

Cray User Group 2010 Proceedings 1 of 6

Regression Testing on Petaflop Computational Resources

Mike McCarty, Troy Baer, and Lonnie Crosby of the
National Institute for Computational Sciences (NICS)

ABSTRACT: In order to deliver the best possible service to our users, it is
critical that we understand the state of our systems at all times. Routine system checks
performed after scheduled maintenance or emergency downtime give administrators an
instantaneous glimpse of system performance but may not detect all performance issues.
Rigorous testing, such as that performed for machine acceptance, provides more in-depth
information on system performance. Both routine and rigorous testing is necessary to
fully characterize system performance, and a mechanism to store and compare previous
results is needed to determine the change in system performance over time. To this end a
regression-testing framework has been developed at the National Institute for
Computational Sciences (NICS), which provides a mechanism to measure the change in
system performance over time. These performance results can also be correlated to
system events such as downtimes, system upgrades, or any other documented system
change. We will describe the design and implementation of the regression testing
framework, including the development of test suites, interfaces to the batch system, and
the extraction of performance data. The import of extracted data into a relational
database for long-term storage, report generation, and real-time analysis will also be
discussed.

KEYWORDS: Testing, Regression Testing, Tools, Frameworks

1. Introduction

Regression testing is used during software
development to find errors by partially retesting code after
it has been modified with the goal of measuring the
impact of the recent changes [1]. After the errors are
fixed the tests are rerun periodically to ensure they do not
re-emerge. We have taken this software development
approach and applied it to maintaining supercomputers.
Like software, a supercomputer is a system of extremely
complex pieces. Each piece can be changed independently
which sometimes dramatically affects unaltered
components. The causes for these adverse effects can be
difficult to track down since symptoms can emerge long
after the initial modification was made. By capturing
performance data and measuring how they change over
time, we hope to gain a better understanding of how
modifications to the system affect related components.

Regression tests are being used at NICS to
perform system checks after a preventative maintenance
(PM). Once the system is booted, a suite of tests
automatically runs full machine jobs using three different
applications. These jobs were previously executed

manually and analyzed by hand before the regression test
framework was developed. After each test completes, the
results are analyzed and compared against previous
results. For example, the walltime and core count for
every test run within the framework is stored in a
relational database. Using this database, the mean and
standard deviation for a particular test can be calculated.
One built-in analysis method verifies that the walltime for
jobs with similar core counts is within three standard
deviations of the mean (assuming a normal distribution).
If the results are outside of a nominal range, an alert is
issued which prompts for further investigation of the
failure. Since the test results are all stored in a relational
database, along with a time stamp and job characteristics,
it is possible to analyze this data for trends to detect more
insidious anomalies. These anomalies could be caused by
an upgrade or modification to the operating system or
perhaps a problem with the file system. System logs can
be correlated with regression test data to uncover the
underlying cause.

The framework views the tests that actually run
on the system as a black box, and most of the tests written
using the framework aim to stress the system in some

Cray User Group 2010 Proceedings 2 of 6

way. The regression test simply takes the executable and
submits it to the scheduler and monitors the job until it is
complete. It waits on the job to complete its execution. It
is the test writer’s responsibility to decide which
application or benchmark to use, and to analyze the
results to determine whether the test passed or failed. The
framework does, however, contain a set of default
analysis methods (assertions). If the default assertions are
called at the end of a test, the test will check the walltime.
Some tests written for system checkouts after a PM were
compiled with the Fast Profiling library for MPI (FPMPI)
option [7]. This option produces a profile file that
contains performance metrics, which the framework
imports into the database. A few reports have been
produced using this data.

Regression testing can be a labor intensive task
to perform manually. Rerunning tests periodically is
necessary to build up regression data over time. One of
the challenges faced in the beginning stages of
deployment is that there is no regression data to compare
to; therefore, it is difficult to determine what nominal
values should be. We simply must run the tests often to
build up statistics. Once data has been acquired, reports
can be automatically generated, since the data is stored in

a convenient format. We have created a web interface,
using the Python web application development framework
Django [2], to produce plots of scaling curves in the
browser. The service implements a RESTful interface
that allows the user to specify a date range (including a
date to split the plot into two data sets). This allows the
user to compare the performance before and after events
such as unexpected downtime, an operating system
upgrade, or any other type of systematic modification or
anomaly.

2. Systems at NICS

Kraken is a Cray XT5 system with a peak
performance of 1.03 PetaFLOPs containing 16,512
compute sockets and more than 129 terabytes of memory.
Recently name the third fastest computer in the world, the
XT5 system delivers in excess of 700 million CPU hours
per year.

Athena is a 166 TF Cray XT4, which is
dedicated to solving important problems, particularly in
climate and physics. Athena has been operating in
dedicated mode since October 1, 2009.

Figure 1 Regression Testing Framework Architecture

Cray User Group 2010 Proceedings 3 of 6

3. The Framework

The primary goal of the regression testing
framework is to automate the role of the administrator as
much as possible. We wanted test writers to only think
about the specific test specifications. Parameters may
include the number of cores, executable, whether or not to
look for FPMPI profile data, the required walltime, and
additional PBS job script options. The framework takes
these parameters, which make up the specification and
generates the PBS script. The PBS script is submitted
programmatically behind the scenes by the framework.
Options exist to force the job to run and hold the
execution of the test until the job has completed. Holding
for job completion is useful when the author wants to
validate results in the job’s output file. It is highly
recommended that the test author make assertions at the
end of a test to make sure the test was successful. Jobs
can be submitted which result in an error at runtime; if
there are no assertions at the end of a test then the
framework will falsely report it as passing when it
actually failed. A default assertion method is provided
that attempts to check for the existence of an error-free
output file. This method also compares the amount of
walltime used with results from previous runs.

3.1 Architecture

The regression testing framework was developed
in Python. A scripting language was chosen because we
needed to coordinate with several existing systems, such
as the batch system (TORQUE), the scheduler (Moab),
the database (PostgresSQL), and the operating system
itself [4][5]. A native object-oriented scripting language
was chosen to leverage encapsulation and code reuse.
Python’s rich set of third party libraries for testing, web
development, and plotting also made it the perfect choice.

Much of the testing portion of the framework is
based on a testing library for Python, called PyUnit or
unittest [3]. This library is generally used for unit-testing
code, which is somewhat different from regression testing
in that it aims to test individual, discrete units of code
rather than larger portions of code. Here we are
leveraging the test execution capabilities of the unit test
library for our purposes. When a Python script containing
tests is executed, the library looks for classes within the
script that are derived from a base class, called TestCase.
When it finds such a class it will run a method called
setup, if it exists. The method is generally used to set up
initial conditions for the test. After setUp runs, the library
will find and call each method in the class that begins
with “test”. It is for this reason that all test methods in the
regression test framework must begin with “test”. We
have extended the base class TestCase to meet our
requirements. It contains interfaces to the system, the
XT’s batch system TORQUE, and the XT’s workload

manager Moab. All tests interface to these systems
through the methods provided by our extended base class.
See figure 1 for an architecture diagram.

3.1.1 Batch System Interface

Kraken (XT5) and Athena (XT4) both use
TORQUE as their batch environment. We implemented
an interface to TORQUE using Popen, since there is not
an API available for TORQUE in Python. The interface
is found in the system Python module in a class called
TORQUE [4]. The Torque class provides a method,
renderScript, to create a PBS script from a set of test
specifications. The PBS script is generated using a base
template and is customized for each test through a set of
keyword arguments. Table 1 describes these arguments.

Jobs are submitted to the queue by calling the
submit method in the Torque class. This method returns
the job id, which can be used to force the job to run and
monitor its progress by calling other class methods.

Name Description Default

size The number of processors
for the job to run on.

12

machine The name of the machine
that the test will be ran on.

None

name The name of the executable. None
project The name of the project to

charge the job too.
None

walltime The walltime limit for the
job.

00:10:00

pbs_additions

A raw string for specifying
custom PBS variables.

Empty String

env_vars A raw string for specifying
environment variables.

Empty String

preamble A raw string for specifying
a preamble of code that is
inserted into the PBS script
before the aprun command
is issued.

Empty String

aprun_options Options for the aprun
command.

“-n
$PBS_NNOD
ES”

options Options for the
application’s executable.

profile Boolean that controls
whether or not to look for a
profile from FPMPI.

True

Table 1 PBS Script Rendering Parameters

Cray User Group 2010 Proceedings 4 of 6

3.1.2 Workload Manager Interface

The interface to the XT’s workload manager,
Moab, is fairly light. The Moab class is located in the
systems module and also uses Popen to communicate with
Moab. This class serves two main purposes, which are
querying for the available number of cores at any given
time and forcing a job to run.

3.2 Using the Framework

When authors write a test, they are simply
writing a Python script, so they are free to leverage the
language without restrictions. For example, they can use

a loop to incrementally submit jobs to different numbers
of cores. This can produce data for a scaling curve, as
illustrated in Figure 2. Tests inherit the TORQUE and
Moab interface methods from the base class, TestCase.
The basic pattern to any test is to render the batch script,
submit, and wait for the job(s) to complete. After that the
writer may choose to inspect the job(s) output file(s) and
make assertions.

The framework outputs the test results using
character codes: a “.” means the test completed
successfully, an “F” means the test failed from an
assertion, and an “E” indicates an error. In the case of an
error, the Python trace back will be printed once all tests
have completed [3]. When a test fails you get the output
shown in figure 3. If there are no assertions at the end of a
test and the code has no runtime errors the job will run,
but the expected output may not be correct. For example,
the application could fail without indication. It is
recommend that the writer always, at least, call the default
assertions. These check the output file for errors. Figure 3
below shows the test output.

3.3 Post Processing and Reporting

Post processing is performed on all job status
files and FPMPI process statistics by a cron job that runs
daily [7]. The data is placed in a drop directory specified
in a settings file at the end of each test. Data from these
files are parsed and inserted into the database for use in
future regression tests and reporting. Post processing is
performed on an external machine to avoid additional
load on the XT service nodes. Figure 4 contains an

Figure 2 Example of a scaling curve test

Figure 3 Test results output

Cray User Group 2010 Proceedings 5 of 6

entity-relationship diagram of the database.
Many analysis methods of regression test data

are application specific, since they depend on the output
of the applications themselves. Some standard post
processing and analysis methods have been automated as
described above in the introduction. For other non-
standard analysis needs we plan to make application
specific tests and generalize them when appropriate. The
standardized reporting implemented to date consists of
application-scaling curves. The idea is to produce scaling
curves with various applications that stress the system in
different ways. Normally scaling curves are used to
determine the performance characteristics of applications
as they run on increasing numbers of processors.
Generally such information is used to modify the
application to improve performance on a given system.
However in this case, a static application will be run on a
changing system. It is hoped that system changes that
affect performance of applications will alter the
characteristics of the affected applications scaling curve.
Anytime we need to update an application the date must
be tagged so the statistics will not be compromised.

As mentioned in the introduction, the system-

scaling curves are generated by a web interface written in
Django. Django is a Python based web development
framework that is gaining a strong following in the web

application development community. It employs the
model-view-controller (MVC) design pattern, which
separates an application into three layers. An object-
relational mapper is used to represent database tables as
classes and provides a persistent abstraction layer
between the business logic and the database I/O [2].
Instances of classes represent rows in the database table.
The controller layer contains logic for handling HTTP

Figure 4 Database Entity-Relationship Diagram

Figure 5 System Scale Plot in the browser

Cray User Group 2010 Proceedings 6 of 6

requests and generates responses. Views control the
presentation of the application through XHTML template
rendering engines.

Plots, produced using MatPlotLib, are generated
on request via a RESTful URL [6]. For example, the URL
/reports/Kraken/Simpleio/system_scale generates a
system-scaling curve for all data collected for the
application called SimpleIO which ran on Kraken.
Keyword parameters for specifying the upper bounds on
the number of cores and date ranges are also available.
Figure 5 shows a system-scaling curve for another test
application called Halo, which tests MPI communication
times.

4. Experiences

We have been running a suite of tests developed
using the regression test framework since January 1,
2010. These tests use three applications developed to
stress the system in different ways. Halo, one test
application, creates an MPI token ring through the XT
system’s torus network. Its primary purpose is to test the
system’s network connectivity. Another test application,
called SimpleIO, aims to stress the file system but
creating files for each process to make sure that they can
write files. Bugget taxes the CPUs by perform matrix
multiplications and produces performance statistics in its
output.

The SimpleIO application tests have uncovered
an anomaly in I/O performance that is currently under
investigation. We are mining data from logs and other
status snapshots to identify any correlations. We hope to
present an analysis in the near future.

5. Future Work

One of the key issues moving forward with
regression testing at NICS cannot be solved in software.
A policy decision must be made on when and how often
we can run tests. The tests developed to date are used
after a preventative maintenance when we are trying to
get the machine back to users as fast as possible.
However, we plan to develop several suites of tests and
applications that will focus on tracking memory, file
system I/O, network, and MPI performance. During
acceptance testing we tested the system for functionality,
performance, and stability; which took nearly 24-hour
jobs. Here we are only concerned with performance tests,
but how complex should these tests be and how long
should they run?

We also plan to make the framework available
under an open source license. We are currently working
the University of Tennessee on intellectual proper rights.

6. Conclusion

Test writing using the regression test framework
is currently being used weekly at NICS to run and
validate full machines jobs after maintenance on Kraken.
The capability to automatically run machine checkouts
while collecting additional data has had a positive impact
on the machine maintenance process. As more tests are
run, the statistics will become more useful in telling us
how the system’s performance is changing over time.
Since Kraken has a 95% uptime requirement these tests
can only be run once a week, therefore our sample size
remains somewhat small at the time of writing this paper.

In the future we would plan to add more
applications for benchmarking the system. We are
currently working on an application for testing I/O
patterns that we hope to integrate into the regression tests.
The issue with running these tests is how often can we run
them and collect useful information without affecting
operations.

References

[1] Regression Testing:
 http://en.wikipedia.org/wiki/Regression_testing
[2] Django:
 http://www.djangoproject.com/
[3] PyUnit:
 http://pyunit.sourceforge.net/
[4] “Cluster resources :: Products - TORQUE Resource
Manager”,
http://www.clusterresources.com/pages/p
roducts/torque-resource-manager.php.
[5] “Cluster resources :: Products - Moab Workload
Manager”,
http://www.clusterresources.com/pages/p
roducts/moab-cluster-suite/workloadmanager.
php.
[6] MatPlotLib:
 http://matplotlib.sourceforge.net/
[7] FPMIP:
http://archive.ncsa.illinois.edu/lists/perftools/apr02/msg00
005.html

Acknowledgments

The authors would like to thank Patricia Kovatch,
Nick Jones, and Matt Ezell for their comments and
assistance on writing this paper.

