
Reducing Application Runtime
Variability on Jaguar XT5

Sarp Oral, Feiyi Wang, David A. Dillow,
Ross Miller, Galen M. Shipman, Don Maxwell,

Dave Henseler, Jeff Becklehimer, Jeff Larkin

Presented by
Kenneth D. Matney, Sr.

2

Operating system (OS) noise

•  Interference generated by OS preventing compute core from
performing useful work

–  Kernel daemons, network interfaces, other OS services

–  Vary in duration and frequency

•  Cause de-synchronization (jitter) in collective communications

–  Variable (degraded) overall parallel application performance

•  In a tree based collective OS noise may be propagated up the tree with each
node contributing system noise according to a probability distribution

•  MPI_Allreduce

3

Operating system (OS) noise

•  OS noise can impact performance of tightly coupled operations

•  Probability of hitting larger magnitude OS noise events increases as
nprocs grows

•  Large-scale applications using certain types of collective
communication primitives are more susceptible

4

OS Noise on Cray XT5

• Varying and degraded application performance at scale
–  Observed on Jaguar XT5
–  Parallel Ocean Program (POP)
•  Heavily uses MPI_Allreduce

• OLCF and Cray investigated the problem
–  Identified major compute node OS noise sources
–  Developed a prototype Reduced Noise kernel
•  Based on UNICOS 2.2

5

Prototype Reduced Noise kernel

•  Kernel level noise sources
–  TCP/IP protocol
–  Time-of-Day clock
–  Kernel work queues
–  Non-fatal machine checks
–  Page cache flushing
–  DVS protocol
–  Lustre protocol
–  BEER threads
–  Virtual-to-physical memory

mapping
–  Other generic timer events

•  User level noise sources
–  ALPS daemon
–  RCA

•  Heartbeat, console
–  SSH
–  NTP

Major OS noise sources

6

Solution

• Aggregate and merge OS noise sources onto a single
compute core for each node
–  Cray CLE prototype kernel (based on stock 2.2 kernel)

–  Core 0 reserved for overhead only

–  Lustre/DVS processing and mapping of incoming packets are not
merged
•  Application generated, not OS noise

7

Solution

• Exclude the “overhead core” and run scientific applications
on remaining cores per node
–  aprun -N 7 -cc 1-7 <binary>

–  aprun -n 1024 -N 8 aprun -n 896 -N 7 -cc 1-7

• Not new but proven method, used on Intel Paragon in ’90s

8

Testbed

• Proof of the concept tests
–  Chester (OLCF quad core XT5)
•  Single cabinet, 60 node, 480 cores in total

•  Large-scale tests
–  Jaguar (OLCF quad core XT5)
•  220 cabinet, 18,000 nodes, 144,000 cores in total (at the time of testing)

–  Shark (Cray quad core XT5)
•  12 cabinet, 1,065 nodes, 8,520 cores in total

9

Proof of the concept tests

•  FWQ benchmark
–  Fixed work quanta
–  Measure how long it takes to perform a fixed amount of work
–  Report consumed cycles for every work quanta
–  Major deviations between quanta are indications of OS Noise

• Kurtosis
–  Can be used to summarize and analyze deviations

10

Proof of the concept tests - Kurtosis

• Kurtosis is the 4th standardized moment

• A high kurtosis has sharp peaks and long fatter tails;
a low kurtosis has more rounded peaks and short
thinner tails
• Kurtosis is a common metric in noise benchmarking,

but it should not be used as a sole descriptor

€

xi − x ()4
i=1

n

∑
n −1() × s4

=
µ4
σ 4

11

Proof of the concept tests - Kurtosis

0 20 40 60 80 100

6
1
0

1
4

kurtosis= NaN

Index

x
0 20 40 60 80 100

9
.0

1
0
.0

kurtosis= 1.9

Index

x

0 20 40 60 80 100

1
0

1
6

kurtosis= 56.45

Index

x

0 20 40 60 80 100

1
0

1
6

kurtosis= 57.05

Index

x
0 20 40 60 80 100

1
0

1
6

kurtosis= 35.67

Index

x

0 20 40 60 80 100

1
0

1
6

kurtosis= 35.66

Index

x

0 200 400 600 800 1000

!
3

0
2

Normal variate, kurtosis = 2.94

Index

n
o
rm
al

Normal Density Distribution

normal

F
re
q
u
en
cy

!3 !2 !1 0 1 2 3

0
1
0
0

12

Proof of the concept tests

•  Kurtosis calculated
based on FWQ data
•  IBM BG/P

•  6.76
–  Chester w/ stock kernel

•  595.98
–  Chester w/ RN kernel

•  4.27

13

Proof of the concept tests – per core noise

•  Per core noise levels
•  w/ 2.2 stock kernel
•  w/ 2.2 RN kernel
•  FWQ benchmark (threaded)

•  Reduced Noise kernel
–  Substantially suppressed noise

on cores 2-6
•  Uniform low noise

–  Core 0 and 1 had 4 orders of
magnitude higher kurtosis

14

At scale tests – MPI-FWQ

•  On Jaguar XT5 using 49,152 cores
•  MPI-FWQ

–  In house benchmark
•  Work (w=18) + MPI_Allreduce
•  Message size = 1 MB
•  Rank 0 was root

•  Excluded cores 0 and 1
–  -N 6 –cc 2-7

•  2 orders of magnitude improvement in MPI_Allreduce at scale

15

At scale tests – MPI-FWQ

16

At scale tests – Parallel Ocean Program
(POP)

• POP was run on Jaguar XT5 (OLCF) up to 24,576 cores
–  2.2 Stock kernel vs. 2.2 Reduced Noise kernel
–  -N 6 -cc 2-7
•  Same node and core count for both kernels

–  Strong scaling
–  1,000 steps in total
–  I/O was disabled
•  History, movie, tavg, and xdisply were all disabled

–  POP completion times measured (in seconds)

17

At scale tests – Parallel Ocean Program (POP)

Table 1. POP comparision for UNICOS 2.2 Reduced Noise and Stock kernels on OLCF’s Jaguar. Step

times are given in seconds and total run was for 1,000 steps.

Number of Processes Reduced Noise kernel Stock kernel
Step 435 Step 870 Step 1,000 Step 435 Step 870 Step 1,000

384 289.68 575.48 660.03 291 578.09 663.13
1,536 75.27 149.16 149.16 77.46 151.94 173.98
6,144 35.33 69.17 79.13 39.17 79.25 90.89
24,576 42.7 81.78 94.58 68.43 122.79 137.94

Table 2. POP comparision for UNICOS 2.2

Reduced Noise and Stock kernels on Cray’s

Shark. Step times are given in seconds and

total runs were for 2,000 steps for both Re-

duced Noise and Stock kernels.

Number of Processes Step 2,000
Reduced Noise 7,168 379.03

Stock 8,192 499.00

We then ran POP at 384, 1,536, 6,144, and 24,576 pro-
cesses to observe the strong scaling performance when run-
ning on the Reduced Noise kernel, and reran the same tests
under the Stock kernel. For each test we used 6 cores
out of the 8 available on a node, skipping cores 0 and
1 (-N 6 -cc 2-7). Our total mesh size was 3072 by
2048, nx global and ny global, respectively. Our block size
(nx block, ny block) per process was 132 by 132, 68 by 68,
36 by 36, and 20 by 20 for 384, 1,536, 6,144, and 24,576,
respectively.The max blocks clinic and max blocks tropic
were set to 1. For each test the stop option was set as nstep
and we had 1,000 steps per run. We ran with balance for the
baroclinic distribution, and cartesian for the barotropic dis-
tribution. The options for history, movie, tavg, and xdisply
options were disabled. We maintained the same options for
both OS kernels. Table 1 shows completion times for steps
435, 870, and 1,000 (total) for 384, 1,536, 6,144, and 24,576
processes for both UNICOS 2.2 Reduced Noise and Stock
kernels.

Figure 4 plots the POP results given in Table 1. Figure 4a
shows the POP completion times for each test configura-
tion and POP step. Figure 4b shows the overall run time
efficiency achieved with the UNICOS 2.2 Reduced Noise
kernel. Our strong scaling results show that we realized a
performance improvement of over 30% on the largest scale
POP run tested (24,576 cores).

A second application test was conducted at Cray’s fa-
cilities. POP was run on “Shark”, a 12 cabinet XT5 sys-

tem with 1065 dual-socket, quad-core nodes running at 2.4
GHz. This test was run with a mesh of 3584 by 2240, and
2000 steps per run. The block size per process was 32 by
44, and the simulation was run for 2000 steps. POP was
run with 8192 processes on the Stock kernel to maximize
processing power (-N 8), and with 7168 processes on the
RN kernel to minimize OS noise (-N 7 -cc 1-7). In both
cases, 1024 nodes were used for the computation; only the
number of cores used on each node was varied. Even with
the reduced computing capacity used for the RN kernel run,
Table 2 shows a similar performance gain as on the Jaguar
XT5 tests.

5 Conclusions

Operating system (OS) noise is a key limiting fac-
tor for large-scale parallel application performance. In-
terrupt sources for timers and network interfaces, ker-
nel daemons, and other related OS services are major
sources of OS noise interference. This noise can cause de-
synchronization (jitter) in collective communication tasks
such as MPI Allreduce.

We identified a major parallel application performance
degredation on our Cray XT5 platform. Our tests indicated
OS noise was the source of the problem, and we prototyped
a Reduced Noise kernel for the XT5. This prototype ker-
nel aggregated most OS noise sources onto a specific core
on each compute node. It also provided a user controllable
mechanism to prevent the scientific application from run-
ning on this core. Our results show that we were able to
improve the performace of MPI Allreduce by two orders of
magnitude. We demonstrated up to a 30% boost in the per-
formance of the Parallel Ocean Program (POP).

Acknowledgements

The authors would like to thank the staff and colleagues
who have contributed material to this paper. Authors also
would like to express their thanks and gratitude to George
Ostrouchov, Jeff Kuhen, Terry Jones, Collin McCurdy, and

6

18

At scale tests – Parallel Ocean Program (POP)

!"
#$
%&
'
($

!"
#$
%)
*+
,-
($

./
!0
$%&
'
($

./
!0
$%)
*+
,-
($

0.
##
$%&
'
($

0.
##
$%)
*+
,-
($

1#
/2
0$
%&
'
($

1#
/2
0$
%)
*+
,-
($

3$

133$

#33$

033$

"33$

)*
45
$#
!/
$%6
7
68
9(
$

)*
45
$"
23
$%6
7
68
9(
$

7
:4
;<
==$

!"#$%&'()'*&(+%,,%,'

-
(
#
*
.%
/
(
0
'1
2#

%
,'
3,
%
+4
'

>7>$,+?5=4@+A$@?4B$

19

•  For all core counts Reduced Noise kernel performed better
compared to Stock noise kernel
–  ~30% gain at 24,576 cores

At scale tests – Parallel Ocean Program (POP)

20

• POP was run on Shark XT5 (Cray)
–  8,192 cores with Stock kernel
•  -N 8

–  7,168 cores with Reduced Noise kernel
•  -N 7 –cc 1-7

–  Same node count (1,024) for both kernels
–  2,000 POP steps in total
–  I/O disabled

•  ~ 30% performance improvement with less number of cores
with Reduced Noise kernel

Table 1. POP comparision for UNICOS 2.2 Reduced Noise and Stock kernels on OLCF’s Jaguar. Step

times are given in seconds and total run was for 1,000 steps.

Number of Processes Reduced Noise kernel Stock kernel
Step 435 Step 870 Step 1,000 Step 435 Step 870 Step 1,000

384 289.68 575.48 660.03 291 578.09 663.13
1,536 75.27 149.16 149.16 77.46 151.94 173.98
6,144 35.33 69.17 79.13 39.17 79.25 90.89
24,576 42.7 81.78 94.58 68.43 122.79 137.94

Table 2. POP comparision for UNICOS 2.2

Reduced Noise and Stock kernels on Cray’s

Shark. Step times are given in seconds and

total runs were for 2,000 steps for both Re-

duced Noise and Stock kernels.

Number of Processes Step 2,000
Reduced Noise 7,168 379.03

Stock 8,192 499.00

We then ran POP at 384, 1,536, 6,144, and 24,576 pro-
cesses to observe the strong scaling performance when run-
ning on the Reduced Noise kernel, and reran the same tests
under the Stock kernel. For each test we used 6 cores
out of the 8 available on a node, skipping cores 0 and
1 (-N 6 -cc 2-7). Our total mesh size was 3072 by
2048, nx global and ny global, respectively. Our block size
(nx block, ny block) per process was 132 by 132, 68 by 68,
36 by 36, and 20 by 20 for 384, 1,536, 6,144, and 24,576,
respectively.The max blocks clinic and max blocks tropic
were set to 1. For each test the stop option was set as nstep
and we had 1,000 steps per run. We ran with balance for the
baroclinic distribution, and cartesian for the barotropic dis-
tribution. The options for history, movie, tavg, and xdisply
options were disabled. We maintained the same options for
both OS kernels. Table 1 shows completion times for steps
435, 870, and 1,000 (total) for 384, 1,536, 6,144, and 24,576
processes for both UNICOS 2.2 Reduced Noise and Stock
kernels.

Figure 4 plots the POP results given in Table 1. Figure 4a
shows the POP completion times for each test configura-
tion and POP step. Figure 4b shows the overall run time
efficiency achieved with the UNICOS 2.2 Reduced Noise
kernel. Our strong scaling results show that we realized a
performance improvement of over 30% on the largest scale
POP run tested (24,576 cores).

A second application test was conducted at Cray’s fa-
cilities. POP was run on “Shark”, a 12 cabinet XT5 sys-

tem with 1065 dual-socket, quad-core nodes running at 2.4
GHz. This test was run with a mesh of 3584 by 2240, and
2000 steps per run. The block size per process was 32 by
44, and the simulation was run for 2000 steps. POP was
run with 8192 processes on the Stock kernel to maximize
processing power (-N 8), and with 7168 processes on the
RN kernel to minimize OS noise (-N 7 -cc 1-7). In both
cases, 1024 nodes were used for the computation; only the
number of cores used on each node was varied. Even with
the reduced computing capacity used for the RN kernel run,
Table 2 shows a similar performance gain as on the Jaguar
XT5 tests.

5 Conclusions

Operating system (OS) noise is a key limiting fac-
tor for large-scale parallel application performance. In-
terrupt sources for timers and network interfaces, ker-
nel daemons, and other related OS services are major
sources of OS noise interference. This noise can cause de-
synchronization (jitter) in collective communication tasks
such as MPI Allreduce.

We identified a major parallel application performance
degredation on our Cray XT5 platform. Our tests indicated
OS noise was the source of the problem, and we prototyped
a Reduced Noise kernel for the XT5. This prototype ker-
nel aggregated most OS noise sources onto a specific core
on each compute node. It also provided a user controllable
mechanism to prevent the scientific application from run-
ning on this core. Our results show that we were able to
improve the performace of MPI Allreduce by two orders of
magnitude. We demonstrated up to a 30% boost in the per-
formance of the Parallel Ocean Program (POP).

Acknowledgements

The authors would like to thank the staff and colleagues
who have contributed material to this paper. Authors also
would like to express their thanks and gratitude to George
Ostrouchov, Jeff Kuhen, Terry Jones, Collin McCurdy, and

6

At scale tests – Parallel Ocean Program (POP)

21

Conclusions

• OS noise is a key limiting factor on large-scale tightly-
coupled applications
–  Jitter (synchronization) problem
–  More observable with some MPI collectives
•  MPI_Allreduce

• Cray CLE UNICOS 2.2 prototype kernel
–  Core 0 is
•  User selectable (per job)
•  Designated overhead core

22

Conclusions

• Prototype Reduced Noise kernel
–  Uniform and less noisy cores (cores 2-7)
•  In production RN kernel, core 1’s noise problem is fixed

•  2 orders of magnitude improvement in MPI_Allreduce
performance at scale

•  30% performance improvement in POP completion time at
scale

23

Questions?

Contact
 Galen Shipman (gshipman@ornl.gov)

Thank you!

