
XGC1: Performance on the 8-core and 12-core Cray XT5 systems

at Oak Ridge National Laboratory ∗

Patrick H. Worley †

Mark F. Adams ‡

Eduardo F. D’Azevedo §

C-S Chang ¶

Seung-Hoe Ku ‖

Collin McCurdy ∗∗

Abstract

The XGC1 code is used to model multiscale tokamak plasma turbulence dynamics in realistic diverted

magnetic field geometry. In June 2009, XGC1 demonstrated nearly linear weak and strong scaling out to

150,000 cores on a Cray XT5 with 8-core nodes when solving problems of relevance to running experiments

on the ITER tokamak. Here we compare performance, and discuss further performance optimizations,

when running XGC1 on an XT5 with 12-core nodes on up to 224,000 cores.

1 Introduction

Understanding and predicting the behavior of burn-
ing plasma is essential to the development of com-
mercially viable fusion power. XGC1 is a 5D gyroki-
netic particle-in-cell (PIC) code designed to model
the whole volume plasma dynamics in an experimen-
tally realistic tokamak magnetic confinement fusion
device geometry [2, 6].

During May-June of 2009 a performance scala-
bility study of XGC1 was performed on jaguarpf,
a Cray XT5 at Oak Ridge National Laboratory
(ORNL), in preparation for a series of produc-
tion runs [1]. At this point in time, jaguarpf
had 18,722 compute nodes and a three-dimensional

torus (25x32x24) interconnect based on the Cray
SeaStar2+ communication switch processor. Each
compute node contained two 2.3 GHz quad-core
AMD Opteron 2356 (Barcelona) processors and 16
GB of DDR2-800 memory. Thus each compute
node contained 8 processor cores and 2 GB mem-
ory per core, and an aggregate of 149,776 processor
cores and 299,552 TB of memory for the entire sys-
tem. Memory access performance was non-uniform
(NUMA) at the node level, but uniform memory ac-
cess could be enforced by pinning a thread of compu-
tation and its associated memory to the same socket
in the dual socket node architecture

After some performance diagnosis and optimiza-
tion, excellent performance scalability was observed

∗This research was sponsored by the Office of Fusion Energy Sciences and by the Office of Advanced Scientific Computing
Research, both in the Office of Science, U.S. Department of Energy. The research of D’Azevedo, McCurdy, and Worley
was performed at the Oak Ridge National Laboratory, which is managed by UT-Battelle, LLC under Contract No. De-
AC05-00OR22725. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the
published form of this contribution, or allow others to do so, for U.S. Government purposes. Adams was funded under DOE
grant DE-FC02-06ER54862.

†Computer Science and Mathematics Division, Oak Ridge National Laboratory, P.O. Box 2008, Bldg. 5600, Oak Ridge, TN
37831-6016 (worleyph@ornl.gov)

‡Department of Applied Physics and Applied Mathematics, Columbia University, 289 Engineering Trace, New York, NY
10027 (mark.adams@columbia.edu)

§Computer Science and Mathematics Division, Oak Ridge National Laboratory, P.O. Box 2008, Bldg. 6012, Oak Ridge, TN
37831-6367 (dazevedoef@ornl.gov)

¶Courant Institute of Mathematical Sciences New York University, 251 Mercer St., New York, NY 10012
(cschang@cims.nyu.edu)

‖Courant Institute of Mathematical Sciences New York University, 251 Mercer St., New York, NY 10012 (sku@cims.nyu.edu)
∗∗Computer Science and Mathematics Division, Oak Ridge National Laboratory, P.O. Box 2008, Bldg. 5100, Oak Ridge, TN

37831-6137 (cmccurdy@ornl.gov)

2 Proceedings of the 52nd Cray User Group Conference, May 24-27, 2010

out to the largest processor core count attempted,
149,248 cores (18,565 compute nodes). This study
used version 7.2.5 of the PGI Fortran compiler and
version 3.1.0 of mpt, the Cray-supplied version of
MPI for the XT system. The results were presented
at the 2009 SciDAC Conference [1].

During March-April of 2010 a similar perfor-
mance study was completed on jaguarpf, in prepa-
ration for a new set of production runs. In Fall of
2009 the compute nodes of jaguaprf were upgraded
to use two 2.6 GHz hex-core AMD Opteron 2435 (Is-
tanbul) processors. The amount of memory per node
and the interconnect were unchanged. At the time of
this second XGC1 performance study jaguarpf was
comprised of 18,688 compute nodes, for an aggregate
of 224,256 processing cores. As will be described,
XGC1 performance scalability in this second study
was measured on as many as 223,488 processor cores
(18,264 compute nodes). Versions 9.0.4 and 3.5.1
of the PGI Fortran compiler and the Cray-supplied
version of MPI were used, respectively.

In this work we use these two performance
studies to investigate changes in XGC1 perfor-
mance on jaguarpf with the upgrade from the 8-
core Barcelona-based compute nodes to the 12-core
Istanbul-based compute nodes (and the associated
modifications to the software stack). We also discuss
performance optimizations that were implemented
in XGC1 over this past year and report on current
observed performance.

2 XGC1 and Experimental De-

sign

XGC1 solves the gyrokinetic Vlasov equations [4, 7,
8] with marker particles and electric field data on a
spatial grid. Each timestep of an XGC1 execution
includes, minimally, the following stages:

1. Collect particle charge density on underlying
grid (charge deposition).

2. Solve gyrokinetic Poisson equation on grid.

3. Compute electric field and any derivatives
needed in particle equations of motion.

4. Calculate and output diagnostic quantities.

5. Update particle positions and velocities.

This is a simplified view of the algorithm in that
these steps are used within a Runge-Kutta or
predictor-corrector time integration method. De-
pending on the science experiment, the particles may

be ions, electrons, or both. Experiments can also in-
clude collisions and other physical processes impor-
tant to full-device simulations.

Parallelization of XGC1 is based on decomposi-
tions of both the spatial grid and the particle data
across processes and MPI [10] is used to communi-
cate between processes. In particular, the assign-
ment of particles to processes is based on a decom-
position of the spatial domain. Minimally, both the
spatial grid and the particle decompositions utilize a
one-dimensional decomposition in the toroidal direc-
tion of the tokamak geometry. OpenMP [3] is also
used to parallelize loops over particles and loops over
grid nodes or triangles. For more details see [1].

Both performance studies employed a mixed
strong/weak scaling benchmark problem. The spa-
tial grid was a 3 mm mesh of the three dimen-
sional global core of ITER [5], an international re-
search/engineering fusion device being contructed in
France, and was fixed as the processor core count
was varied. Thus the Poisson solve and other work
on the grid was likewise fixed (strong scaling). The
number of particles was fixed per thread of com-
putation, so the total number of particles increased
linearly with the number of processor cores (weak
scaling).

A number of changes occurred between June
2009 and March 2010, beyond those in the jaguarpf
system, that required careful experimental design to
allow meaningful comparisons between the results
from the two studies.

1. The spatial grid was modified between the two
studies (to improve the simulation in a region
not included in the benchmark problem). The
grid used in 2009 had 893,884 grid points while
the grid used in 2010 had 893,672. For the
most part, the two grids are identical, and we
do not expect the differences to affect the per-
formance comparisons.

2. The number of particles per thread of compu-
tation was 900,000 in the 2009 study. For 2010
this was decreased to 300,000, due primarily to
an increase in the number of processor cores
being targeted for the production runs. This
changes performance significantly. To address
this we added experiments using 900,000 par-
ticles per thread to the 2010 study. We report
2010 performance data for both 300,000 and
900,000 particles per thread, but only the lat-
ter can be compared to the 2009 data.

3. Because of the weak scaling with respect to
particle count, the problem size is a function

XGC1 Performance on the Cray XT5 3

of the total number of threads of computation.
However, it is also interesting to compare per-
formance between the 8-core and 12-core node
architectures as a function of the number of
compute nodes. To address this, for the 2010
study we ran three different performance ex-
periments:

• Using only 8 cores per node (4 cores per
processor), leaving 33% of the cores un-
used. Here the same total number of par-
ticles, same number of particles per com-
pute node, same amount of memory per
compute node, and same number of pro-
cessor cores are used as in the 2009 study
when using the same number of compute
nodes.

• Using all of the cores in a node, but choos-
ing the node counts so as to reproduce the
same numbers of processor cores used in
the 2009 study. The number of particles
and the memory requirements per node
are 50% larger in the 2010 study for a
given core count, however.

• Using all cores in the node. Here the
total and per node number of particles,
the memory requirements per node, and
the number of processor cores in the 2010
study are 50% greater than those used in
the 2009 study for the same number of
compute nodes.

4. The XGC1 code also changed over this period.
Because some of the software libraries and in-
put data used in the 2009 study could not be
regenerated or recovered for the 2010 study, we
were unable to simply run the May-June 2009
version of XGC1.

Some of the changes in XGC1, described be-
low, were significant performance enhance-
ments, and we ran experiments with these op-
timizations both enabled and disabled. Other
changes, especially with regard to the calcu-
lation and output of diagnostics and to the
parallel I/O infrastructure, were not feasible
to disable. The code contains internal timers
and natural synchronization points surround-
ing I/O-intensive phases. These allow the cost
of the I/O and the associated computation to
be measured. These timers indicate that, for
these benchmark runs, the I/O cost did not
contribute significantly to the runtime of the
code.

• An improved search technique for iden-
tifying the location of a particle in the
spatial grid was implemented prior to
the 2009 study, but was not used uni-
formly throughout the code. This im-
proved algorithm uses a geometric-based
hash function to quickly identify a small
subset of candidate mesh cells in which
the particle may be located. In the cur-
rent implementation of XGC1 the new
search algorithm is used exclusively.

• A performance analysis in the Fall of
2009 identified that some assignment
statements utilizing array syntax within
OpenMP-parallelized loops were degrad-
ing OpenMP performance [9]. Replac-
ing these statements with equivalent im-
plementations using explicit loops elimi-
nated the problem.

• Random numbers are used in the charge
deposition algorithm. For the 2009
benchmark runs, these random numbers
were generated outside of the primary
OpenMP-parallelized charge deposition
loop, and the length of the loop be-
ing parallelized was limited by the num-
ber of random numbers precomputed (a
compile-time decision, trading off mem-
ory for loop length). In the current im-
plementation a thread-safe random num-
ber generator is used, the random num-
bers are computed within the parallel re-
gion, and the length of the OpenMP par-
allelized loop is not restricted.

• Since June 2009 the spline interpolation
algorithm has been reformulated to bet-
ter reuse common subexpressions. New
interpolation routines were also devel-
oped that evaluate all higher derivatives
in one call, further exploiting common
work and reducing the overhead of the
subroutine calls (occurring within the in-
nermost computational loops).

For the 2010 study, we measured performance
using (A) none of the above optimizations, (B)
all of these optimizations except those involv-
ing the spline interpolation routines, and (C)
all of the above optimizations. Our conjecture
is that performance without any of these opti-
mizations is similar to what would have been
observed from using the May 2009 version of
XGC1 on the current jaguarpf system.

4 Proceedings of the 52nd Cray User Group Conference, May 24-27, 2010

3 Results

All results described below are based on the wall-
clock time for 10 timesteps of the main computa-
tional loop in XGC1. This excludes initialization
and final model clean-up activities, and is the rele-
vant metric for predicting performance of long pro-
duction runs.

In addition to raw performance (wallclock time
to execute the 10 timesteps), we are also interested
in the parallel scalability exhibited by XGC1 on the
Cray XT5. To be “scalable” for a weak scaling
benchmark, the runtime should not increase signif-
icantly as the processor core count increases. Be-
cause of the weak scaling in particle count, the local
cost of processing the particles should be reasonably
constant. Load imbalances can develop that will be
sensitive to the processor core count, but this is-
sue is not significant during the first 10 timesteps.
The nonlocal cost of processing the particles includes
the cost of local communication, likewise reasonably
constant, and of global reductions and synchroniza-
tions, likely to grow with process count. Work on
the spatial grid becomes communication bound as
the process count increases because of the strong
scaling in grid size and global communications in
the Poisson solver. A slow growth in cost is the best
that can be hoped for as the process count becomes
large.

3.1 900K particles per thread

8 cores per node, MPI-only. We look first at
performance when using 8 MPI processes per node,
4 processes per socket, and no OpenMP parallelism.
This wastes 33% of the cores in the current version of
jaguarpf, but uses the same amount and percentage
of memory in the nodes and the same MPI traffic
between the nodes.

Seconds for 10 timesteps
2009 2010

Nodes Cores A B C
512 4096 448 410 396 267

1024 8192 460 418 402 275
2048 16384 463 442 425 290
4096 32768 465 441 432 -
8192 65536 464 455 423 294

16384 131072 - 453 423 -
18624 148992 OOM 448 403 -

As mentioned earlier, Experiment A uses the cur-
rent code but with a number of performance en-

hancements disabled, hopefully representing the per-
formance of the 2009 version of the code on the cur-
rent system. Experiment B uses the current code
with only the spline interpolation optimizations dis-
abled. Experiment C uses the current code with all
optimizations enabled. Missing data that do not rep-
resent a code problem are denoted by “-”. “OOM”
denotes an out-of-memory failure.

From these data we draw the following conclu-
sions.

• XGC1 for this benchmark problem scaled rea-
sonably well on both systems and for all ver-
sions of the code. That is, the runtime does
not increase significantly as the process count
increases from 4096 to 148,992.

• The 2010 Experiment A results are in line with
what we would expect from running the 2009
version of the code on the current jaguarpf.
Solely from the processor clock change, we
might expect the 2010 results to be 13% faster
than the 2009 results. For 4096 cores, the im-
provement is 9%. This decreases as the pro-
cess count increases, but the ratio of commu-
nication to computation also increases, so the
trend is reasonable.

• The performance differences between Experi-
ment A and Experiment B are almost entirely
in a routine called shift decomp that calcu-
lates whether particles should be moved to a
different process for the next timestep. The
differences arise from the fact that Experiment
A uses the old search algorithm in this rou-
tine while Experiment B uses the optimized
search algorithm. Interestingly, the cost of
this routine in the 2009 study is between that
of Experiment A and Experiment B, and Ex-
periment B would be an even better model of
how we would expect the May 2009 version of
XGC1 to run on the 12-core-node version of
jaguarpf.

• The optimizations to the spline interpolation
routines made a dramatic improvement in
XGC1 performance (over 40% compared to not
using it). Even with the decreased computa-
tional cost, increasing the importance of the
interprocess communication performance, the
code continues to scale well.

8 cores per node, 4-way OpenMP. We next
look at performance when using 8 cores per node, 4
cores per socket, but with two MPI process per node

XGC1 Performance on the Cray XT5 5

and 4 threads per process. This was the option that
achieved the best performance in the 2009 study.

Seconds for 10 timesteps
2009 2010

Nodes Cores A B C
512 4096 435 416 373 252

1024 8192 417 428 372 252
2048 16384 415 422 372 251
4096 32768 421 472 378 252
8192 65536 425 494 385 263

16384 131072 435 516 387 264
18624 148992 433 524 382 263

The scalability is even better here than for the
MPI-only experiments, except for Experiment A.
The smaller total number of MPI processes and the
smaller number of MPI processes per node compet-
ing for access to the network decrease the communi-
cation overhead.

The performance degradation in Experiment A
is due to a load imbalance in which some processes
spend significantly more time in shift decomp. The
performance problem again is associated with us-
ing the old search algorithm, which is now called
within an OpenMP-parallelized loop. The old search
algorithm is more memory intensive than the op-
timized algorithm, and performance appears to be
very sensitive to the memory access patterns occur-
ring within some of the processes. Interestingly, the
2009 study gave little indication of a similar prob-
lem. Something about the new node architecture or
the newer compiler and runtime system appears to
be more sensitive to this issue.

Note that the replacement of the array syn-
tax within OpenMP loops did improve performance
when comparing timers in Experiment A and Exper-
iment B, for example, improving the performance of
the primary charge deposition loop by 10%.

8 cores per node, 8-way OpenMP. The next
comparison uses 1 MPI process per node and 8
threads per process, examining the impact of fur-
ther increasing OpenMP parallelism. Note that, in
contrast to the experiments on the 8-core nodes, the
threads are not necessarily divided evenly between
the two sockets on the 12-core nodes.

Seconds for 10 timesteps
2009 2010

Nodes Cores A B C
512 4096 540 545 431 320

1024 8192 499 524 406 289
2048 16384 477 530 401 281
4096 32768 473 535 401 283
8192 65536 473 581 403 288

16384 131072 482 606 412 293
18624 148992 484 616 411 289

Performance of all experiments is degraded when
compared to using 4 OpenMP threads per process.
Qualitatively, the results are the same, however,
with all but Experiment A demonstrating good scal-
ability.

All cores per node, 4-way OpenMP. Here we
compare performance when using all of the cores
available in a node and the same total number of
cores. The same problem size is being solved on
the two systems, but using a different number of
compute nodes and with different node memory re-
quirements. This comparison illustrates the relative
computational capabilities of the two different sys-
tems more directly.

We again look at performance using 4 OpenMP
threads per process, so are now using three MPI pro-
cesses per node for the 12-core nodes with one MPI
process having OpenMP threads assigned to two dif-
ferent sockets. (We were unable to run MPI-only
experiments because there was not enough memory
on the 12-core nodes.)

Seconds for 10 timesteps
2009 2010

Cores A B C
4096 435 480 410 300
8192 417 471 390 276

16384 415 457 390 272
32768 421 491 399 276
65536 425 504 401 -

131072 435 532 401 273

Qualitatively, the performance is similar to that
of the previous 4-way OpenMP experiments. The
2009 data are identical, of course. The small pro-
cessor core counts are more expensive relative to the
previous experiments, possibly due to the relatively
coarse decomposition of the spatial grid and the 50%
more MPI processes assigned to the node adding
to the memory requirements and cost of accessing

6 Proceedings of the 52nd Cray User Group Conference, May 24-27, 2010

memory. For large processor core counts, the mod-
est increase in cost can be attributed partly to 3 MPI
processes now competing for network access and all
12 cores now contending for access to memory.

All cores per node, two MPI processes per

node. We again compare performance when using
all of the cores available in a node, but now with
the same number of nodes on both systems. In this
case, a larger problem is being solved on the 12-core-
node system. The per node memory requirements
are again different on the two systems as well. Here
we compare performance for 2 MPI tasks per node,
with 6 OpenMP threads per process on the 12-core-
node system and 4 OpenMP threads per process for
the 8-core-node system. Earlier studies indicated
that these were the most effective ways to run XGC1
on each.

Seconds for 10 timesteps
2009 2010

Nodes A B C
512 435 462 391 272

1024 417 485 386 269
2048 415 494 391 272
4096 421 547 401 280
8192 425 597 405 285

16384 435 617 423 288
18624 433 593 408 284

Again, these results are qualitatively the same
as for the previous three experiments. Unlike in the
previous experiment, the small process count results
do not show an anomalously large cost, presumably
because 3 MPI processes are not assigned to the
node. The cost here is higher than when using 4-way
OpenMP and only 8-cores because of the increased
memory requirements, increased memory contention
from having work assigned to all cores, and, possibly,
some non-memory-related loss of OpenMP efficiency
when increasing the number of threads from 4 to 6.

3.2 12-core node system

Here we look more closely at the performance char-
acteristics of XGC1 when run on the 12-core node
system. In particular, we examine performance
for both 300,000 and 900,000 particles per thread,
considering only the version of the code with all
optimizations enabled. Again, timings are for 10
timesteps of the main computational loop. Data
were collected for 20 timesteps also, which were es-
sentially double the 10 timestep results in all cases.

300K particles per process.

Seconds for 10 timesteps
(threads per process)

Nodes Cores 1 6 12
512 6144 186 106 138

1024 12288 204 106 123
2048 24576 232 109 120
4096 49152 - 115 121
8192 98304 - 117 126

12288 147456 - 117 140
16384 196608 - 117 134
18624 223488 - 118 131

While we did not finish the suite of MPI-only ex-
periments for this problem size, it is clear that using
6 OpenMP threads per process is much faster. It is
unclear from these limited data whether using only
MPI will in fact scale well to large process counts.
The earlier experiments, when using only 8 of the
12 cores, indicate that it should scale, unless there
is some anomalous behavior when all cores are as-
signed MPI processes.

Scalability is excellent for both experiments
using OpenMP as well as MPI. Restricting the
OpenMP threads to the same socket as the asso-
ciated MPI process, as occurs with the 6 threads
per process experiments, appears to enhance perfor-
mance. However preliminary studies indicate that
there are additional reasons that 12-way OpenMP
performance is degraded. In any case, the 6-way
OpenMP results are approximately 11% faster than
the corresponding 12-way results.

900K particles per process.

Seconds for 10 timesteps
(threads per process)

Nodes Cores 1 6 12
512 6144 OOM 272 352

1024 12288 OOM 269 324
2048 24576 OOM 272 318
4096 49152 OOM 280 321
8192 98304 OOM 285 326

12288 147456 OOM 283 344
16384 196608 OOM 288 338
18624 223488 OOM 284 330

When using MPI only, the 900,000 particles per
thread benchmark requires more memory than is
available. Again, performance scalability is excel-
lent for both 6-way and 12-way OpenMP parallelism,

XGC1 Performance on the Cray XT5 7

and using 6-way OpenMP parallelism is faster than
using 12-way (by approximately 16%).

3.3 Particle Push Rate

Another metric of performance is the average num-
ber of particles processed per timestep per second.
This allows us to compare throughput for the differ-
ent problem sizes and for the different incarnations
of jaguarpf.

 32

 64

 128

 256

 512

 1024

 2048

 4096

 8192

 2048 4096 8192 16384 32768 65536 131072

M
ill

io
n

 P
ar

ti
cl

es
 /

se
co

n
d

Processor Cores

XGC1 performance

 Cray XT5 (jaguarpf), ITER grid, 900K part./core

March-April 2010
 6-way OpenMP, expt. C
 6-way OpenMP, expt. B
 6-way OpenMP, expt. A
May-June 2009
 4-way OpenMP

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 50000 100000 150000 200000 250000

M
ill

io
n

 P
ar

ti
cl

es
 /

se
co

n
d

Processor Cores

XGC1 performance

 Cray XT5 (jaguarpf), ITER grid, 900K part./core

March-April 2010
 6-way OpenMP, expt. C
 6-way OpenMP, expt. B
 6-way OpenMP, expt. A
May-June 2009
 4-way OpenMP

Figure 3.1: Performance for 900K part./core
(log-log top; lin-lin bottom)

Figure 3.1 contains graphs of performance data
for the 900,000 particles per thread benchmark prob-
lem, one with logarithmically-scaled axes and one
with linear scaling. Here we can see clearly the
excellent scalablity of XGC1 out to essentially the
whole system, even with the significant reduction in
computational cost arising from the optimizations
in the interpolation schemes. We also see that the
original version of the code, which scaled well on the
8-node system in June of 2009, does not perform as
well on the current 12-node system with the cur-
rent compilers, libraries, and runtime system. How-
ever, by making optimizations within the OpenMP-

parallelized loops (Experiment B) the earlier perfor-
mance is recovered as a function of processor core
count. Moreover, the 12-core-node system allows
much larger problems to be solved with the same
number of compute nodes without degradation in
performance scalability.

 64

 128

 256

 512

 1024

 2048

 4096

 8192

 2048 4096 8192 16384 32768 65536 131072

M
ill

io
n

 P
ar

ti
cl

es
 /

se
co

n
d

Processor Cores

XGC1 performance

 Cray XT5 (jaguarpf), ITER grid, 300K part./core

March-April 2010
 6-way OpenMP, expt. C
 6-way OpenMP, expt. B
 6-way OpenMP, expt. A

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 50000 100000 150000 200000 250000

M
ill

io
n

 P
ar

ti
cl

es
 /

se
co

n
d

Processor Cores

XGC1 performance

 Cray XT5 (jaguarpf), ITER grid, 300K part./core

March-April 2010
 6-way OpenMP, expt. C
 6-way OpenMP, expt. B
 6-way OpenMP, expt. A

Figure 3.2: Performance for 300K part./core
(log-log top; lin-lin bottom)

Figure 3.2 also contains graphs of performance
data for the 300,000 particles per thread benchmark
problem, plotted with both logarithmic and linear
scales. Here we again observe the excellent scal-
ablity of XGC1, and the significant impact of the
recent performance optimizations.

Figure 3.3 contains graphs comparing the per-
formance of the 300,000 and 900,000 particles per
thread benchmarks when using all performance op-
timizations. From these, the scalability appears to
be equally good for both benchmarks, even though
the 300,000 particle per thread problem has a higher
percentage of time spent in interprocess communica-
tion. The impact of this does appear in the absolute
comparisons, with the 900,000 particles per thread
problem achieving between a 16% and 25% higher
particle push rate. Figure 3.4 graphs the relative

8 Proceedings of the 52nd Cray User Group Conference, May 24-27, 2010

parallel efficiency, compared to experiments using
6144 processor cores. While the efficiency of the
300K particles per thread problem is somewhat less
than for the 900K problem (90% compared to 96%),
both are maintaining these relative efficiencies out
to the largest processor core counts.

 128

 256

 512

 1024

 2048

 4096

 8192

 4096 8192 16384 32768 65536 131072

M
ill

io
n

 P
ar

ti
cl

es
 /

se
co

n
d

Processor Cores

XGC1 performance on 3mm ITER grid

 Cray XT5 (jaguarpf), 300K and 900K ptl/core, Full-f simulation

900K particles/core
300K particles/core

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 50000 100000 150000 200000 250000

M
ill

io
n

 P
ar

ti
cl

es
 /

se
co

n
d

Processor Cores

XGC1 performance on 3mm ITER grid

 Cray XT5 (jaguarpf), 300K and 900K ptl/core, Full-f simulation

900K particles/core
300K particles/core

Figure 3.3: Comparing 300K and 900K part./core
performance (log-log top; lin-lin bottom)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50000 100000 150000 200000 250000

E
ff

ic
ie

n
cy

 r
el

at
iv

e
to

 6
14

4
th

re
ad

s

Processor Cores

XGC1 performance on 3mm ITER grid

 Cray XT5 (jaguarpf), 300K and 900K ptl/core, Full-f simulation

900K particles/core
300K particles/core

Figure 3.4: Comparing 300K and 900K part./core
relative efficiency

4 Conclusions

The excellent performance scalability observed in
June 2009 in performance studies with XGC1 on the
8-core-node jaguarpf XT5 system was also observed
on the current 12-core-node system. This was not a
given however. While uncertainties remain because
of a number of factors that we could not control in
our experiments, it appears that OpenMP perfor-
mance characteristics and sensitivities have changed
over the past year. In consequence the original code
would have performed significantly worse on the cur-
rent system. Whether this is due to the impact
of sharing the same amount of memory between 12
cores instead of 8 or whether due to changes in the
software stack (or both) can not be determined from
these results. We were fortunate to have diagnosed
(and, in one case, stumbled upon) optimizations
that eliminate these performance issues, recovering
the lost performance. Additional optimizations were
also applied to the code, further improving XGC1
performance by 40%.

Work is continuing on performance optimizations
of XGC1. For example, we have begun looking at al-
ternative compilers as well. One unexpected result
of this study is that using 3 MPI processes per node
and 4 OpenMP threads per process may perform
better than using 2 MPI processes and 6 OpenMP
threads per process, even though in the first case
one MPI process has threads that are assigned to
cores in different sockets. We will be verifying these
results and examining them in more detail in the
coming months.

5 Acknowledgements

This research used resources (Cray XT5) of the Na-
tional Center for Computational Sciences at Oak
Ridge National Laboratory, which is supported by
the Office of Science of the U.S. Department of En-
ergy under Contract No. DE-AC05-00OR22725.

6 About the Authors

Mark F. Adams is a research scientist in the depart-
ment of Applied Physics and Applied Mathematics
at Columbia University. His research interests are
in large-scale numerical simulations, in particular,
multigrid equation solvers and parallel, unstructured
finite element coupling frameworks in solid mechan-
ics. He currently works with fusion plasma physics
applications, scalable solvers for the adaptive mesh

XGC1 Performance on the Cray XT5 9

refinement and fluid-structure interaction problems.
Adams received his Ph.D. in Civil Engineering, from
U.C. Berkeley in 1998.

Eduardo F. D’Azevedo is group leader for the
Computational Mathematics Group at the Com-
puter Science and Mathematics Division, Oak Ridge
National Laboratory. He is co-author of one book
and over 20 refereed publications. His current re-
search includes: optimal mesh generation, vector-
ized iterative solver, out-of-core dense linear solvers,
and application specific preconditioners. He received
his Ph.D. in 1989 in the Faculty of Mathematics
(Department of Computer Science) from the Uni-
versity of Waterloo, Ontario, Canada. He held an
ORISE postdoctoral fellowship from 1990-1991, and
has been a research staff member at ORNL since
1991. He is a member of the Society for Industrial
and Applied Mathematics.

C-S Chang is the head of the SciDAC Prototype
Fusion Simulation Project (FSP) Center for Plasma
Edge Simulation (CPES). He is a Research Professor
at the Courant Institute of Mathematical Sciences,
New York University, and, jointly, a Professor of
Physics at Korea Advanced Institute of Science and
Technology. He is a Fellow of the American Physical
Society. He serves in numerous national and inter-
national advisory and executive committees, includ-
ing: the Council of the US Burning Plasma Orga-
nization; Executive Committee, US Transport Task
Force; Theory Coordinating Committee, US DOE
Office of Fusion Energy Sciences; Advisory Commit-
tee (Chair), SciDAC Gyrokinetic Plasma Simulation
Center; Users’ Council Executive Committee, Na-
tional Center for Computational Sciences (NCCS).

Seung-Hoe Ku is a Research Scientist with
the joint title Research Assistant Professor in the
Courant Institute of Mathematical Sciences, New
York University. He is the primary developer of the
XGC1 full-function gyrokinetic code. He has a PhD
degree in physics from Korea Advanced Institute of
Science and Technology (KAIST).

Collin McCurdy is a Post-Doctoral Research As-
sociate at the University of Tennessee in Knoxville,
affiliated with the Future Technologies Group at Oak
Ridge National Laboratory. His research focuses on
memory system designs in current and future proces-
sor architectures and their implications for scientific
applications. He has a PhD in Computer Science
from the University of Wisconsin–Madison and is a
member of the Association for Computing Machin-
ery.

Patrick H. Worley is a senior R&D staff member
in the Computer Science and Mathematics Division

of Oak Ridge National Laboratory. His research in-
terests include parallel algorithm design and imple-
mentation (especially as applied to simulation mod-
els used in climate and fusion energy research) and
the performance evaluation of parallel applications
and computer systems. He is currently a co-chair
of the CCSM Software Engineering Working Group,
the principal investigator for the Performance Engi-
neering and Analysis Consortium End Station DOE
INCITE project, and is an Associate Editor of the
journal Parallel Computing. Worley has a PhD in
computer science from Stanford University. He is a
member of the Association for Computing Machin-
ery and the Society for Industrial and Applied Math-
ematics.

References

[1] M. Adams, S. Ku, E. D’Azevedo, J. Cum-

mings, and C.-S. Chang, Scaling to 150k

cores: recent algorithm and performance engi-

neering developments enabling XGC1 to run at

scale, Journal of Physics: Conference Series,
180 (2009), pp. 012036–+.

[2] C. S. Chang, S. Ku, P. H. Diamond,

Z. Lin, S. Parker, T. S. Hahm, and

N. Samatova, Compressed ITG turbulence

in diverted tokamak edge, Phys. Plasmas, 16
(2009), pp. 056108–+.

[3] L. Dagum and R. Menon, OpenMP: an

industry-standard API for shared-memory pro-

gramming, IEEE Computational Science & En-
gineering, 5 (1998), pp. 46–55.

[4] T. S. Hahm, Nonlinear gyrokinetic equations

for tokamak microturbulence, Phys. Fluids, 31
(1988), pp. 2670–2673.

[5] ITER. http://www.iter.org/.

[6] S. Ku, C. Chang, and P. Diamond, Full-

f gyrokinetic particle simulation of centrally

heated global ITG turbulence from magnetic

axis to edge pedestal top in a realistic toka-

mak geometry, Nuclear Fusion, 49 (2009),
pp. 115021–+.

[7] W. W. Lee, Gyrokinetic approach in particle

simulation, Phys. Fluids, 26 (1983), pp. 556–
562.

[8] , Gyrokinetic particle simulation model, J.
Comput. Phys., 72 (1987), pp. 243–269.

10 Proceedings of the 52nd Cray User Group Conference, May 24-27, 2010

[9] C. McCurdy and J. S. Vetter, Memphis:

Finding and fixing NUMA-related performance

problems on multi-core platforms, in ISPASS,
IEEE Computer Society, 2010, pp. 87–96.

[10] MPI Committee, MPI: a message-passing in-

terface standard, Internat. J. Supercomputer
Applications, 8 (1994), pp. 165–416.

