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 XGC-1 is a particle-in-cell 
code used to study turbulent 
transport in magnetic 
confinement fusion plasmas. 
It uses an unstructured grid, 
allowing it to treat the edge 
region in tokamak devices 
accurately. It uses PETSc to 
solve an elliptic problem at 
each timestep. Performance 
experiments are typically 
weak scaling in total particle 
count and strong scaling in 
grid size. Turbulent eddies on the whole 

poloidal cross-sectional plane.  

 XGC1: First full-f gyrokinetic simulation 
of whole device tokamak plasma 
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ITER 
(a Tokamak Magnetic Confinement Fusion Device)  
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 XGC1 solves the gyrokinetic Vlasov equations with marker particles 
and electric field data on a spatial grid. Each timestep (or each step 
within a Runge-Kutta or predictor-corrector time-integration method) 
looks something like: 

1.  Collect particle charge density of underlying grid. 
2.  Solve gyrokinetic Poisson equation on grid. 
3.  Compute electric field and any derivatives needed in particle 

equations of motion. 
4.  Calculate and output diagnostic quantities. 
5.  Update particle positions and velocities. 

 Depending on the experiment, particles can be ions, electrons, or 
both. Experiments can also include collisions and other physical 
processes. 

XGC1: Timestep Logic 



6 

Geometry and Sample Mesh 

Magnetic flux 
surfaces of 
diverted 
tokamak 
geometry in a 
poloidal plane.  

A sample 
unstructured 
triangular mesh 
for ITER 
magnetic field. 
Actual scale 
used in 
simulations is 
30 times finer.  



7 

 Parallelization is based on decomposition of both the spatial grid and 
the particle data across processes. MPI is used to communicate 
between processes. OpenMP is used to parallelize work within 
processes. 

1.  Collect particle charge density of underlying grid. 
-  Parallelized loops over particles (MPI and OpenMP). 
-  Requires communication between neighboring processes 

(defined by grid decomposition) and global reductions. 
2.  Solve gyrokinetic Poisson equation on grid. 
-  Parallel conjugate gradient solver accelerated with algebraic 

multigrid preconditioner (hypre) within PETSc.  
-  Other: parallelized loops over grid (MPI and OpenMP). 
-  Local and non-local point-to-point and global collective (MPI) 

communication required. 

XGC1: Parallelization 
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3.  Compute electric field and any derivatives needed in particle 
equations of motion. 
-  Parallelized loops over grid (MPI and OpenMP). 
-  Requires communication between neighboring processes. 

4.  Calculate and output diagnostic quantities. 
-  Parallelized loops over particles and over grid (MPI and 

OpenMP). 
-  Requires global reductions. 

5.  Update particle positions and velocities. 
-  Parallelized loops over particles (MPI and OpenMP). 
-  Requires global collective communication to coordinate moving 

particles between processes. 
-  Requires point-to-point communication between processes to 

move particles. 

XGC1: Parallelization 
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1.  May-June 2009: Conducted XGC1 performance scalability study in 
preparation for a series of production runs. 

2.  March-April 2010: Conducted XGC1 performance scalability study in 
preparation for a series of production runs. 

Both studies  
-  used a fixed number of particles per thread of computation (weak 

scaling) 
-  used a fixed grid independent of number of threads (strong 

scaling) 
where the grid is a 3 mm mesh of the 3-D core of ITER. 

Background 



10 

Cray XT5 at ORNL (JaguarPF) 
-  18,722 compute nodes, 8 processor cores per node, 2 GB 

memory per core: 
•  149,776 processor cores and 299,552 TB memory 

-  Compute node contains two 2.3 GHz quad-core Opteron 
processors (AMD 2356 “Barcelona”) linked with dual 
HyperTransport connections and DDR2-800 NUMA memory 

-  3D Torus  (25x32x24) with Cray SeaStar2+ NIC (9.6 GB/s peak 
bidirectional BW in each of 6 directions; 6 GB/s sustained) 

-  Version 2.1 of the Cray Linux Environment (CLE) operating 
system 

-  Version 3.1.0 of the Cray MPI Library (MPT) 
-  Version 7.2.5 of PGI Fortran compiler 

May-June 2009 
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Cray XT5 at ORNL (JaguarPF) 
-  18,688 compute nodes, 12 processor cores per node, 2 GB 

memory per core: 
•  224,256 processor cores and 299,008 TB memory 

-  Compute node contains two 2.6 GHz hex-core Opteron 
processors (AMD 2356 “Istanbul”) linked with dual 
HyperTransport connections and DDR2-800 NUMA memory 

-  3D Torus  (25x32x24) with Cray SeaStar2+ NIC (9.6 GB/s peak 
bidirectional BW in each of 6 directions; 6 GB/s sustained) 

-  Version 2.2 of the Cray Linux Environment (CLE) operating 
system 

-  Version 3.5.1 of the Cray MPI Library (MPT) 
-  Version 9.0.4 of PGI Fortran compiler 

March-April 2010 
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Issues: 
1.  Number of particles per thread was 900,000 in 2009 and only 

300,000 in 2010. This is a big difference. Solution: 
-  Use both 300,000 and 900,000 in 2010 experiments. 

2.  Problem size (in total number of particles) is a function of the 
number of threads, introducing ambiguity in comparison. Approach: 
-  Use only 8 cores per node and same node counts. Wasting 33% 

of cores in 2010 expts., but problem sizes, core counts, and 
memory requirements per node are the same. 

-  Use all cores in node but adjust number of nodes in 2010 expts. 
so that same problem sizes and core counts are examined. 
Memory requirements per node are 50% larger in 2010 expts. 

-  Use all cores in node and same node counts. Problem sizes, 
core counts, and memory requirements per node are 50% larger  
in 2010 expts. 

“Let’s use the two expts. to compare 
the 8-core and 12-core systems” 
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Issues: 
3.  XGC1 code has continued to evolve, with some changes affecting 

performance. Approach: 
-  Back out as many performance-sensitive changes as possible, 

including: a more efficient search technique for locating particle 
position in grid; removing array syntax within OpenMP-
parallelized loops that was degrading OpenMP performance; 
thread-safe random number generation; spline interpolation 
optimizations (experiment A) 

-  Back out only the spline interpolation optimizations (experiment 
B) 

-  Run with the current version (experiment C) 
 Then attempt to verify that experiment A does represent how the 
June 2009 version of XGC1 would have run on the 2010 version of 
JaguarPF. 

“Let’s use the two expts. to compare 
the 8-core and 12-core systems” 
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900K particles/thread, 8 cores per node, MPI-only 

Results: Wallclock Time 

•  Reasonable scaling for all experiments. 
•  2010(A) vs. 2010(B): most of difference due to improved search algorithm 
•  2.6/2.3=1.13;  2009 vs. 2010(A): 9%=>2%;   vs. 2010(B): 13%=>10% 
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900K particles/thread, 8 cores per node, 4-way OpenMP 

Results: Wallclock Time 

•  Scaling and performance improved, except for 2010(A). 
•  2010(A): “old” search alg. in OpenMP loop introduced significant load imb. 
•  2009 experiments do not show behavior similar to 2010(A). 
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900K particles/thread, 8 cores per node, 8-way OpenMP 

Results: Wallclock Time 

•  Scaling good, except for 2010(A). Performance inferior to 4-way OpenMP. 
•  2010(A): same problem, though relative degradation not as great. 



17 

900K particles/thread, all cores per node, 4-way OpenMP 

Results: Wallclock Time 

•  2 MPI processes per node for 2009; 3 MPI processes per node for 2010.  
•  Relative to 8-core expts., 12-core expts. include increased contention for 
memory and for access to network, and possible inefficiencies in cross-
socket OpenMP thread placement. Performance is degraded < 10%. 
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900K particles/thread, all cores per node, 2 MPI processes per node 

Results: Wallclock Time 

•  4-way OpenMP for 2009; 6-way OpenMP for 2010. 
•  2010 all-core 4-way OpenMP results appear to be better than the 6-way 
performance (an unexpected result) 
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300K particles/thread, 12 cores per node, 2010(C) expts. only 

Results: Wallclock Time 

•  MPI-only not scaling well; 6-way OpenMP best performer. 
•  Did not try 4-way OpenMP in these experiments. 
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900K particles/thread, 12 cores per node, 2010(C) expts. only 

Results: Wallclock Time 

•  MPI-only could not run; 6-way OpenMP better than 12-way. 
•  Performance of 4-way OpenMP appears to be competitive with 6-way. 

4 

273 10923 131072 

2731  32768 276 
272 1366  16384 
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Results: Particle Push Rate 
300K particles/thread, 12 cores per node, 2 MPI processes per node 

•  Plotting number of particles processed per timestep per wallclock second. 
•  Impact of performance optimizations over last year has been significant, 
nearly doubling performance. 
•  Performance scalability also appears to excellent (more on that later). 
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Results: Particle Push Rate 
900K particles/thread, all cores per node, 2 MPI processes per node 

•  Impact of performance optimizations and performance scaling for 900K 
particles per thread problem are both similar to that for 300K. 
•  Performance of 2009 version of code is degraded when run on current 
system with current compilers? Performance is almost exactly recovered by 
using “OpenMP-sensitive” optimizations? 
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Results: Particle Push Rate 
12 cores per node, 2 MPI processes per node 

•  900K particles per thread problem is more computationally intensive than 
300K problem, which leads to a somewhat higher particle push rate (approx. 
20%). 
•  Performance scaling is excellent for both problems. 



24 

Results: Parallel Efficiency 
12 cores per node, 2 MPI processes per node 

•  900K particles per thread problem achieves higher relative efficiency than 
300K problem, but this is sensitive to the definition of the baseline processor 
core count. 
•  Both problems retain relatively constant parallel efficiencies out to largest 
processor core count. 
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1.  Performance of the June 2009 version of XGC1 on the 12-core XT5 
is significantly worse than that on the 8-core XT5. Problems appear 
to arise in OpenMP-parallelized loops, so is perhaps due to a 
change in the compilers or runtime environment? 

2.  Recent code optimizations eliminate the performance problems, and 
more. The 2010(B) experiments show performance similar to the 
2009 experiments on the same number of processor cores, but the 
12-core XT5 allows the 2010(B) version of the code to run on 50% 
more cores and solve a 50% larger problem than was possible on 
the 8-core system with the same number of compute nodes. 

3.  The current XGC1 code demonstrates excellent performance 
scalability, and on the 12-core XT5 is achieving a particle push rate 
2.3 times greater than that achieved in June 2009 on the same 
number of compute nodes. 

Conclusions 


