gaussians <-> realspace grids �

– Functional Evaluation � (not yet)
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CP2K: Introducing OpenMP

• Results so far (H2O-64):

– Fastest pure MPI run = 85s on 144 cores

– Fastest 2 threads/task = 72s on 288 cores

– Fastest 6 threads/task = 64s on 1152 cores

– Fastest 12 threads/task = 63s on 2304 cores
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CP2K: Introducing OpenMP

• Results so far (W216):

– Fastest pure MPI run = 1662s on 576 cores

– Fastest 2 threads/task = 1047s on 2304 cores

– Fastest 6 threads/task = 816s on 4608 cores

– Fastest 12 threads/task = 665s on 9216 cores (and more?)
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CP2K: Introducing OpenMP

• Some reasons to use mixed-mode OpenMP/MPI

– Using multiple threads per task increases scalability by factor of 
nthreads

– Can get a faster time to solution (~25% at expense of more AUs)

– Small runs may be slower with more threads (as the unthreaded 
sections are more significant)

– Benefits should increase as HECToR goes to 24-way multi-core 
(Phase 2b)

– Even greater speedup when used in load-imbalanced case (less 
MPI tasks -> better load balance)

• Also, new sparse matrix library DBCSR by Borstnik et al 

(Zurich)

– High scalability

– Able to use OpenMP threads for matrix operations

– In the code since Autumn 2009
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CP2K: Summary

• In the last 2 years, CP2K performance has more than 

doubled in the 100s of cores region

• Scalability has been extended well into the 1,000s of 

cores (for smallish systems)

• Demonstrated scalability into the 10,000s of cores (for 

larger systems, and HFX calculations)
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Questions?

If you are interested in collaborating to improve the 
performance or functionality of scientific codes, please 

get in touch!

ibethune@epcc.ed.ac.uk

www.epcc.ed.ac.uk/research-collaborations
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Supplementary slides
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CP2K: Realspace to planewave transfer

• Step 1 : 

Gaussians are 

mapped
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CP2K: Realspace to planewave transfer

• Step 1 : 

Gaussians are 

mapped

• Step 2: Swap 

halos in X 

direction
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CP2K: Realspace to planewave transfer

• Step 1 : 

Gaussians are 

mapped

• Step 2: Swap 

halos in X 

direction

• Step 3: Swap 

halos in Y 

direction
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CP2K: Realspace to planewave transfer

• Step 1 : 

Gaussians are 

mapped

• Step 2: Swap 

halos in X 

direction

• Step 3: Swap 

halos in Y 

direction

• Step 4: 

Redistribute
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CP2K: Load balancing

• The result: 25% speedup on 128 cores, 10% on 1024 

cores
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CP2K: Fast Fourier Transforms
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