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Abstract

The advent of multi-core brings new opportunities for performance
optimization in MPI codes. For example, the cost of performing a
halo exchange in a finite-difference simulation can be reduced by
choosing a partition into sub-domains that takes advantage of the
faster shared-memory mechanisms available for communication
between MPI tasks on the same node. | have implemented these
ideas in the Proudman Oceanographic Laboratory Coastal-Ocean
Modelling System, and find that multi-core aware optimizations can
offer significant performance benefit, especially on systems built
from hex-core chips. | also review several multi-core agnostic
techniques for improving halo exchange performance.
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Outline

1. POLCOMS

2. Various halo exchange optimizations
— Multi-core agnostic

3. Evaluating distinct partitions in parallel
— Multi-core aware

4. Conclusions

Science & Technology
@ Facilities Council



POLCOMS

Proudman Oceanographic Laboratory Coastal Ocean
Modelling System

Models coastal and shelf seas
Finite-difference, parallel, Fortran code

Domains defined on regular longitude-latitude grids
— De-composed geographically in 2 dimensions

— Using a recursive k-section partitioning algorithm

— Each sub-domain is assigned to one MPI process

Uses wet/dry masks to avoid redundant computation
on land points
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A sub-domain partition

512 processors.

Black points are
outside model.

Grey points are dry,
but inside model.

Sub-domains have
similar numbers of
wet points.

Haloes can contain
dry points.

Possible
communications
load-imbalance.
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Halo exchange optimizations

 Message combination

— Perform exchanges on multiple arrays in one operation,
reducing latency

— Need to manually pack & unpack message buffers
« Abandoning MPI derived datatypes

— Requires a different API
« Some compiler-related performance issues with Fortran pointers
« Eliminating dry points from halo messages
— Masking, clipping, wet patches
* Pre-posting receives & rank re-ordering
— Gave little benefit
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Results, small domain, XT4

Exchanges per second

2d real*8 exchanges, GGUI28 on HECToR, new comms lists
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Speeds based on >1000 consecutive
exchanges

Reference uses old API with clipping

3d exchanges involve a whole water
column at each grid point

25000 -
—+—1x3d old
—o—1x3d new
20000 A —=—2x3d new __|
T \ —4—3x3d new
c
o \
o
& b
“ 15000 n
1™y
o
o
"]
)
£ 10000 TR
K-
o
X
w
5000 Q.
0 f t f t
0 64 128 192 256
Number of cores
Mixed-d exchanges, GGUI28 on HECToR, new comms lists
12000 T
10000 * —+—old
—— W
H L N
Q
(]
"
@
g 6000
wn ‘.—.
[
g
g \"‘\A
Q
X
u .
2000 b J v % <%
0 t : ¢ }
0 64 128 192 256

Number of cores




Masking, Clipping, Wet patches

Three ways to reduce dry points in messages:

« Message masking
— Apply wet/dry mask during pack & unpack
— Overhead from testing mask

« Message clipping

— If a halo patch has exterior rows or columns that are permanently dry, these
can be clipped from the comms lists

— Compatible with MPI derived datatypes and works with existing API

— Always a good thing to do, but wins not always significant
Internal dry points must be important

 Wet patches
— Change comms tables, defining multiple patches for each message
— Friendlier than masking for pack & unpack
— Eliminates most interior points
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Results, larger domain, XT4
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Taking stock

« Combining latency-limited 2d
exchanges always helps

« Combining 2d and 3d exchanges

usually helps

« Combining 3d arrays does not
always help, and can be slower!
— Cache issues in pack/unpack?

* Performance benefits are
architecture-dependent
— On Cray XT, manual pack/unpack

can’'t match performance of MPI
derived datatypes

— Situation reversed on HPCx (IBM
Power5 e-series)
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Effect on overall code
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Only some halo exchanges use the new routines
~50 out of ~350 in applications code
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A closer look at partitioning
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Small domain (Gulf of Guinea) on 24 processors

Different factorizations of processor grid lead to
different partitions. Order of cuts changes partition.

The default factorization is good for quad-core
nodes, but not 6- or 12-core

Choose the “best” from all possible factorizations, in
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How many distinct partitions?
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Aside: even more partitions
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Multi-core aware partitioning

 On 6-, 12-, 24-core systems, more likely to have a
factor of 3 in the processor grid
— Usually want to reserve whole nodes
— Many more distinct partitions compared to jobs with power-
of-2 core counts
* Opportunity to
— Improve computation and/or communications load-balance

— Maximize communications locality
* Intra-node messages are cheaper than inter-node.
» | assume default (SMP) rank ordering

« Can evaluate alternative partitions in parallel

— Need cost function, and method for visiting n? distinct

permutation without generating all of them
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Evaluating partitions in parallel

do n=rank, N-1, size
determine the factors of the nt" distinct permutation
compute the corresponding partition
evaluate a cost function for this partition
end do
select the permutation with the best cost function
re-compute the partition for this permutation

* Negligible overhead

« Selecting the “best” needs only one call to MPI_All Reduce

« Visiting the nt distinct permutation was the tricky part
— | devised a hybrid method based on variable radix bases
— Some details in paper
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Cost function

[ X IIlaX(C n
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Computation time is dominated by wet points.
— Small overhead from dry points

Communications time is dominated by halo exchange

Overall run-time limited by the slowest MPI process
— Maximum is taken over processes

This form neglects latency
— Latency could (and should) be added in easily enough

The c* are tunable coefficients
— Careful tuning is work-in-progress. | used, somewhat arbitrarily:

tocmax(n +0.05xn,, +35xn,.+ non)

wet
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Mixed-dim exchanges /second

Performance varies with partition
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« Halo exchange performance
for different partitions at
various core counts

— Results on rosa (Cray XT5, 2x6-

core Istanbul chips/node) using
larger HRCS domain

« Some perform much better

than others

« Factors of 3 in processor grid

give greater opportunities for
performance improvement
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Conclusions

 Message combination and dry-point
elimination improves performance of halo
exchange in ocean simulations

* Multi-core aware partitioning offers significant
opportunities for performance and scalability
Improvement

— Not doing so could lead to disappointment on
systems with multiple 6-core chips/node
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