EPCC

lain Bethune
ibethune@epcc.ed.ac.uk

CUG 2010
27/05/2010

Improving the
Performance of
on the Cray XT

' aﬂ_ ¢ AV
e % QRN
%L

LR

P ﬁ@\

/
/)
€

o

T8

CP2K: Contents

* Introduction to CP2K

* MPI Optimisation

* Fast Fourier Transforms

* Load Balancing

* |ntroducing OpenMP into CP2K

* Summary

“ CUG2010: Improving the Performance of CP2K on the Cray XT l

CP2K: Introduction T oy ®

* Work funded by the HECToR Distributed Computational
Science & Engineering (dCSE) Support programme

* |n Collaboration with:

— Slater, Watkins @ UCL (HECToR Users)
— VandeVondele et al @ PCI, University of Zurich (CP2K Developers)

* Aug 08 — Jul 09
— HECToR dCSE Project “Improving the performance of CP2K”

* Sep 09 —-Aug 10
— Follow on dCSE Project “Improving the scalability of CP2K on multi-
core systems”

* Total of 1 FTE over 2 years

CUG2010: Improving the Performance of CP2K on the Cray XT l

CP2K: Introduction

* Systems used during the projects

* EPCC, University of Edinburgh
— HECToR ‘Phase 1’

— Cray XT4, 5664 2.8GHz dual-core CPUs £

— 2-way shared memory (OpenMP node)

— HECToR ‘Phase 22’
— Cray XT4, 5664 2.3GHz quad-core ‘Budapest’ CPUs

— 4-way shared memory (OpenMP node)

* CSCS, Swiss National Supercomputing Centre

— Rosa
— Cray XT5, 3688 2.4GHz
hexa-core ‘Istanbul’ CPUs
— 12-way shared memory (OpenMP) node
— Thanks to J. Hutter (Zurich) for access

CUG2010: Improving the Performance of CP2K on the Cray XT l

CP2K: Introduction NIRRG .. o

e CP2K is a freely available (GPL) Density Functional Theory
code (+ support for classical, empirical potentials) — can
perform MD, MC, geometry optimisation, normal mode
calculations...

* The “Swiss Army Knife of
Molecular Simulation”
(VandeVondele)

e c.f. CASTEP, VASP,
CPMD etc.

_ CUG2010: Improving the Performance of CP2K on the Cray XT l

CP2K: Introduction “'“"“-‘m

e CP2K is a freely available (GPL) Density Functional Theory

code (+ support for classical, empirical potentials) — can
perform MD, MC, geometry optimisation, normal mode
calculations...

* The “Swiss Army Knife of
Molecular Simulation”
(VandeVondele)

e c.f. CASTEP, VASP,
CPMD etc.

“ CUG2010: Improving the Performance of CP2K on the Cray XT ln

CP2K: Introduction

* Developed since 2000, open source approach, ~20
developers — mainly based in Univ Zurich / ETHZ / IBM

Zurich
* 600,000+ lines of Fortran 95, ~1,000 source files

* Employs a dual-basis (GPW') method to calculate energies,

forces, K-S Matrix in linear time
— N.B. linear scaling in number of atoms, not processors!

1) J. VandeVondele, M. Krack, F. Mohamed, M.Parrinello, T. Chassaing, J. Hutter, Comp. Phys. Comm.
167, 103 (2005)

m CUG2010: Improving the Performance of CP2K on the Cray XT ‘

CP2K: Algorithm T ‘i o

* The Gaussian basis results in sparse matrices which can be
cheaply manipulated e.g. diagonalisation during SCF
calculation.

* The Plane wave basis (relying on FFTs) allows easy
calculation of long-range electrostatics.

* A key step in the algorithm is transforming from one
representation to the other (and back again) — this is done
once each way per SCF cycle.

CUG2010: Improving the Performance of CP2K on the Cray XT l-

CP2K: Algorithm

* (A,G) —distributed

matrices
* (B,F)—realspace
multigrids m >
' L

* (C,E) —realspace data
on planewave

multigrids A.G) (BF) l“'”’}
e (D) - planewave grids |

* (LLVI) —integration/
collocation of gaussian

products =
(1,IV)

* (Il,V) —realspace-to-
planewave transfer

e (lILIV)—FFTs
(planewave transfer)

“ CUG2010: Improving the Performance of CP2K on the Cray XT I-

o (CE)

CP2K: MPI Optimisation . Weest C

* The rs2pw halo swap step becomes a bottleneck as the
number of cores increases (e.g. on 512 cores, 125”3 grid,
90%+ of data is in the halo!)

* |In CP2K, the halo region (containing Gaussian data
mapped locally) of a process is sent and summed into the
core region of a neighbouring process

* So, throw away any data that won’t end up in any core
region!

m CUG2010: Improving the Performance of CP2K on the Cray XT ‘

CP2K: MPI Optimisation “'a“‘im

Before | After
Avg. Message Size (bytes) | 194688 | 91008
Time in SendRecv (&) 0.468 | 0.22
Time packing X bufs (s) 0.107 | 0.002
Time unpacking X bufs (s) | 0.189 | 0.003
Time packing ¥ bufs (s) 0.060 | 0.005
Time unpacking Y bufs (s) | 0.096 | 0.017
Time packing 7 bufs (z) 0.054 | 0.054
Time unpacking £ bufs () | 0.091 0.091

60 1terations of the rs2pw libtest.

< Lo TR CUG2010: Improving the Performance of CP2K on the Cray XT & SRR

before and after optimisation

CP2K: MPI Optimisation

* Also added non-blocking MPI communication

* The result — a 14% speedup on 256 cores:

Cores 16 | 32 | 64 125 | 256 [512
Before(s) 0952 | 541 | 318 | 26% | 217 | 264
After(s) O35 | 519 | 206 [247 | 190 [235
Speedup(%) | 2 4 7 0 14 |12

Comparison of bench_64 runtime before and after rs2pw optimisation

* bench 64 is a small test case of 64 water molecules,

40,000 basis functions, 50 MD steps

CUG2010: Improving the Performance of CP2K on the Cray XT l

CP2K: Algorithm

* (A,G) —distributed

matrices
* (B,F)—realspace
multigrids m >
' L

* (C,E) —realspace data
on planewave

multigrids (A.G) (B.F) I“"‘”
e (D) - planewave grids |

* (LLVI) —integration/
collocation of gaussian

products =
(V)

* (Il,V) —realspace-to-
planewave transfer

e (lILIV)—FFTs
(planewave transfer)

“ CUG2010: Improving the Performance of CP2K on the Cray XT I

o (CE)

CP2K: Fast Fourier Transforms = “HE&E o

* CP2K uses a 3D Fourier Transform to turn real data on
the plane wave grids into g-space data on the plane wave
grids.

* The grids may be distributed as planes, or rays (pencils)
— so the FFT may involve one or two transpose steps
between the 3 1D FFT operations

* The 1D FFTs are performed via an interface which
supports many libraries e.g. FFTW 2/3 ESSL, ACML,
CUDA, FFTSG (in-built)

CUG2010: Improving the Performance of CP2K on the Cray XT l

CP2K: Fast Fourier Transfor

o,

»

ms

R
i

-

AEWMATNT o

* [nitial profiling of the 3D FFT using CrayPAT showed
many expensive calls to MPI_Cart_sub to decompose the
cartesian topology — called every iteration, generating the
same set of sub-communicators each time!

Time % | Time |Imk. Time |

100.0% | 19.588726 |

| 62.8} | 12.298019 |

|l 37.1% | 7.270134
|l 24.4% | 4.782975
| | 0.7% | 0.144511
| | 0.2% | 0.034614
| | 0.1% | 0.025280
| | 0.1% | 0.014001
| | 0.0% | 0.008200
| | 0.0% | 0.007483

o o O O O O = O

|Group
| Function
| PE.Thread='HIDE’

| Total

|mpi_cart_sub_
|mpi_allteallwv_
|mpi_barrier_
|mpi_wtime_
|mpi_cart_rank_
|mpi_comm_free_
|mpi_cart_get_

Imb. | Calls

| Time % |

| |
-— -- | 126389.0

- -= | 120382.0 |MFI

.741629 | 9.3% | 4000 .
L2ETE00 | 20.9% | 4000 .
L008980 | 4.86% | 2002,
003197 | 8.5% | 24085.
002017 | T.4% | TO001.
001183 | T.7% | 4002 .
Loo1s27 | 18.3% | E002.
001781 | 19.3% | E005 .

o O O O O O O O

|mpi_comm_size_

CUG2010: Improving the Performance of CP2K on the Cray XT l

-

CP2K: Fast Fourier Transfdr‘r‘ﬁs"l‘ a0\

* (CP2K already has a data structure ££t_scratch which stores
buffers, coordinates etc. for reuse

* The communicators, and a number of other pieces of data were

added
* Number of MPI_Cart_sub calls reduced from 11722 to 5 (for 50 MD
steps)
Clores 64 125 | 256 | 512
Before(s) 366 | 264 | 191 | 238
After(s) A63 | 250 | 177 | 213
Speedup(%) | 1 G = 12

Comparison of bench_64 runtime before and after FF'T caching optimisation

* N.B. This speedup would increase for longer runs

_ CUG2010: Improving the Performance of CP2K on the Cray XT l

- .

R

CP2K: Fast Fourier Transfor:ms" N

5

all .

* [nitially the FFTW interface did not use FFTW plans

effectively

— At each step a plan would be created, used, and
destroyed.

* But at least the interface was simple, and consistent with
the other FFT libraries

* Implemented storage and re-use of plans for FFTW 2 and
3 — for other libraries planning is a no-op

“ CUG2010: Improving the Performance of CP2K on the Cray XT l

CP2K: Fast Fourier Transforr‘ﬁ’s"‘m‘

* This allowed the more expensive plan types to used:

Time(s) | Speedup(%)

Original Code 097

FFTW_ESTIMATE 095 0.2
FFTW_MEASURE 059 0.8
FFTW_PATIENT 075 2.3

FETW_EXHAUSTIVE | 1051

Time and speedup for 2000 3D FFTs using different plan tyvpes

* Choice of plan type is exposed to user via
GLOBAL%FFTW_PLAN_TYPE input file option

* Default remains FFTW_ESTIMATE

“ CUG2010: Improving the Performance of CP2K on the Cray XT l

CP2K: Algorithm

* (A,G) —distributed

matrices
* (B,F)—realspace
multigrids m >
' L

* (C,E) —realspace data
on planewave

multigrids (A.G) (B.F) I“"‘”
e (D) - planewave grids |

* (LLVI) —integration/
collocation of gaussian

products =
(V)

* (Il,V) —realspace-to-
planewave transfer

e (lILIV)—FFTs
(planewave transfer)

“ CUG2010: Improving the Performance of CP2K on the Cray XT I

o (CE)

CP2K: Load balancing T iy o

* The sparse matrix representing the electronic density has
structure dependent on the physical problem

* For condensed-phase systems atoms are (relatively)
uniformly distributed over the simulation cell

* Therefore the work of mapping Gaussians to the real
space grid is fairly well load balanced

* What about interfaces, clusters, other non-homogeneous
systems?

CUG2010: Improving the Performance of CP2K on the Cray XT l

CP2K: Load balancing @ _— _.

* We used the ‘W216’ test case — a cluster of 216 water
molecules in a large (34A”3) unit cell

* Severe load imbalance is encountered (6:1):

At the end of the load_balance_distributed

Maximum load: 1738978
Average load: 176234
Minimum load: 0

At the end of the load_balance_replicated

Maximum load: 1738978
Average load: 475034
Minimum load: 286053

“ CUG2010: Improving the Performance of CP2K on the Cray XT l

CP2K: Load balancing S oy o

* To address this, a new scheme was used where each
MPI process could hold a different spatial section of the
real space grid at each (distributed) grid level

* Once the loads on each MPI process were determined
(per grid level), underloaded regions would be matched
up with overloaded regions from another grid level

* Replicated tasks would be used as before to finely
balance the load

CUG2010: Improving the Performance of CP2K on the Cray XT l

CP2K: Load balancing

* For the example shown above the load on the most
heavily loaded process is reduced by 30%, and there is
now a load imbalance of 3:1

After load_balance_distributed

Maximum load: 1165637
Average load: 176232
Minimum load: o

After load_balance_replicated

Maximum load: 1165637
Average load: 475032
Minimum 1load: 317590

_ CUG2010: Improving the Performance of CP2K on the Cray XT l

CP2K: Load balancing AU .. o

* In this case, there are still a single region(s) of one grid
level with more total work than the average across all
grid levels...

0TS

Lol L]
H Repd cabed
= O Lasssd 1
E AN
B Ll 0
O Rank

i 4 7 10 1% 48 18 Z2 25 2B 31 3 T 40 4% 45 40 52 5 B =1 =4
RAank

_ CUG2010: Improving the Performance of CP2K on the Cray XT l

CP2K: Load balancing “’ﬁ*“‘im

 ...butifitis possible to balance the load, this method will succeed:

160D

140D

B Fspdicaled
=
g o OLlesd 1
Hilzsl 0
O Rark
e

i z 3 4 5 [il g 9 in 11 12 ik 14 15 16
Rank

* (Can add more closely spaced grid levels (and so decrease the size
of the peaks) by decreasing
FORCE_EVAL%DFT%MGRID%PROGRESSION_FACTOR

“ CUG2010: Improving the Performance of CP2K on the Cray XT I

n, T L
t“-qA‘I"l‘
A u\

CP2K: Summary

* Overall speedup for bench_64 — 30 % on 256 cores
(target was 10-15%)

* Qverall speedup for W216 — 300 % on 1024 cores
(target was 40-50%)

“ CUG2010: Improving the Performance of CP2K on the Cray XT l

CP2K: Introducing OpenMP

* Follow-on dCSE Project to implement mixed-mode
OpenMP and MPI parallelism (Sep 09 — Aug 10)

* Motivations:

_ eX’[rem ely Scalabl e H artree' Hybrid functionals for condensed phase systems
CP2K’s performance on ORNL’s Cray XTS5
Fock Exchange (HFX') code 1310mf]
uses OpenMP to access ol |
more memory per task, and o 16384 .
is limited to 32,000 cores by % soor -
o, B |
non-HFX part of the code ol |
. . B L7 — CP2K [all-inclusive] |
— Cray XT architecture going 12?3 . '_*.fiiﬁﬁ:;‘“;?;i.i"fiz"é‘;%‘;mde] |
— — Ideal speedup [unlimited memory]

increasingly multi-core -> | — |
g y ,Lc)’o P XQ:-LD‘ ’LQD‘% &ng %\q’L \65%& 3'1(\6% (355%6

minimise contention for

cores

network access by using M, idn ot . Vo oni, Ui, Zac Bl it oo,
OpenMP on node, MPI
1) M. Guidon, J. Hutter, J. VandeVondele, J. Chem. Theory
etween nodes

Compute. 5(11) (2009)
' '_ -+ CUG2010: Improving the Performance of CP2K on the Cray XT l

CP2K: Introducing OpenMF; = “m

* Taking a simple, targeted approach — OpenMP regions

only used in areas of the code that are known to take up
the majority of the runtime:

— rs2pw transfer 4
- FFTs v/
— Mapping gaussians <-> realspace grids v

— Functional Evaluation ¥ (not yet)

“ CUG2010: Improving the Performance of CP2K on the Cray XT l

CP2K: Introducing Openl_\/'l"lsq“;*ml

* Results so far (H,O-64):

— Fastest pure MPlrun = 85s on 144 cores
— Fastest 2 threads/task = 72s on 288 cores
— Fastest 6 threads/task = 64s on 1152 cores
— Fastest 12 threads/task = 63s on 2304 cores

Bench_64 Performance

1000

100

—— MPIOnly
—=—2th
—+—6th

—eo—12th

Performance

— — linear

10 1

10 100 1000 10000
Cores

_ CUG2010: Improving the Performance of CP2K on the Cray XT l

CP2K: Introducing OpenM‘ﬁq""*';m

* Results so far (W216):
— Fastest pure MPlrun = 1662s on 576 cores
— Fastest 2 threads/task = 1047s on 2304 cores
— Fastest 6 threads/task = 816s on 4608 cores
— Fastest 12 threads/task = 665s on 9216 cores (and more?)

W216 Performance

CP2K: Introducing OpenMP WIS S

* Some reasons to use mixed-mode OpenMP/MPI

— Using multiple threads per task increases scalability by factor of

nthreads

— Can get a faster time to solution (~25% at expense of more AUs)
— Small runs may be slower with more threads (as the unthreaded
sections are more significant)

— Benefits should increase as HECToR goes to 24-way multi-core
(Phase 2b)

— Even greater speedup when used in load-imbalanced case (less
MPI tasks -> better load balance)

* Also, new sparse matrix liorary DBCSR by Borstnik et al

(Zurich)
— High scalability
— Able to use OpenMP threads for matrix operations
— In the code since Autumn 2009

CUG2010: Improving the Performance of CP2K on the Cray XT l

CP2K: Summary L

* Inthe last 2 years, CP2K performance has more than
doubled in the 100s of cores region

e Scalability has been extended well into the 1,000s of
cores (for smallish systems)

* Demonstrated scalability into the 10,000s of cores (for
larger systems, and HFX calculations)

“ CUG2010: Improving the Performance of CP2K on the Cray XT l

Questions?

If you are interested in collaborating to improve the
performance or functionality of scientific codes, please
get in touch!

ibethune@epcc.ed.ac.uk

www.epcc.ed.ac.uk/research-collaborations

m CUG2010: Improving the Performance of CP2K on the Cray XT ‘

Supplementary slides IS\ Seleel

— CUG2010: Improving the Performance of CP2K on the Cray XT

.: ,'\"'1 T
CP2K: Realspace to plan 333' |

e Step1:
Gaussians are
mapped

— CUG2010: Improving the Performance of CP2K on the Cray XT l

CP2K: Realspace to piané‘\fvﬁ%-'m

e Step1:
Gaussians are
mapped

* Step 2: Swap
halos in X

direction

“ CUG2010: Improving the Performance of CP2K on the Cray XT I

CP2K: Realspace to planew ve transier LA (= oloe]]

e Step1:
Gaussians are
mapped

* Step 2: Swap
halos in X

direction

e Step 3: Swap
halosinY

direction

“ CUG2010: Improving the Performance of CP2K on the Cray XT I

CP2K: Realspace to piangwge\e’*'m

e Step1:
Gaussians are
mapped

* Step 2: Swap
halos in X
direction

e Step 3: Swap
halosinY
direction

e Step 4:
Redistribute

“ CUG2010: Improving the Performance of CP2K on the Cray XT l

CP2K: Load balancing "'“*‘*‘m

* The result: 25% speedup on 128 cores, 10% on 1024

cores
Cores 125 | 256 | 512 1024 | 2045
Before(s) SO0 | 34909 | 2445 | 15649 | 2565
After(s) AS00 | 2859 | 2006 | 1425 | 2166
Speedup(%) | 25 23 16 10 18

Comparison of W216 runtime before and after rank reordering for load balance

“ CUG2010: Improving the Performance of CP2K on the Cray XT l

CP2K: Fast Fourier Transfor Aéw;ml

- ——4MB
—=—1MB
. —— 64KB
3 4KB
—a— 1 KB
° ——512B
. i | _& 2568
0 ‘ ;
1 10 100 1000
Cores

“ CUG2010: Improving the Performance of CP2K on the Cray XT l

