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ABSTRACT: The Cray XT, when employed in conjunction with the Lustre filesystem,  
has provided the ability to generate huge amounts of data in the form of many files.  
Typically, this is accommodated by satisfying the requests of large numbers of Lustre  
clients in parallel. In contrast, a single service node (Lustre client) cannot adequately  
service such datasets.  This means that the use of traditional UNIX tools like cp, tar, 
et  alli  (with  have  no  parallel  capability)  can  result  in  substantial  impact  to  user  
productivity.  For example, to copy a 10 TB dataset from the service node using cp would  
take about  24 hours, under more or less ideal conditions.  During production operation,  
this could easily extend to 36 hours.  In this paper, we introduce the Lustre User Toolkit  
for Cray XT, developed at the Oak Ridge Leadership Computing Facility (OLCF).  We 
will show that Linux commands, implementing highly parallel I/O algorithms,  provide  
orders of magnitude greater performance, greatly reducing impact to productivity.
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1.  Introduction
Users  of  the  Cray  XT at  the  Oak  Ridge  National 

Laboratory Leadership Computing Facility (OLCF) have 
succeeded in creating  parallel  applications  that  perform 
I/O  in  parallel  highly  effectively.   This  is  a  result  of 
enabling technologies provided by Lustre1 and the Spider 
center-wide  filesystems2.   In  turn,  this  has  caused  the 
creation of huge datasets consisting of thousands of files 
and many, many gigabytes  of  data.   The problem with 
data  is  that  it  cannot  simply  lie  at  rest.   Sometimes,  it  
needs to be copied from one place to another for further 
processing and yet, at the same time, avoiding change to 
the original data.  Sometimes, it needs to be archived for 
safekeeping  or  future  reference.   Sometimes,  the  user 
finds it more convenient to process the data with standard 
UNIX/Linux system tools/utilities than to write a custom 
application.

2.  Motivation.
The typical user of the OLCF Cray XT really would 

like  to  perform his  research  in  a  timely  manner.   But, 
using  Linux  cp to  copy  a  huge  dataset,  Linux  tar to 
archive  a  huge  dataset,  or  some  other  UNIX/Linux 
command (e.g., grep, awk, etc.) to process the information 
of a huge dataset does not yield performance consistent 
with this objective.  In addition, with each new generation 
of  computer  system  that  we  install,  we  find  that  the 

amount of data grows exponentially.  This really should 
come  as  little  surprise,  since  the  amount  of  system 
resources  (memory,  disk)  has  grown  exponentially  as 
well.   As  a  result,  users  solve  larger  problems,  create 
larger,  more  complicated  models,  and  in  turn,  need  to 
process greater amounts of data.  In the OLCF, we already 
have users with datasets that exceed 10 TB of storage.  It 
is  just a matter of time until this grows to 100 TB and 
beyond.

The problem with large numbers like 1 TB of storage 
and 100 TB of storage is that they just  do not translate 
into human terms very well.  However, by looking at the 
time that it takes to copy a dataset or to archive a dataset,  
we can understand impacts on productivity made by the 
serial system tools of today.  In general, our benchmarks 
will  show that  Linux  cp gets  about  235 MB/s   on the 
widow13 filesystem.   This  translates  to  about  
8500 seconds (about 2.4 hrs) for a 1 TB dataset.  (Bear in 
mind that, first, we read 1 TB and then, we write 1 TB.) 
In  human  terms,  2½  hours  is  a  minor  inconvenience. 
However, at 10 TB, this time will have grown to about  
24  hrs  and  we  start  to  see  a  real  impact  to  user 
productivity.   And, when the dataset has grown 100 TB, 
the user finds himself waiting around for 10 days for the 
copy to complete.   At this point,  impact to productivity 
may be an issue.
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Creating  a  tarball  displays  similar  performance 
characteristics.  On the widow1 filesystem, we can create 
an archive  at  up  to  about  270 MB/s,  extract  at  up to  
280 MB/s, and list at up to 310 MB/s.  For a 1 TB dataset,  
these  translate  to  times  of  about  7300  seconds,  
6400 seconds, and 7100 seconds, respectively.  However, 
by the time that the dataset has grown to 100 TB, these 
times will have increased to 204 hrs, 179 hrs, and 196 hrs, 
respectively.  These are  between 7 - 9  days and again, 
represent a substantial impact to productivity.

We will  demonstrate,  in  this  paper,  that  by  using 
system tools which implement parallel I/O algorithms, a 
degree of sanity can be restored functions like cp and tar. 
It  certainly  is  not  reasonable  to  expect  a  user  to  wait 
around for a week while his dataset is being processed by 
a system tool; especially when the dataset was generated 
in  less  than  a  day.   Even  if  this  were  reasonable,  it 
definitely would not be desirable.  To this end, we have 
created  parallel,  Lustre-aware  versions  of  the  Linux  cp 
and  tar commands.  The parallel version of  cp is  spdcp 
and the parallel version of tar is pltar.  Description of the 
algorithms employed by  spdcp and  pltar is  beyond the 
scope  of  this  paper.  Details  of  spdcp algorithms  have 
been published4.   Furthermore,  spdcp has been released 
under GPL5  and we anticipate that pltar will be released 
under GPL, as well.

3. Performance vs. Benchmarks
In  order  to  get  some  measure  of  the  impact  to 

productivity caused by serial vs. parallel system tools, we 
need to evaluate the performance of each.  Another way of 
putting this is that the impact to productivity is directly 
proportional to the size of the dataset and the performance 
of the tool.   Of course,  if  we could eliminate the data, 
what a deal!  So, we will require some sort of benchmark 
that  will  provide  representative  values  for  the 
performance  of  cp and  tar,  and,  their  parallelized 
versions, spdcp and pltar.

For  the purpose  of  this  discussion,  we shall  define 
two  synthetic  datasets.   But,  before  describing  the 
datasets, a clarification on units is in order.  Herein, we 
always  refer  to  sizes  and  rates  in  base  10,  except  as 
explicitly noted.  So, 1 MB/s is 1 x 106 bytes per second. 
The  allocation  units  of  the  widow1 filesystem  are 
multiples  of  1  MB(2)  or  1,048,576 bytes.   However,  a 
dataset size of 100 TB specifies 1 x 1014 bytes of data.

The  first  dataset  consists  of  small  files.   In  this 
context,  small  is  relative  and  the  file  size  will  be  
256  MB(2)  with  2688  files  distributed  among  
12 directories.  The second dataset consists of large files, 
with a size of 2048 MB(2) and has 336 files distributed 
among 12 directories.   The files in the  first dataset  are 
striped to 1 OST and the files in the second dataset are 
striped  to  8  OSTs.   It  will  be  observed  that  the 
benchmarks are constructed such that each dataset places 
the  same  amount  of  data  on  each  OST  used.   Thus, 
performance variations are due to the ability of Lustre to 
handle large distributed (among OSTs) files vs. files that 

reside wholly on a single OST.  Moreover, each dataset 
contains roughly 722 GB of data.

For  cp and  spdcp,  benchmarking  is  fairly  straight-
forward.   We just  measure  the  time  for  each  tool  to 
process each of the two datasets.  However, for  tar and 
especially pltar, the situation is more complicated.  First, 
the archival tools can either create, list, or extract from an 
archive.  Second, the performance of pltar will be seen to 
be a function of the stripe width of the archive.  Thus, a 
parametric study will be required.

For parallel tools, the number of clients used can be a 
factor in performance.  However, because the number of 
servers and targets in any filesystem is finite and limited, 
and because modern cluster-like systems, as used with the 
Cray XT, provide so many potential clients; by choosing 
to  employ a sufficient  but negligible number of  clients, 
this factor readily is eliminated for functions that are I/O 
bound.  For example,  widow1 has 96 OSSes, or servers 
by  which  it  can  transfer  data.   In  contrast,  the  OLCF 
workhorse, jaguarpf has 18684 nodes, each with 12 cores 
for a total of 224,208 cores and each of which can move 
data.  Thus, the 32 nodes (384 cores) that we use for the 
spdcp and  pltar benchmarks  consist  of  a  negligible 
fraction (0.17%) of the total compute resource available 
and impact to computation job scheduling is minimal.

The  spdcp tool previously was demonstrated6 on an 
earlier  implementation  of  the  Lustre  filesystem.   The 
differences in filesystem configurations, in fact, will lead 
to differences in performance for the  spdcp tool.  At the 
same time, we would like to show that the investment in 
additional  resources  has  provided  some sort  of  benefit. 
So, in order to take advantage of the additional hardware 
offered by the configuration of the widow1 filesystem, we 
necessarily must run larger benchmarks than used for the 
previous demonstration.

4. Linux Command Performance

4.1 The Performance of cp
The basis of comparison for copy performance is cp. 

Herein, we present the results for copy of the small file 
dataset  and  copy  of  the  large  file  dataset.   The  time 
required  to  copy the small  file dataset  on  widow1 was 
6152.61 seconds for a bandwidth of 235 MB/s.  The time 
required  to  copy the  large  file dataset  on  widow1 was 
4863.40 seconds for  a  bandwidth of  297 MB/s.   These 
values yield an average bandwidth of 262 MB/s.  If we 
translate this performance average to the length of time 
that it would take to copy a 100 TB dataset, we get around 
212 hrs or about 9 days.  The good news is that, if we are 
lucky, we will not see any datasets this large for a few 
years.  The bad news is that they are coming.

4.2 The Performance of tar
The basis for comparison used will be GNU tar using 

the POSIX 1003.1-2001 format.  By way of this format, 
pltar can  store  and  restore  Lustre  striping  data  via  the 
PAX7 attribute block.  Without going into the details, this 
also  can  provide  pltar a  subtle  performance  advantage 
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over GNU tar when the members of the archive use tuned 
striping  meta-data  values.   At  the  same  time,  the 
additional overhead incurred over and above the legacy 
tar format  is  very  small  for  1  MB(2)  and  larger  sized 
members (usually less than 0.1%).  For these benchmarks, 
the  overhead  does  not  exceed  0.0004%  
[1 kB(2) / 256 MB(2)].

Figure 1.  Performance characteristic of GNU tar as seen  
   on the widow1 filesystem.

As seen  in  Figure  1,  the  performance of  GNU  tar 
does not change appreciably over a wide range of OST 
stripe  counts.   This  is  just  another  way  of  saying  that 
increasing  the  stripe  width  of  the  archive  does  not 
contribute to improved performance for  tar.  We provide 
performance results for archives striped to up to 32 OSTs. 
We also  see  that  the  time required  to  create  or  extract 
members from an archive is roughly the same; while the 
time required to list the archive is about half of that for 
creation/extraction.  If we base bandwidth on the size of 
the  archive,  tar  gets  a  peak  (read  +  write)  of  about  
280 MB/s (small files).  If we use the large striped files, 
the bandwidth is reduced to about 255 MB/s.   In either 
case, the listing bandwidth is about 310 MB/s.  Note that 
except for listing the tarball, these bandwidths cover both 
read and write operations.

To give  this  some  perspective,  assume  that  there 
exists  a  100 TB dataset  that  needs to  be  placed  into a 
tarball.  We can use the average of the bandwidths seen 

here to make an estimate of how long this would take.  As 
in the  cp case, first tar reads the data, then it writes the 
data.  So, we have 2 x 100 TB / 267 MB/s for a reasonable 
approximation and running the numbers yields roughly  
9 days.  This is basically the same story as for cp.

5. Parallelized Command Performance

5.1 The Performance of spdcp
At  this  point,  it  might  be  best  to  take  a  step 

backwards.   It  is  unfair  to  introduce  a  command,  like 
spdcp,  without  some  explanation  of  its  design  goals. 
Looking at cp, one of the shortcomings is that the Lustre 
meta-data is not preserved in the copy.  Let's consider how 
this can hurt application performance.

If I have one of those 100 TB datasets, an application 
could have generated a 1 - 10 TB shared file for part of its 
restart procedure.  While this sounds like a lot of data, if 
spread across 200,000 cores it only amounts to 5 – 50 MB 
per core.  So, if it originally were striped across 64 OSTs, 
copying to the OLCF default puts it across 4 OSTs and 
would make the application restart take as much as  16X 
as long.  On the other hand, if the dataset also contains a 
great many smaller files, setting the default stripe width to 
64 OSTs can cause other performance issues.  So, there is 
motivation to provide a version of  cp that preserves the 
Lustre  meta-data  upon  copy.   The  simplest  way  to 
implement  this  would  have  been  to  adapt  GNU  cp to 
Lustre, but we still would be limited to single-node data 
movement performance.

The time required for  spdcp to  copy the small  file 
dataset on was 66.37 seconds, for a total bandwidth of
21,700 MB/s.  This is a speedup of almost  93X over  cp. 
The  previous  small  file  benchmark  (run  on  the  Lustre 
implementation6)  only  achieved  a  bandwidth  of  
9,300 MB/s.   So,  we see over  twice the  bandwidth by 
spdcp as previously demonstrated.  In the large files test, 
the  time  required  for  spdcp to  copy  the  dataset  was  
80.29 seconds, for a bandwidth of 18,000 MB/s.  This is a 
speedup of  almost  61X over  cp.   In  the previous test6, 
spdcp only got 7,300 MB/s.  So, again we see that spdcp 
on widow1 is demonstrating between 2 and 2½ times the 
bandwidth as previously achieved.  This provides a good 
degree of confidence that spdcp will be able to scale with 
the size of the dataset/Lustre installation.

5.2 The Performance of pltar
The GNU  tar command has  the same performance 

and parallelism issues as does GNU cp.  It does not retain 
Lustre striping information and it is serial.  But, it has an 
additional issue.  While the buffer size can be reset by an 
argument,  it  is  only  very  seldom  that  anyone  does  it. 
Basically, a default tar, run in parallel, would beat the tar 
out of Lustre. So, what is tar doing that is so bad?  First, 
when  creating  an  archive,  the  default  block  size  of  10 
kB(2) would create a mini-lock-storm for extending the 
file (archive).  The only saving grace is that tar is serial; 
so,  it  cannot  beat  up the MDS (Meta Data Server)  that 
badly.  On the other hand, this does generate an excessive 
amount of meta-data traffic.  Second, when reading files 
to include as members in the archive, it reads a default  
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10  kB(2)  buffer  throughout  the  file.   In  a  production 
environment, this will lead to increased thrashing on the 
OSTs.  So, while it would be fairly simple to modify GNU 
tar to use larger defaults with Lustre and to implement 
Lustre  adaptations,  we  still  would  have  the  issue  of 
parallelism.

The GNU tar command processes all members of the 
archive serially.  Unfortunately, it is not simple to make 
GNU tar parallel.  Indeed, in order to make a parallel tar, 
we must lose the concept of  serial  tapes  entirely.  This 
necessitates a complete design change.  However, given 
that  we  are  willing  to  make  these  concessions,  radical 
performance improvement  is  possible.   Note that  htar8, 

used for HPSS9 operations, employs a similar concept, but 
does  not  have  multi-node  capability  and  is  not  Lustre-
aware.

Figure 2.  Performance characteristic of pltar relative 
  to GNU tar on the widow1 filesystem.

As seen in Figure 2, the performance of  pltar scales 
very linearly with the multiplicative inverse of the number 
of  OSTs across  which  the  archive  is  striped.   Data  is  
provided  for  archives  striped  through  128  OSTs. 
Translating  the  times  to  bandwidth,  when  listing  the 
archive, pltar gets up to 9800 MB/s.  This is almost 32X 
the bandwidth enjoyed by GNU tar.  Note that, for listing, 
the scaling continues through 128 OSTs.

Upon  extraction,  pltar gets  a  bandwidth  of  up  to 
12,300 to 12,500 MB/s.  In fact, it is relatively insensitive 
as to whether the archive contains large files or small files. 
This is an average of about 46X the bandwidth attained by 
GNU  tar.   Unfortunately,  the  scaling  holds  up  only 
through 64 OSTs.  

Upon  creation,  pltar only  gets  a  bandwidth  of  
10,700 to 12,100 MB/s.  Even so, the bandwidth is no less 
than  42X of  what  is  seen  with  GNU  tar.   Again,  the 
scaling holds up only through 64 OSTs.

To put this into perspective, let's return to that 100 TB 
dataset that needs to be placed into a tarball.  Using the 
average of the bandwidths here to estimate the time for 
pltar to extract the archive, our reasonable approximation 
becomes 2 x 100 TB / 11,400 MB/s.  But, this time, when 
we run the numbers, we get roughly 2½ hours instead of 
9 days.  Or, to look at this another way, if I am restoring 
my data from an archive and using tar, I will get to work 
on doing science in about a week and an half.  But, using 
pltar, I can start work in a couple of hours.  We definitely 
an make a positive impact on the worker's productivity.

It also is useful to examine the results of the curve fit 
to the pltar performance data.  Specifically, as the number 
of  OSTs  approaches  � ,  the  time  to  list  the  archive 
approaches 33.7 seconds.  This time represents the total 
non-scalable overheads in pltar, including time to launch 
the  parallel  job,  synchronizations  between  parallel 
processes,  and  time  to  clean  up  after  the  parallel  job 
completes.  Expressed as a fraction of the total work done, 
0.64%, it demonstrates that pltar is very highly parallel.

6. Further Work on pltar, and Beyond
pltar, as a system utility, provides a lot of power and 

performance.   However,  the  filters  that  GNU  tar may 
employ  have  not  yet  been  implemented,   In  addition, 
compressed archives are not yet supported.  There is a lot 
of  potential  performance  possible  with  compressed 
archives.  For one thing, depending on the compressibility 
of  the  data,  the  archive  might  be  much  smaller.   For 
example,  assuming  a  compression  factor  of  2.5,  the 
archive would occupy only 40% of the storage.  While we 
would have to use many more compute nodes (cores), this 
means  that  we  potentially  could  list/write/extract  a  
100 TB dataset as a tarball in about an hour.

With spdcp and pltar, we only have begun to address 
the  peta-scale  to  exa-scale  data  gap.   There  are  many 
system utilities that have not been parallelized.  Examples 
include10,11:  bzip2,  grep/awk,  cut/paste,  and  sort.   So 
much remains to be done for these systems (hardware and 
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software) to be capable of unfettered processing at  larger 
scales.  As a result, at present, the best that we can provide 
is a partially crippled operating system.  Anytime these 
huge  datasets  must  be  processed  by  a  system  utility, 
performance will suffer so badly that the user will need to 
write a custom post-processor.

7. Conclusions
The commands of the UNIX/Linux operating system 

have long served  to  assist  in  scientific  and engineering 
investigations.  There are many system utilities to aid in 
this effort.  However, as systems have increased in scale, 
parallel filesystems have been called into service to satisfy 
the  I/O  needs  of  the  applications  that  run  on  these 
systems.    As  a  result,  applications  have  access  to 
filesystem capabilities  that  far  exceed those of  a  single 
node.  In turn, the datasets created by these applications 
can and have become huge.  These datasets are so large 
that it becomes impractical to process them with standard 
system  commands.   Thus,  systems  commands  that 
implement parallel  I/O across multiple nodes become a 
necessity.  The requisite  parallelism, through spdcp and 
pltar,  has  been  demonstrated  to  exist.   Furthermore, 
performance  gains  of  30X to  100X have  been 
demonstrated,  as  well.   The  performance  gain  that  is 
achievable depends upon the amount of parallelism inherit 
in  the  operations  performed.   The  only  practical 
conclusion  is  that  parallel  system  tools  are  vital  to 
progress.
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