
XGC1: Performance on the 8-core and
12-core Cray XT5 Systems at ORNL

Patrick Worley
Mark Adams

Eduardo D’Azevedo
C-S Chang

Seung-Hoe Ku
Collin McCurdy

CUG 2010
May 27, 2009

Apex Waterloo Place Hotel
Edinburgh, Scotland	

Oak Ridge National Laboratory
Columbia University

Oak Ridge National Laboratory
New York University
New York University

Oak Ridge National Laboratory

2

•  Research sponsored by the Office of Fusion Energy Sciences
and by the Office of Advanced Scientific Computing Research,
both in the Office of Science, U.S. Department of Energy under
Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC.

•  This research used resources (Cray XT5) of the National
Center for Computational Sciences at the Oak Ridge National
Laboratory, which is supported by the Office of Science of the
U.S. Department of Energy under Contract No. DE-
AC05-00OR22725 with UT-Battelle, LLC.

•  These slides have been authored by a contractor of the U.S.
Government under contract No. DE-AC05-00OR22725.
Accordingly, the U.S. Government retains a nonexclusive,
royalty-free license to publish or reproduce the published form
of this contribution, or allow others to do so, for U.S.
Government purposes.

 Acknowledgements

3

 XGC-1 is a particle-in-cell
code used to study turbulent
transport in magnetic
confinement fusion plasmas.
It uses an unstructured grid,
allowing it to treat the edge
region in tokamak devices
accurately. It uses PETSc to
solve an elliptic problem at
each timestep. Performance
experiments are typically
weak scaling in total particle
count and strong scaling in
grid size. Turbulent eddies on the whole

poloidal cross-sectional plane.

 XGC1: First full-f gyrokinetic simulation
of whole device tokamak plasma

4

ITER
(a Tokamak Magnetic Confinement Fusion Device)

5

 XGC1 solves the gyrokinetic Vlasov equations with marker particles
and electric field data on a spatial grid. Each timestep (or each step
within a Runge-Kutta or predictor-corrector time-integration method)
looks something like:

1.  Collect particle charge density of underlying grid.
2.  Solve gyrokinetic Poisson equation on grid.
3.  Compute electric field and any derivatives needed in particle

equations of motion.
4.  Calculate and output diagnostic quantities.
5.  Update particle positions and velocities.

 Depending on the experiment, particles can be ions, electrons, or
both. Experiments can also include collisions and other physical
processes.

XGC1: Timestep Logic

6

Geometry and Sample Mesh

Magnetic flux
surfaces of
diverted
tokamak
geometry in a
poloidal plane.

A sample
unstructured
triangular mesh
for ITER
magnetic field.
Actual scale
used in
simulations is
30 times finer.

7

 Parallelization is based on decomposition of both the spatial grid and
the particle data across processes. MPI is used to communicate
between processes. OpenMP is used to parallelize work within
processes.

1.  Collect particle charge density of underlying grid.
-  Parallelized loops over particles (MPI and OpenMP).
-  Requires communication between neighboring processes

(defined by grid decomposition) and global reductions.
2.  Solve gyrokinetic Poisson equation on grid.
-  Parallel conjugate gradient solver accelerated with algebraic

multigrid preconditioner (hypre) within PETSc.
-  Other: parallelized loops over grid (MPI and OpenMP).
-  Local and non-local point-to-point and global collective (MPI)

communication required.

XGC1: Parallelization

8

3.  Compute electric field and any derivatives needed in particle
equations of motion.
-  Parallelized loops over grid (MPI and OpenMP).
-  Requires communication between neighboring processes.

4.  Calculate and output diagnostic quantities.
-  Parallelized loops over particles and over grid (MPI and

OpenMP).
-  Requires global reductions.

5.  Update particle positions and velocities.
-  Parallelized loops over particles (MPI and OpenMP).
-  Requires global collective communication to coordinate moving

particles between processes.
-  Requires point-to-point communication between processes to

move particles.

XGC1: Parallelization

9

1.  May-June 2009: Conducted XGC1 performance scalability study in
preparation for a series of production runs.

2.  March-April 2010: Conducted XGC1 performance scalability study in
preparation for a series of production runs.

Both studies
-  used a fixed number of particles per thread of computation (weak

scaling)
-  used a fixed grid independent of number of threads (strong

scaling)
where the grid is a 3 mm mesh of the 3-D core of ITER.

Background

10

Cray XT5 at ORNL (JaguarPF)
-  18,722 compute nodes, 8 processor cores per node, 2 GB

memory per core:
•  149,776 processor cores and 299,552 TB memory

-  Compute node contains two 2.3 GHz quad-core Opteron
processors (AMD 2356 “Barcelona”) linked with dual
HyperTransport connections and DDR2-800 NUMA memory

-  3D Torus (25x32x24) with Cray SeaStar2+ NIC (9.6 GB/s peak
bidirectional BW in each of 6 directions; 6 GB/s sustained)

-  Version 2.1 of the Cray Linux Environment (CLE) operating
system

-  Version 3.1.0 of the Cray MPI Library (MPT)
-  Version 7.2.5 of PGI Fortran compiler

May-June 2009

11

Cray XT5 at ORNL (JaguarPF)
-  18,688 compute nodes, 12 processor cores per node, 2 GB

memory per core:
•  224,256 processor cores and 299,008 TB memory

-  Compute node contains two 2.6 GHz hex-core Opteron
processors (AMD 2356 “Istanbul”) linked with dual
HyperTransport connections and DDR2-800 NUMA memory

-  3D Torus (25x32x24) with Cray SeaStar2+ NIC (9.6 GB/s peak
bidirectional BW in each of 6 directions; 6 GB/s sustained)

-  Version 2.2 of the Cray Linux Environment (CLE) operating
system

-  Version 3.5.1 of the Cray MPI Library (MPT)
-  Version 9.0.4 of PGI Fortran compiler

March-April 2010

12

Issues:
1.  Number of particles per thread was 900,000 in 2009 and only

300,000 in 2010. This is a big difference. Solution:
-  Use both 300,000 and 900,000 in 2010 experiments.

2.  Problem size (in total number of particles) is a function of the
number of threads, introducing ambiguity in comparison. Approach:
-  Use only 8 cores per node and same node counts. Wasting 33%

of cores in 2010 expts., but problem sizes, core counts, and
memory requirements per node are the same.

-  Use all cores in node but adjust number of nodes in 2010 expts.
so that same problem sizes and core counts are examined.
Memory requirements per node are 50% larger in 2010 expts.

-  Use all cores in node and same node counts. Problem sizes,
core counts, and memory requirements per node are 50% larger
in 2010 expts.

“Let’s use the two expts. to compare
the 8-core and 12-core systems”

13

Issues:
3.  XGC1 code has continued to evolve, with some changes affecting

performance. Approach:
-  Back out as many performance-sensitive changes as possible,

including: a more efficient search technique for locating particle
position in grid; removing array syntax within OpenMP-
parallelized loops that was degrading OpenMP performance;
thread-safe random number generation; spline interpolation
optimizations (experiment A)

-  Back out only the spline interpolation optimizations (experiment
B)

-  Run with the current version (experiment C)
 Then attempt to verify that experiment A does represent how the
June 2009 version of XGC1 would have run on the 2010 version of
JaguarPF.

“Let’s use the two expts. to compare
the 8-core and 12-core systems”

14

900K particles/thread, 8 cores per node, MPI-only

Results: Wallclock Time

•  Reasonable scaling for all experiments.
•  2010(A) vs. 2010(B): most of difference due to improved search algorithm
•  2.6/2.3=1.13; 2009 vs. 2010(A): 9%=>2%; vs. 2010(B): 13%=>10%

15

900K particles/thread, 8 cores per node, 4-way OpenMP

Results: Wallclock Time

•  Scaling and performance improved, except for 2010(A).
•  2010(A): “old” search alg. in OpenMP loop introduced significant load imb.
•  2009 experiments do not show behavior similar to 2010(A).

16

900K particles/thread, 8 cores per node, 8-way OpenMP

Results: Wallclock Time

•  Scaling good, except for 2010(A). Performance inferior to 4-way OpenMP.
•  2010(A): same problem, though relative degradation not as great.

17

900K particles/thread, all cores per node, 4-way OpenMP

Results: Wallclock Time

•  2 MPI processes per node for 2009; 3 MPI processes per node for 2010.
•  Relative to 8-core expts., 12-core expts. include increased contention for
memory and for access to network, and possible inefficiencies in cross-
socket OpenMP thread placement. Performance is degraded < 10%.

18

900K particles/thread, all cores per node, 2 MPI processes per node

Results: Wallclock Time

•  4-way OpenMP for 2009; 6-way OpenMP for 2010.
•  2010 all-core 4-way OpenMP results appear to be better than the 6-way
performance (an unexpected result)

19

300K particles/thread, 12 cores per node, 2010(C) expts. only

Results: Wallclock Time

•  MPI-only not scaling well; 6-way OpenMP best performer.
•  Did not try 4-way OpenMP in these experiments.

20

900K particles/thread, 12 cores per node, 2010(C) expts. only

Results: Wallclock Time

•  MPI-only could not run; 6-way OpenMP better than 12-way.
•  Performance of 4-way OpenMP appears to be competitive with 6-way.

4

273 10923 131072

2731 32768 276
272 1366 16384

21

Results: Particle Push Rate
300K particles/thread, 12 cores per node, 2 MPI processes per node

•  Plotting number of particles processed per timestep per wallclock second.
•  Impact of performance optimizations over last year has been significant,
nearly doubling performance.
•  Performance scalability also appears to excellent (more on that later).

22

Results: Particle Push Rate
900K particles/thread, all cores per node, 2 MPI processes per node

•  Impact of performance optimizations and performance scaling for 900K
particles per thread problem are both similar to that for 300K.
•  Performance of 2009 version of code is degraded when run on current
system with current compilers? Performance is almost exactly recovered by
using “OpenMP-sensitive” optimizations?

23

Results: Particle Push Rate
12 cores per node, 2 MPI processes per node

•  900K particles per thread problem is more computationally intensive than
300K problem, which leads to a somewhat higher particle push rate (approx.
20%).
•  Performance scaling is excellent for both problems.

24

Results: Parallel Efficiency
12 cores per node, 2 MPI processes per node

•  900K particles per thread problem achieves higher relative efficiency than
300K problem, but this is sensitive to the definition of the baseline processor
core count.
•  Both problems retain relatively constant parallel efficiencies out to largest
processor core count.

25

1.  Performance of the June 2009 version of XGC1 on the 12-core XT5
is significantly worse than that on the 8-core XT5. Problems appear
to arise in OpenMP-parallelized loops, so is perhaps due to a
change in the compilers or runtime environment?

2.  Recent code optimizations eliminate the performance problems, and
more. The 2010(B) experiments show performance similar to the
2009 experiments on the same number of processor cores, but the
12-core XT5 allows the 2010(B) version of the code to run on 50%
more cores and solve a 50% larger problem than was possible on
the 8-core system with the same number of compute nodes.

3.  The current XGC1 code demonstrates excellent performance
scalability, and on the 12-core XT5 is achieving a particle push rate
2.3 times greater than that achieved in June 2009 on the same
number of compute nodes.

Conclusions

