
Parallelism in System Tools

Kenneth D. Matney, Sr. and Galen Shipman,
Oak Ridge Leadership Computing Facility,
Oak Ridge National Laboratory.

ABSTRACT: The Cray XT, when employed in conjunction with the Lustre filesystem,
has provided the ability to generate huge amounts of data in the form of many files.
Typically, this is accommodated by satisfying the requests of large numbers of Lustre
clients in parallel. In contrast, a single service node (Lustre client) cannot adequately
service such datasets. This means that the use of traditional UNIX tools like cp, tar,
et alli (with have no parallel capability) can result in substantial impact to user
productivity. For example, to copy a 10 TB dataset from the service node using cp would
take about 24 hours, under more or less ideal conditions. During production operation,
this could easily extend to 36 hours. In this paper, we introduce the Lustre User Toolkit
for Cray XT, developed at the Oak Ridge Leadership Computing Facility (OLCF). We
will show that Linux commands, implementing highly parallel I/O algorithms, provide
orders of magnitude greater performance, greatly reducing impact to productivity.

KEYWORDS: Cray XT, parallel, system tools, cp, spdcp, tar, pltar

1. Introduction
Users of the Cray XT at the Oak Ridge National

Laboratory Leadership Computing Facility (OLCF) have
succeeded in creating parallel applications that perform
I/O in parallel highly effectively. This is a result of
enabling technologies provided by Lustre1 and the Spider
center-wide filesystems2. In turn, this has caused the
creation of huge datasets consisting of thousands of files
and many, many gigabytes of data. The problem with
data is that it cannot simply lie at rest. Sometimes, it
needs to be copied from one place to another for further
processing and yet, at the same time, avoiding change to
the original data. Sometimes, it needs to be archived for
safekeeping or future reference. Sometimes, the user
finds it more convenient to process the data with standard
UNIX/Linux system tools/utilities than to write a custom
application.

2. Motivation.
The typical user of the OLCF Cray XT really would

like to perform his research in a timely manner. But,
using Linux cp to copy a huge dataset, Linux tar to
archive a huge dataset, or some other UNIX/Linux
command (e.g., grep, awk, etc.) to process the information
of a huge dataset does not yield performance consistent
with this objective. In addition, with each new generation
of computer system that we install, we find that the

amount of data grows exponentially. This really should
come as little surprise, since the amount of system
resources (memory, disk) has grown exponentially as
well. As a result, users solve larger problems, create
larger, more complicated models, and in turn, need to
process greater amounts of data. In the OLCF, we already
have users with datasets that exceed 10 TB of storage. It
is just a matter of time until this grows to 100 TB and
beyond.

The problem with large numbers like 1 TB of storage
and 100 TB of storage is that they just do not translate
into human terms very well. However, by looking at the
time that it takes to copy a dataset or to archive a dataset,
we can understand impacts on productivity made by the
serial system tools of today. In general, our benchmarks
will show that Linux cp gets about 235 MB/s on the
widow13 filesystem. This translates to about
8500 seconds (about 2.4 hrs) for a 1 TB dataset. (Bear in
mind that, first, we read 1 TB and then, we write 1 TB.)
In human terms, 2½ hours is a minor inconvenience.
However, at 10 TB, this time will have grown to about
24 hrs and we start to see a real impact to user
productivity. And, when the dataset has grown 100 TB,
the user finds himself waiting around for 10 days for the
copy to complete. At this point, impact to productivity
may be an issue.

Cray User Group 2010 Proceedings 1 of 5

Creating a tarball displays similar performance
characteristics. On the widow1 filesystem, we can create
an archive at up to about 270 MB/s, extract at up to
280 MB/s, and list at up to 310 MB/s. For a 1 TB dataset,
these translate to times of about 7300 seconds,
6400 seconds, and 7100 seconds, respectively. However,
by the time that the dataset has grown to 100 TB, these
times will have increased to 204 hrs, 179 hrs, and 196 hrs,
respectively. These are between 7 - 9 days and again,
represent a substantial impact to productivity.

We will demonstrate, in this paper, that by using
system tools which implement parallel I/O algorithms, a
degree of sanity can be restored functions like cp and tar.
It certainly is not reasonable to expect a user to wait
around for a week while his dataset is being processed by
a system tool; especially when the dataset was generated
in less than a day. Even if this were reasonable, it
definitely would not be desirable. To this end, we have
created parallel, Lustre-aware versions of the Linux cp
and tar commands. The parallel version of cp is spdcp
and the parallel version of tar is pltar. Description of the
algorithms employed by spdcp and pltar is beyond the
scope of this paper. Details of spdcp algorithms have
been published4. Furthermore, spdcp has been released
under GPL5 and we anticipate that pltar will be released
under GPL, as well.

3. Performance vs. Benchmarks
In order to get some measure of the impact to

productivity caused by serial vs. parallel system tools, we
need to evaluate the performance of each. Another way of
putting this is that the impact to productivity is directly
proportional to the size of the dataset and the performance
of the tool. Of course, if we could eliminate the data,
what a deal! So, we will require some sort of benchmark
that will provide representative values for the
performance of cp and tar, and, their parallelized
versions, spdcp and pltar.

For the purpose of this discussion, we shall define
two synthetic datasets. But, before describing the
datasets, a clarification on units is in order. Herein, we
always refer to sizes and rates in base 10, except as
explicitly noted. So, 1 MB/s is 1 x 106 bytes per second.
The allocation units of the widow1 filesystem are
multiples of 1 MB(2) or 1,048,576 bytes. However, a
dataset size of 100 TB specifies 1 x 1014 bytes of data.

The first dataset consists of small files. In this
context, small is relative and the file size will be
256 MB(2) with 2688 files distributed among
12 directories. The second dataset consists of large files,
with a size of 2048 MB(2) and has 336 files distributed
among 12 directories. The files in the first dataset are
striped to 1 OST and the files in the second dataset are
striped to 8 OSTs. It will be observed that the
benchmarks are constructed such that each dataset places
the same amount of data on each OST used. Thus,
performance variations are due to the ability of Lustre to
handle large distributed (among OSTs) files vs. files that

reside wholly on a single OST. Moreover, each dataset
contains roughly 722 GB of data.

For cp and spdcp, benchmarking is fairly straight-
forward. We just measure the time for each tool to
process each of the two datasets. However, for tar and
especially pltar, the situation is more complicated. First,
the archival tools can either create, list, or extract from an
archive. Second, the performance of pltar will be seen to
be a function of the stripe width of the archive. Thus, a
parametric study will be required.

For parallel tools, the number of clients used can be a
factor in performance. However, because the number of
servers and targets in any filesystem is finite and limited,
and because modern cluster-like systems, as used with the
Cray XT, provide so many potential clients; by choosing
to employ a sufficient but negligible number of clients,
this factor readily is eliminated for functions that are I/O
bound. For example, widow1 has 96 OSSes, or servers
by which it can transfer data. In contrast, the OLCF
workhorse, jaguarpf has 18684 nodes, each with 12 cores
for a total of 224,208 cores and each of which can move
data. Thus, the 32 nodes (384 cores) that we use for the
spdcp and pltar benchmarks consist of a negligible
fraction (0.17%) of the total compute resource available
and impact to computation job scheduling is minimal.

The spdcp tool previously was demonstrated6 on an
earlier implementation of the Lustre filesystem. The
differences in filesystem configurations, in fact, will lead
to differences in performance for the spdcp tool. At the
same time, we would like to show that the investment in
additional resources has provided some sort of benefit.
So, in order to take advantage of the additional hardware
offered by the configuration of the widow1 filesystem, we
necessarily must run larger benchmarks than used for the
previous demonstration.

4. Linux Command Performance

4.1 The Performance of cp
The basis of comparison for copy performance is cp.

Herein, we present the results for copy of the small file
dataset and copy of the large file dataset. The time
required to copy the small file dataset on widow1 was
6152.61 seconds for a bandwidth of 235 MB/s. The time
required to copy the large file dataset on widow1 was
4863.40 seconds for a bandwidth of 297 MB/s. These
values yield an average bandwidth of 262 MB/s. If we
translate this performance average to the length of time
that it would take to copy a 100 TB dataset, we get around
212 hrs or about 9 days. The good news is that, if we are
lucky, we will not see any datasets this large for a few
years. The bad news is that they are coming.

4.2 The Performance of tar
The basis for comparison used will be GNU tar using

the POSIX 1003.1-2001 format. By way of this format,
pltar can store and restore Lustre striping data via the
PAX7 attribute block. Without going into the details, this
also can provide pltar a subtle performance advantage

Cray User Group 2010 Proceedings 2 of 5

over GNU tar when the members of the archive use tuned
striping meta-data values. At the same time, the
additional overhead incurred over and above the legacy
tar format is very small for 1 MB(2) and larger sized
members (usually less than 0.1%). For these benchmarks,
the overhead does not exceed 0.0004%
[1 kB(2) / 256 MB(2)].

Figure 1. Performance characteristic of GNU tar as seen
 on the widow1 filesystem.

As seen in Figure 1, the performance of GNU tar
does not change appreciably over a wide range of OST
stripe counts. This is just another way of saying that
increasing the stripe width of the archive does not
contribute to improved performance for tar. We provide
performance results for archives striped to up to 32 OSTs.
We also see that the time required to create or extract
members from an archive is roughly the same; while the
time required to list the archive is about half of that for
creation/extraction. If we base bandwidth on the size of
the archive, tar gets a peak (read + write) of about
280 MB/s (small files). If we use the large striped files,
the bandwidth is reduced to about 255 MB/s. In either
case, the listing bandwidth is about 310 MB/s. Note that
except for listing the tarball, these bandwidths cover both
read and write operations.

To give this some perspective, assume that there
exists a 100 TB dataset that needs to be placed into a
tarball. We can use the average of the bandwidths seen

here to make an estimate of how long this would take. As
in the cp case, first tar reads the data, then it writes the
data. So, we have 2 x 100 TB / 267 MB/s for a reasonable
approximation and running the numbers yields roughly
9 days. This is basically the same story as for cp.

5. Parallelized Command Performance

5.1 The Performance of spdcp
At this point, it might be best to take a step

backwards. It is unfair to introduce a command, like
spdcp, without some explanation of its design goals.
Looking at cp, one of the shortcomings is that the Lustre
meta-data is not preserved in the copy. Let's consider how
this can hurt application performance.

If I have one of those 100 TB datasets, an application
could have generated a 1 - 10 TB shared file for part of its
restart procedure. While this sounds like a lot of data, if
spread across 200,000 cores it only amounts to 5 – 50 MB
per core. So, if it originally were striped across 64 OSTs,
copying to the OLCF default puts it across 4 OSTs and
would make the application restart take as much as 16X
as long. On the other hand, if the dataset also contains a
great many smaller files, setting the default stripe width to
64 OSTs can cause other performance issues. So, there is
motivation to provide a version of cp that preserves the
Lustre meta-data upon copy. The simplest way to
implement this would have been to adapt GNU cp to
Lustre, but we still would be limited to single-node data
movement performance.

The time required for spdcp to copy the small file
dataset on was 66.37 seconds, for a total bandwidth of
21,700 MB/s. This is a speedup of almost 93X over cp.
The previous small file benchmark (run on the Lustre
implementation6) only achieved a bandwidth of
9,300 MB/s. So, we see over twice the bandwidth by
spdcp as previously demonstrated. In the large files test,
the time required for spdcp to copy the dataset was
80.29 seconds, for a bandwidth of 18,000 MB/s. This is a
speedup of almost 61X over cp. In the previous test6,
spdcp only got 7,300 MB/s. So, again we see that spdcp
on widow1 is demonstrating between 2 and 2½ times the
bandwidth as previously achieved. This provides a good
degree of confidence that spdcp will be able to scale with
the size of the dataset/Lustre installation.

5.2 The Performance of pltar
The GNU tar command has the same performance

and parallelism issues as does GNU cp. It does not retain
Lustre striping information and it is serial. But, it has an
additional issue. While the buffer size can be reset by an
argument, it is only very seldom that anyone does it.
Basically, a default tar, run in parallel, would beat the tar
out of Lustre. So, what is tar doing that is so bad? First,
when creating an archive, the default block size of 10
kB(2) would create a mini-lock-storm for extending the
file (archive). The only saving grace is that tar is serial;
so, it cannot beat up the MDS (Meta Data Server) that
badly. On the other hand, this does generate an excessive
amount of meta-data traffic. Second, when reading files
to include as members in the archive, it reads a default

Cray User Group 2010 Proceedings 3 of 5

0.0010 0.0100 0.1000 1.0000

10

100

1000

10000

Performance of GNU tar on the widow1 filesystem

tar Create Small
tar List Small
tar Extract Small
tar Create Large
tar List Large
tar Extract Large

1/(OSTs)

T
im

e
 (

se
co

n
ds

)

10 kB(2) buffer throughout the file. In a production
environment, this will lead to increased thrashing on the
OSTs. So, while it would be fairly simple to modify GNU
tar to use larger defaults with Lustre and to implement
Lustre adaptations, we still would have the issue of
parallelism.

The GNU tar command processes all members of the
archive serially. Unfortunately, it is not simple to make
GNU tar parallel. Indeed, in order to make a parallel tar,
we must lose the concept of serial tapes entirely. This
necessitates a complete design change. However, given
that we are willing to make these concessions, radical
performance improvement is possible. Note that htar8,

used for HPSS9 operations, employs a similar concept, but
does not have multi-node capability and is not Lustre-
aware.

Figure 2. Performance characteristic of pltar relative
 to GNU tar on the widow1 filesystem.

As seen in Figure 2, the performance of pltar scales
very linearly with the multiplicative inverse of the number
of OSTs across which the archive is striped. Data is
provided for archives striped through 128 OSTs.
Translating the times to bandwidth, when listing the
archive, pltar gets up to 9800 MB/s. This is almost 32X
the bandwidth enjoyed by GNU tar. Note that, for listing,
the scaling continues through 128 OSTs.

Upon extraction, pltar gets a bandwidth of up to
12,300 to 12,500 MB/s. In fact, it is relatively insensitive
as to whether the archive contains large files or small files.
This is an average of about 46X the bandwidth attained by
GNU tar. Unfortunately, the scaling holds up only
through 64 OSTs.

Upon creation, pltar only gets a bandwidth of
10,700 to 12,100 MB/s. Even so, the bandwidth is no less
than 42X of what is seen with GNU tar. Again, the
scaling holds up only through 64 OSTs.

To put this into perspective, let's return to that 100 TB
dataset that needs to be placed into a tarball. Using the
average of the bandwidths here to estimate the time for
pltar to extract the archive, our reasonable approximation
becomes 2 x 100 TB / 11,400 MB/s. But, this time, when
we run the numbers, we get roughly 2½ hours instead of
9 days. Or, to look at this another way, if I am restoring
my data from an archive and using tar, I will get to work
on doing science in about a week and an half. But, using
pltar, I can start work in a couple of hours. We definitely
an make a positive impact on the worker's productivity.

It also is useful to examine the results of the curve fit
to the pltar performance data. Specifically, as the number
of OSTs approaches � , the time to list the archive
approaches 33.7 seconds. This time represents the total
non-scalable overheads in pltar, including time to launch
the parallel job, synchronizations between parallel
processes, and time to clean up after the parallel job
completes. Expressed as a fraction of the total work done,
0.64%, it demonstrates that pltar is very highly parallel.

6. Further Work on pltar, and Beyond
pltar, as a system utility, provides a lot of power and

performance. However, the filters that GNU tar may
employ have not yet been implemented, In addition,
compressed archives are not yet supported. There is a lot
of potential performance possible with compressed
archives. For one thing, depending on the compressibility
of the data, the archive might be much smaller. For
example, assuming a compression factor of 2.5, the
archive would occupy only 40% of the storage. While we
would have to use many more compute nodes (cores), this
means that we potentially could list/write/extract a
100 TB dataset as a tarball in about an hour.

With spdcp and pltar, we only have begun to address
the peta-scale to exa-scale data gap. There are many
system utilities that have not been parallelized. Examples
include10,11: bzip2, grep/awk, cut/paste, and sort. So
much remains to be done for these systems (hardware and

Cray User Group 2010 Proceedings 4 of 5

0.0010 0.0100 0.1000 1.0000

10

100

1000

10000

f(x) = 5.2192E+003x + 3.3732E+001
R² = 9.9920E-001

Performance of GNU tar vs. pltar on the widow1 filesystem

Create Small
List Small
Extract Small
Create Large
List Large
Linear
Regression for
List Large
Extract Large
tar Create Small
tar List Small
tar Extract Small
tar Create Large
tar List Large
tar Extract Large

1/(OSTs)

T
im

e
 (

se
co

n
ds

)

software) to be capable of unfettered processing at larger
scales. As a result, at present, the best that we can provide
is a partially crippled operating system. Anytime these
huge datasets must be processed by a system utility,
performance will suffer so badly that the user will need to
write a custom post-processor.

7. Conclusions
The commands of the UNIX/Linux operating system

have long served to assist in scientific and engineering
investigations. There are many system utilities to aid in
this effort. However, as systems have increased in scale,
parallel filesystems have been called into service to satisfy
the I/O needs of the applications that run on these
systems. As a result, applications have access to
filesystem capabilities that far exceed those of a single
node. In turn, the datasets created by these applications
can and have become huge. These datasets are so large
that it becomes impractical to process them with standard
system commands. Thus, systems commands that
implement parallel I/O across multiple nodes become a
necessity. The requisite parallelism, through spdcp and
pltar, has been demonstrated to exist. Furthermore,
performance gains of 30X to 100X have been
demonstrated, as well. The performance gain that is
achievable depends upon the amount of parallelism inherit
in the operations performed. The only practical
conclusion is that parallel system tools are vital to
progress.

Acknowledgments
The authors would like to thank the staff and

colleagues who have contributed material to this paper.
Research sponsored by the Mathematical, Information,
and Computational Sciences Division, Office of Ad-
vanced Scientific Computing Research, U.S. Department
of Energy, under Contract No. DE-AC05-00OR22725
with UT-Battelle, LLC.

About the Authors
Kenneth D. Matney, Sr. is a researcher in the

Technology Integration Group which is part of the Oak
Ridge Leadership Computing Facility at Oak Ridge
National Laboratory. E-Mail: matneykdsr@ornl.gov.
Galen Shipman is the Group Leader for the Technology
Integration Team,. E-mail: gshipman@ornl.gov.

Selected References and Notes
1. Lustre™ is an Open-Source parallel filesystem and a

trademark of Oracle.

2. Spider is a Lustre implementation, based on
1344 OSTs and 192 OSSes. It is accessible to all
OLCF computational facilities and organized into
two separate filesystems.

3. The widow1 filesystem is one of the two filesystems
in Spider and consists of 672 OSTs and 96 OSSes.

4. Ken Matney, Shane Canon, and Sarp Oral, A first
look at scalable I/O in Linux commands, Proceedings
of the 9th LCI International Conference on High-
Performance Clustered Computing

5. Source code to spdcp is available. Web Page
http://www.nccs.gov/user-support/center-

projects/lustre-user-toolkit/

6. Prior to Spider, the implementations of Lustre on
OLCF computational facilities all were directly
attached to the computer system. In addition, the
particular implementation on which spdcp was
benchmarked consisted of 80 OSTs and 20 OSSes.

7. The PAX header is an extension to USTAR (tar)
format, IEEE Std. 1003.1, 2001 pax format. This
permits archival/restore of filesystem-specific
meta-data.

8. Htar is a tar utility to communicate directly with
archives in HPSS. Web Page
http://www.mgleicher.us/GEL/htar/

9. HPSS is an hierarchical storage system, commonly
back-ended by tape library. Web Page
http://www.hpss-collaboration.org/

10. There are parallel implementations of bzip2, however
they limit scalability since parallel I/O is not
implemented. Web Page
http://compression.ca/mpibzip2/

11. Jeff Gilchrist and Aysegul Cuhadar. Parallel Lossless
Data Compression Based on the Burrows-Wheeler
Transform, In 21st International Conference on
Advanced Networking and Applications (AINA ’07),
pp. 877-884, 2007.

Cray User Group 2010 Proceedings 5 of 5

mailto:matneykdsr@ornl.gov
http://compression.ca/mpibzip2/
http://www.hpss-collaboration.org/%20
http://www.mgleicher.us/GEL/htar/
http://www.nccs.gov/user-support/center-projects/lustre-user-toolkit/
http://www.nccs.gov/user-support/center-projects/lustre-user-toolkit/
mailto:gshipman@ornl.gov

	1. Introduction
	2. Motivation.
	3. Performance vs. Benchmarks
	4. Linux Command Performance
	4.1 The Performance of cp
	4.2 The Performance of tar

	5. Parallelized Command Performance
	5.1 The Performance of spdcp
	5.2 The Performance of pltar

	6. Further Work on pltar, and Beyond
	7. Conclusions
	Acknowledgments
	About the Authors
	Selected References and Notes

