@ Science & Technology
Facilities Council

Multi-Core Aware
Performance Optimization of
Halo Exchanges in Ocean Simulations

Stephen Pickles
STFC Daresbury Laboratory

Abstract

The advent of multi-core brings new opportunities for performance
optimization in MPI codes. For example, the cost of performing a
halo exchange in a finite-difference simulation can be reduced by
choosing a partition into sub-domains that takes advantage of the
faster shared-memory mechanisms available for communication
between MPI tasks on the same node. | have implemented these
ideas in the Proudman Oceanographic Laboratory Coastal-Ocean
Modelling System, and find that multi-core aware optimizations can
offer significant performance benefit, especially on systems built
from hex-core chips. | also review several multi-core agnostic
techniques for improving halo exchange performance.

Science & Technology
@ Facilities Council

Outline

1. POLCOMS

2. Various halo exchange optimizations
— Multi-core agnostic

3. Evaluating distinct partitions in parallel
— Multi-core aware

4. Conclusions

Science & Technology
@ Facilities Council

POLCOMS

Proudman Oceanographic Laboratory Coastal Ocean
Modelling System

Models coastal and shelf seas
Finite-difference, parallel, Fortran code

Domains defined on regular longitude-latitude grids
— De-composed geographically in 2 dimensions

— Using a recursive k-section partitioning algorithm

— Each sub-domain is assigned to one MPI process

Uses wet/dry masks to avoid redundant computation
on land points

Science & Technology
@ Facilities Council

A sub-domain partition

512 processors.

Black points are
outside model.

Grey points are dry,
but inside model.

Sub-domains have
similar numbers of
wet points.

Haloes can contain
dry points.

Possible
communications
load-imbalance.

Science & Technology
@ Facilities Council

Halo exchange optimizations

 Message combination

— Perform exchanges on multiple arrays in one operation,
reducing latency

— Need to manually pack & unpack message buffers
« Abandoning MPI derived datatypes

— Requires a different API
« Some compiler-related performance issues with Fortran pointers
« Eliminating dry points from halo messages
— Masking, clipping, wet patches
* Pre-posting receives & rank re-ordering
— Gave little benefit

Science & Technology
@ Facilities Council

Results, small domain, XT4

Exchanges per second

2d real*8 exchanges, GGUI28 on HECToR, new comms lists

40000

—+—1x2d old

—o—1x2d new
—=—2x2d new
30000

\\\ —+—3x2d new
20000 %

10000 g
—®

0 64 128 192 256
Number of cores

3d real*8 exchanges, GGUI28 on HECToR, new comms lists

Halo exchange performance, small
domain, on HECToR, using message
combination and wet patches

Speeds based on >1000 consecutive
exchanges

Reference uses old API with clipping

3d exchanges involve a whole water
column at each grid point

25000 -
—+—1x3d old
—o—1x3d new
20000 A —=—2x3d new __|
T \ —4—3x3d new
c
o \
o
& b
“ 15000 n
1™y
o
o
"]
)
£ 10000 TR
K-
o
X
w
5000 Q.
0 f t f t
0 64 128 192 256
Number of cores
Mixed-d exchanges, GGUI28 on HECToR, new comms lists
12000 T
10000 * —+—old
—— W
H L N
Q
(]
"
@
g 6000
wn ‘.—.
[
g
g \"‘\A
Q
X
u .
2000 b J v % <%
0 t : ¢ }
0 64 128 192 256

Number of cores

Masking, Clipping, Wet patches

Three ways to reduce dry points in messages:

« Message masking
— Apply wet/dry mask during pack & unpack
— Overhead from testing mask

« Message clipping

— If a halo patch has exterior rows or columns that are permanently dry, these
can be clipped from the comms lists

— Compatible with MPI derived datatypes and works with existing API

— Always a good thing to do, but wins not always significant
Internal dry points must be important

 Wet patches
— Change comms tables, defining multiple patches for each message
— Friendlier than masking for pack & unpack
— Eliminates most interior points

Science & Technology
@ Facilities Council

Results, larger domain, XT4

Exchanges per second

2d real*8 exchanges, HRCS on HECToR, new comms lists 3d real*8 exchanges, HRCS on HECToR, new comms lists
25000 6000
—&—1x2d old
—8—1x2d new 5000
20000 —8—2x2d new
——3x2d new 'g
'\ § 4000
15000 % w
Sy
[}
\\—\/F\ﬁ‘\\% 3 3000 il
[]
10000 — g
5 2000 - —&—1x3d - old
u’i —o—1x3d new
5000 —#—2x3d new
1000 —4—3x3d new
0 . — — : — — 0 } — - - —— }
0 128 256 384 512 640 768 0 128 256 384 512 640 768
Number of cores Number of cores

Mixed-d exchanges, HRCS on HECToR, new comms lists

Halo exchange performance,

4000 y —

larger HRCS domain, on _ . o
HECTOoR, using message Poand
combination and wet patches 1/ B

Exchanges per second
/r

o SN
1000 -

0 128 256 384 512 640 768
Number of cores

Taking stock

« Combining latency-limited 2d
exchanges always helps

« Combining 2d and 3d exchanges

usually helps

« Combining 3d arrays does not
always help, and can be slower!
— Cache issues in pack/unpack?

* Performance benefits are
architecture-dependent
— On Cray XT, manual pack/unpack

can’'t match performance of MPI
derived datatypes

— Situation reversed on HPCx (IBM
Power5 e-series)

Exchanges per second

6000

5000

D
o
o
o

3000 il

N
o
(=]
o

1000

3d real*8 exchanges, HRCS on HECToR, new comms lists

128 256 384 512 640 768
Number of cores

Exchanges per second

7000

6000

w
o
o
o

EN
o
o
o

w
o
o
o

N
o
o
o

3d real*8 exchanges, HRCS on HPCx, with clipping

64 128 192 256 320 384

Number of cores

Effect on overall code

1.500

1.400

1.300

1.100

Relative Improvement

1.000

0.900

0.800

1.600 7

1.200

Improvement (new speed / old speed), GGUI28 on HECToR

—=—BAROC /\

A

—4— BAROT / \
+

y

NS,

64 128 192
Number of cores

256

Performance improvement (relative to original) on key physics routines

Only some halo exchanges use the new routines
~50 out of ~350 in applications code

Science & Technology
@ Facilities Council

A closer look at partitioning

> q
7 8 10 11

5 13 15 | 4 | s

21 28

19

(3x2,2x2) - default 18 — (2x2x2,3)

o
nN
b4
N
(@
—
»
—
o
L
D
N
w
N
 hesssssnnnnperirey sn ey
\ X
| N
\
| N
|
|
- N
e - S

Small domain (Gulf of Guinea) on 24 processors

Different factorizations of processor grid lead to
different partitions. Order of cuts changes partition.

The default factorization is good for quad-core
nodes, but not 6- or 12-core

Choose the “best” from all possible factorizations, in

—ti I Science & Technology
parallel, at run-time! @ Facilities Council

How many distinct partitions?

Number of di

2160
2040
1920
1800
1680
1560

f

d

840

=l

960 1080 1200 1320 1440 1560 1680 1800 1920 2040 2160

Number of processors

Science & Technology
@ Facilities Council

Aside: even more partitions

50000 -
45000 -

TN =

35000 -

30000 - ‘ ' = l
=1
25000

20000 -

Number of distinct partitions

15000 -

10000 -

5000

o 1 g L B R | {- [T L
0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 1680 1800 1920 2040

Number of processors

Coul_d r_each even more. partitions by slightly Science & Technology
modifying the recursive k-section method @ Facilities Council

Multi-core aware partitioning

 On 6-, 12-, 24-core systems, more likely to have a
factor of 3 in the processor grid
— Usually want to reserve whole nodes
— Many more distinct partitions compared to jobs with power-
of-2 core counts
* Opportunity to
— Improve computation and/or communications load-balance

— Maximize communications locality
* Intra-node messages are cheaper than inter-node.
» | assume default (SMP) rank ordering

« Can evaluate alternative partitions in parallel

— Need cost function, and method for visiting n? distinct

permutation without generating all of them

Science & Technology
@ Facilities Council

Evaluating partitions in parallel

do n=rank, N-1, size
determine the factors of the nt" distinct permutation
compute the corresponding partition
evaluate a cost function for this partition
end do
select the permutation with the best cost function
re-compute the partition for this permutation

* Negligible overhead

« Selecting the “best” needs only one call to MPI_All Reduce

« Visiting the nt distinct permutation was the tricky part
— | devised a hybrid method based on variable radix bases
— Some details in paper

Science & Technology
@ Facilities Council

Cost function

[X IIlaX(C n

wet ~“wet

+ Cdryndry + Coﬂnoﬁ + Connon)

Computation time is dominated by wet points.
— Small overhead from dry points

Communications time is dominated by halo exchange

Overall run-time limited by the slowest MPI process
— Maximum is taken over processes

This form neglects latency
— Latency could (and should) be added in easily enough

The c* are tunable coefficients
— Careful tuning is work-in-progress. | used, somewhat arbitrarily:

tocmax(n +0.05xn,, +35xn,.+ non)

wet

Science & Technology
@ Facilities Council

Mixed-dim exchanges /second

Performance varies with partition

3000

2500

2000

1500

1000

500

Variation of performance with partition

& O
> . ;
* o
% e 2
¢+ 3 Y
>) ¢
®
L 2P S $ ¢ ¢

48 96 144 192 240 288

Number of cores

336

$

2

384

432

« Halo exchange performance
for different partitions at
various core counts

— Results on rosa (Cray XT5, 2x6-

core Istanbul chips/node) using
larger HRCS domain

« Some perform much better

than others

« Factors of 3 in processor grid

give greater opportunities for
performance improvement

Science & Technology
@ Facilities Council

Conclusions

 Message combination and dry-point
elimination improves performance of halo
exchange in ocean simulations

* Multi-core aware partitioning offers significant
opportunities for performance and scalability
Improvement

— Not doing so could lead to disappointment on
systems with multiple 6-core chips/node

Science & Technology
@ Facilities Council

Acknowledgments

Thanks to:

» Swiss National Supercomputing Centre
(CSCS) for time on Rosa (Cray XT95)

« NERC for time on HECToR

« Mike Ashworth, Andrew Porter, Kevin
Roy and Jason Holt for helpful
discussions

Science & Technology
@ Facilities Council

@ Science & Technology
Facilities Council

The end

