
Multi-Core Aware 
Performance Optimization of 

Halo Exchanges in Ocean Simulations

Stephen Pickles

STFC Daresbury Laboratory

Abstract
The advent of multi-core brings new opportunities for performance
optimization in MPI codes. For example, the cost of performing a
halo exchange in a finite-difference simulation can be reduced by
choosing a partition into sub-domains that takes advantage of the
faster shared-memory mechanisms available for communication
between MPI tasks on the same node. I have implemented these
ideas in the Proudman Oceanographic Laboratory Coastal-Ocean
Modelling System, and find that multi-core aware optimizations can
offer significant performance benefit, especially on systems built
from hex-core chips. I also review several multi-core agnostic
techniques for improving halo exchange performance.

Outline
1.  POLCOMS
2.  Various halo exchange optimizations

–  Multi-core agnostic
3.  Evaluating distinct partitions in parallel

–  Multi-core aware
4.  Conclusions

POLCOMS

•  Proudman Oceanographic Laboratory Coastal Ocean

Modelling System
•  Models coastal and shelf seas
•  Finite-difference, parallel, Fortran code
•  Domains defined on regular longitude-latitude grids

–  De-composed geographically in 2 dimensions
–  Using a recursive k-section partitioning algorithm
–  Each sub-domain is assigned to one MPI process

•  Uses wet/dry masks to avoid redundant computation
on land points

A sub-domain partition

512 processors.

Black points are
outside model.

Grey points are dry,
but inside model.

Sub-domains have
similar numbers of
wet points.

Haloes can contain
dry points.

Possible
communications
load-imbalance.

HRCS

Halo exchange optimizations
•  Message combination

–  Perform exchanges on multiple arrays in one operation,
reducing latency

–  Need to manually pack & unpack message buffers
•  Abandoning MPI derived datatypes

–  Requires a different API
•  Some compiler-related performance issues with Fortran pointers

•  Eliminating dry points from halo messages
–  Masking, clipping, wet patches

•  Pre-posting receives & rank re-ordering
–  Gave little benefit

Results, small domain, XT4

Halo exchange performance, small
domain, on HECToR, using message
combination and wet patches
Speeds based on >1000 consecutive
exchanges
Reference uses old API with clipping
3d exchanges involve a whole water
column at each grid point

Masking, Clipping, Wet patches
Three ways to reduce dry points in messages:
•  Message masking

–  Apply wet/dry mask during pack & unpack
–  Overhead from testing mask

•  Message clipping
–  If a halo patch has exterior rows or columns that are permanently dry, these

can be clipped from the comms lists
–  Compatible with MPI derived datatypes and works with existing API
–  Always a good thing to do, but wins not always significant

•  Internal dry points must be important

•  Wet patches
–  Change comms tables, defining multiple patches for each message
–  Friendlier than masking for pack & unpack
–  Eliminates most interior points

Results, larger domain, XT4

Halo exchange performance,
larger HRCS domain, on
HECToR, using message
combination and wet patches

Taking stock
•  Combining latency-limited 2d

exchanges always helps
•  Combining 2d and 3d exchanges

usually helps
•  Combining 3d arrays does not

always help, and can be slower!
– Cache issues in pack/unpack?

•  Performance benefits are
architecture-dependent

– On Cray XT, manual pack/unpack
can’t match performance of MPI
derived datatypes

– Situation reversed on HPCx (IBM
Power5 e-series)

Effect on overall code

Performance improvement (relative to original) on key physics routines

Only some halo exchanges use the new routines

~50 out of ~350 in applications code

A closer look at partitioning

(3x2,2x2) - default
 (2x2x2,3)

Small domain (Gulf of Guinea) on 24 processors

Different factorizations of processor grid lead to
different partitions. Order of cuts changes partition.

The default factorization is good for quad-core
nodes, but not 6- or 12-core

Choose the “best” from all possible factorizations, in
parallel, at run-time!

How many distinct partitions?

€

N nc() =
nf +1()!

mi!i=1

d∏

Aside: even more partitions

€

N nc() =
2n f n f !

mi!i=1

d
∏

Could reach even more partitions by slightly
modifying the recursive k-section method

Multi-core aware partitioning
•  On 6-, 12-, 24-core systems, more likely to have a

factor of 3 in the processor grid
–  Usually want to reserve whole nodes
–  Many more distinct partitions compared to jobs with power-

of-2 core counts

•  Opportunity to
–  Improve computation and/or communications load-balance
–  Maximize communications locality

•  Intra-node messages are cheaper than inter-node.
•  I assume default (SMP) rank ordering

•  Can evaluate alternative partitions in parallel
–  Need cost function, and method for visiting nth distinct

permutation without generating all of them

Evaluating partitions in parallel
do n=rank, N-1, size

determine the factors of the nth distinct permutation
compute the corresponding partition
evaluate a cost function for this partition

end do
select the permutation with the best cost function
re-compute the partition for this permutation

•  Negligible overhead
•  Selecting the “best” needs only one call to MPI_All_Reduce
•  Visiting the nth distinct permutation was the tricky part

–  I devised a hybrid method based on variable radix bases
–  Some details in paper

Cost function

•  Computation time is dominated by wet points.
–  Small overhead from dry points

•  Communications time is dominated by halo exchange
•  Overall run-time limited by the slowest MPI process

–  Maximum is taken over processes

•  This form neglects latency
–  Latency could (and should) be added in easily enough

•  The c* are tunable coefficients
–  Careful tuning is work-in-progress. I used, somewhat arbitrarily:

€

t ∝max cwetnwet + cdryndry + coff noff + connon()

€

t ∝max nwet + 0.05 × ndry + 5 × noff + non()

Performance varies with partition
•  Halo exchange performance

for different partitions at
various core counts

–  Results on rosa (Cray XT5, 2x6-
core Istanbul chips/node) using
larger HRCS domain

•  Some perform much better
than others

•  Factors of 3 in processor grid
give greater opportunities for
performance improvement

Conclusions
•  Message combination and dry-point

elimination improves performance of halo
exchange in ocean simulations

•  Multi-core aware partitioning offers significant
opportunities for performance and scalability
improvement
–  Not doing so could lead to disappointment on

systems with multiple 6-core chips/node

Acknowledgments
Thanks to:
•  Swiss National Supercomputing Centre

(CSCS) for time on Rosa (Cray XT5)
•  NERC for time on HECToR
•  Mike Ashworth, Andrew Porter, Kevin

Roy and Jason Holt for helpful
discussions

The end

