Introduction to GPU Computing

Jeff Larkin

Cray Supercomputing Center of
Excellence

larkin@cray.com

Goals for this tutorial

Understand the architectural differences
between GPUs and CPUs and the associated
trade-offs

Recognize several GPU programming models
and how/when to use each

Understand how to analyze GPU performance
Recognize very basic GPU optimizations

This tutorial is not...

* A deep-dive on GPU programming
 The be all and end all on GPU optimization

* Arecipe for getting 10, 100, 1000X speed-ups
for your application

GPU ARCHITECTURE BASICS

Section Goals

* Recognize the differences between CPU/GPU
architectures

* |dentify when one architecture may be better
suited than the other.

CPU/GPU Architectures

CPU GPU

__ijE___ __JjEE___
Control ATCU Control ATU
AU AU

Cache Cache

CPU/GPU Architectures

CPU

Large memory, directly
accessible

Each core has own,
independent control logic

— Allows independent
execution

Coherent caches between
cores
— Can share & synchronize

GPU

Relatively small memory,
must be managed by CPU

Groups of compute cores
share control logic

— Saves space, power, ...
Shared cache &
synchronization within
groups

— None between groups

Play to your strengths

CPU

e Tuned for serial execution
with short vectors

 Multiple independent
threads of execution

* Branch-prediction

* Memory latency hidden by
cache & prefetching

— Requires regular data access
patterns

GPU

Tuned for highly parallel
execution

Threads work in lockstep
within groups

— Much like vectors
Serializes branchy code

Memory latency hidden by
swapping away stalled
threads

— Requires 1000s of concurrent
threads

GPU Glossary
Hardware |softwae

(CUDA) Core Thread/Work Unit
Streaming Multiprocessor (SM) Thread Block/Work Group

 AGridis agroup of related Thread Blocks running the same kernel
A Warp is Nvidia’s term for 32 Threads running in lock-step

 Warp Diversion is what happens when some threads within a warp
stall due to a branch

* Shared Memory is a user-managed cache within a Thread Block

* Occupancy is the degree to which all of the GPU hardware can be
used in a Kernel

— Heavily influenced by registers/thread and threads/block

e Streamis a series of data transfers and kernel launches that happen
in series

GPU PROGRAMMING MODELS

Section Goals

* Introduce several GPU programming models

* Discuss why someone may choose one
programming paradigm over the others.

Explicit/Implicit GPU Programming

Explicit Implicit
* Bottom-up approach * Traditional Top-down
* Explicit Kernel written from programming

threads’ perspective — Big Picture
« Memory management * Compiler handles memory

controlled by programmer and thread management
* Thread Blocks & Grid - 'V:iygijgr:fred by

defined by programmer Prog

. e CPU & GPU may use the
 GPU code usually distinct
same code

from CPU code

— Easier code maintenance

GPU Programming Models

* Explicit
— CUDA C (Free from Nvidia)
— CUDA Fortran (Commercial from PGl)
— OpenCL (Free from Multiple Vendors)
e Implicit
— Proposed OpenMP Directives (Multiple Vendors)
— PGI Directives (Commercial from PGl)
— HMPP Directives (Commercial from CAPS)
— Libraries (CUBLAS, MAGMA, etc.)

Multi-node Programming

 GPU papers & tutorials usually focus on 1 node, what about the rest
of the machine?

* High-level MPI parallelism between nodes
— You’re probably already doing this
* Loose, on-node parallelism via threads

— Most codes today are using MPI, but threading is becoming more
important

* Tight, on-node, vector parallelism
— SSE/AVX on CPUs
— GPU threaded parallelism

Programmers need to expose the same parallelism with/without GPUs

Using the Machine Efficiently

So-So Hybridization

Time

MPI

Better Hybridization

CPUO

CPUO

CPUO

Neglects the CPU
Suffers from Amdahl’s Law

GPU 1

-
l

Overlap CPU/GPU work and
data movement.

Even better if you can
overlap communication too!

Original S3D

Yellow — major computation — Halos 5 zones

Perform Derivative computation — High thick
order differencing

Perform Derivative computation for
forming rhs — lots of communication

5/24/2011 16

Restructured S3D for multi-core systems

OMP loop over grid

Perform Derivative computation —

High order differencing
Overlapped
OMP loop over grid

Perform derivative computation

Overlapped

Perform Derivative computation for
forming rhs — lots of communication
Overlapped

OMP loop over grid

OMP loop over grid

5/24/2011

__ms

0O — n

= 0O

w o 3 0O N mm wm

900.00

800.00
700.00
600.00
B Hybrid-768
500.00
m MPI-768
B Hybrid-8640
400.00 H MPI-8640
B Hybrid-86400
m MPI_86400
300.00
200.00
100.00
0.00

5/24/2011

User MPI SYNC OMP -OVH Total

Explicit: CUDA C/Fortran & OpenCL

Programmer writes a kernel in C/Fortran that will be run on
the GPU

— This is essentially the loop body from original CPU code

GPU memory must be explicitly allocated, freed, and filled
from CPU memory over PCle

— Generally results in 2 variables referring to every pertinent array,
one in each memory domain (hostA, devA)

Programmer declares how to decompose into thread blocks
and grid

— Must understand limits of thread block size and how to
maximize occupancy

CPU code launches kernel on device.
— May continue to work while GPU executes kernel(s)

CUDA C Example

Host Code GPU Code

double a[1000], *d_a; Allocate &
dim3 block(1000, 1,1); |& __global__
» L, 1) opy to GPU

dim3 grid(1,1,1); void scaleit_kernel(double *a,int n)

cudaMalloc((void**)&d_a, 1000*sizeof(double)); {

cudaMemcpy(d_a, a,

1000*sizeof(double),cudaMemcpyHostToDev int i = threadldx.x:

ice); Ny
scaleit_kernel<<<grid,block>>>(d_a,n); m

if (i <n)
cudaMemcpy(a, d_a,
1000*sizeof(double),cudaMemcpyDeviceToH ali] = ali] * 2.0l;
ost); Ul
}

LU B Copy Back & Free

Calculate
Myself

CUDA Fortran Example

Host Code

real(8),device
integer,intent(in)
type(dim3)

grd =dim3(1,1,1)

a=d_a
end subroutine

o

ﬂoroutine scaleit(a,n)
real(8),intent(inout) :: a(n)

::d_a(n) Device
wn
:: blk, grd

blk = dim3(1000,1,1)

EErE Copy To Device

call scaleit_kernel<<<grd,blk>>>(d_a,n)

Launch & Copy
Back

Declare on

GPU Code
attributes(global)&
subroutine scaleit_kernel(a,n)
real(8),intent(inout) :: a(n)
integer,intent(in),value :: n
integer |

if (i.le.n) then
a(i) = 2.0 * a(i)
endif
end subroutine scaleit_kernel

Calculate

Myself

o

i = threadldx% My Index

~

%

Implicit: Directives

* Programmer adds directives to existing CPU
code

 Compiler determines
— Memory management
— Thread management

* Programmer adds directives to guide compiler
— Higher-level data regions

— Partial array updates
— Improved thread blocking

Proposed OpenMP Directives Example

ﬂal*S a(1000) \
integer i Build for device, Copy a on and off

ISomp acc_region_loop acc_copy(a)

do i=1,1000
a(i) = 2 * a(i)

enddo

ISomp end acc_region_loop

o 9

Implicit: Libraries

e Calls to existing Math libraries replaced with
accelerated libraries

— BLAS, LAPACK
— FFT
— Sparse kernels

* Unless application spends very high % of
runtime in library calls, this will need to be
combined with other methods

Libraries Example

info = cublas_set_matrix(lda, na, sizeof Z, a, Ida, devA, Ida)

info = cula_device zgetrf(m,m,devA+idx2f(ioff+1,ioff+1,lda)*sizeof Z,lda,devIPVT)
info = cula_device zgetrs('n',m,ioff,devA+idx2f(ioff+1,ioff+1,Ida)*sizeof Z,lda,devIPVT,
& devA+idx2f(ioff+1,1,lda)*sizeof Z,Ida)
call cublas_zgemm('n','n',n,ioff-k+1,na-ioff,cmone,devA+idx2f(joff+1,ioff+1,lda)*sizeof Z,Ida,
& devA+idx2f(ioff+1,k,Ida)*sizeof Z,Ida,cone,devA+idx2f(joff+1,k,Ida)*sizeof Z,Ida)
call cublas_zgemm('n','n',blk_sz(1),blk_sz(1)-k+1,na-blk_sz(1),
& cmone,devA+idx2f(1,blk_sz(1)+1,lda)*sizeof Z,Ida,
& devA+idx2f(blk_sz(1)+1,k,Ida)*sizeof Z,da,cone,devA,lda)

info = cublas_get_matrix(lda, na, sizeof Z, devA, Ida, a, Ida)

PERFORMANCE ANALYSIS

Section Goals

* Understand multiple options for gathering
GPU performance metrics

* |ncreasing number of tools available, I’ll cover
3 methods
— Explicit event instrumentation
— CUDA Profiler
— CrayPAT Preview

CUDA Event API

 Most CUDA API calls are asynchronous: explicit
CPU timers won’t work

 CUDA allows inserting events into the stream

— Insert an event before and after what needs to be
timed

— Synchronize with events
— Calculate time between events
* Introduces small driver overhead and may
synchronize asynchronous calls
— Don’t use in production

CUDA Event Example

Allocate

Event stl

Copy-in

Run Kernel

Copy-out

Deallocate

Synchronize

ierr = cudaEventRecord(st0,0)
allocate(d _a(n))
ierr = cudaEventRecord(stl,0)
da=a
ierr = cudaEventRecord(st2,0)
call &
scaleit kernel<<<grd,blk>>>&
(d_a,n)
ierr = cudaEventRecord(st3,0)
a=da
ierr = cudaEventRecord(st4,0)
deallocate(d_a)
ierr = cudaEventRecord(st5,0)

ierr = cudaEventSynchronize (st2)

ierr cudaEventSynchronize (st3)

ierr = cudaEventElapsedTime &
(et, st2, st3)

write(*,*) ‘Kernel Time',6et

CUDA Profiler

* Silently built-in to CUDA driver and enabled via
environment variable

— Works with both CUDA and Directives programs

* Returns time of memory copies and kernel
launches by default
— Also reports kernel occupancy

— Can be configured to report many other metrics

* All metrics are recorded at driver level and high
resolution

— May add small kernel overhead and synchronize
asynchronous operations.

CUDA Profiler Example

Enable Profiler
export CUDA PROFILE=1
aprun ./a.out

“vr ¥ »n *H*

cat cuda profile 0.log

CUDA PROFILE LOG VERSION 2.0

CUDA DEVICE 0 Tesla M2090

TIMESTAMPFACTOR fffff6f£3e9blf6cO

method, gputime, cputime, occupancy

method=[memcpyHtoD] gputime=[2.304] cputime=[23.000]

method=[Zl4scaleit kernelPdi] gputime=[4.096] cputime=]|
15.000] occupancy=[0.667]

method=[memcpyDtoH] gputime=[3.072] cputime=[34.000]

CUDA Profiler Example

Customize Experiment

$ cat exp.txt

11 global load miss

11 global load hit

$ export CUDA PROFILE CONFIG=exp.txt
$ aprun ./a.out

$ cat cuda profile 0.log

CUDA_PROFILE LOG_VERSION 2.0

CUDA DEVICE 0 Tesla M2090

TIMESTAMPFACTOR fffff6£4318519c8
method,gputime,cputime,occupancy,ll global load miss,ll global load hit
method=[memcpyHtoD] gputime=[2.240] cputime=[23.000]

method=[Zl4scaleit kernelPdi] gputime=[4.000] cputime=[36.000]
occupancy=[0.667] 11 global load miss=[63] 11 global load hit=[
0]

method=[memcpyDtoH] gputime=[3.008] cputime=[33.000]

CrayPAT Prototype

* Luiz DeRose is giving a tutorial on CrayPAT future
work at CUG (you’re missing it right now)

* The goal of the CrayPAT team is to make
instrumenting applications and understanding
the results as simple as possible

— No code modification
— Derived metrics
— Optimization suggestions

* Several new tools are being developed that will
help with accelerator development

CrayPAT Preview: Performance Stats

51111 1.3% | 21.836221 | 21.630958 | 6760.318 | 6760.318 | 3201 |collisionb_

L]] === o = o o oo o o o o o e oo ooooooooooooo

611111 1.1% | 18.888240 | 18.708450 | 0.000 | 6507.596 | 1400 |collisionb_(exclusive)

T R Rttt

ARRERE] 0.4% | 7.306387 | 7.291820 | 0.000 | 0.000 | 200 |collisionb_ .ASYNC_ KERNEL@1li.599

YARRERE] 0.4% | 7.158172 | 7.156827 | 0.000 | 0.000 | 200 |collisionb_ .ASYNC KERNEL@1li.568

YARRERE] 0.2% | 3.799065 | 3.799065 | 0.000 | 6507.596 | 200 |collisionb .SYNC COPY@1li.593

ARRERE] 0.0% | 0.527203 | 0.376397 | 0.000 | 0.000 | 200 |1bm3d2p d_.ASYNC _COPY@1li.129

YARRERE] 0.0% | 0.073654 | 0.064766 | 0.000 | 0.000 | 200 |collisionb .ASYNC_COPY@1i.703

ARRERE] 0.0% | 0.013917 | 0.011082 | 0.000 | 0.000 | 199 |grad_exchange .ASYNC_COPYQ@1li.428

THIHT 0.0% | 0.009707 | 0.008366 | 0.000 | 0.000 | 200 |collisionb_ .ASYNC KERNEL@1li.581

ARRERE] 0.0% | 0.000134 | 0.000127 | 0.000 | 0.000 | 1l |collisionb_.ASYNC COPYQ@1li.566

611111 0.2% | 2.947981 | 2.922508 | 6760.318 | 252.722 | 1801 |grad exchange_

T

ARRERN] 0.1% | 2.485119 | 2.485119 | 6507.596 | 0.000 | 200 |collisionb_ .SYNC COPY@1li.596

ARRERE] 0.0% | 0.107396 | 0.107396 | 0.000 | 126.361 | 200 |grad exchange_ .SYNC_COPY@1i.472

ARRERE] 0.0% | 0.103009 | 0.103009 | 126.361 | 0.000 | 200 |grad exchange_ .SYNC_COPY@1li.452

ARRERE] 0.0% | 0.065731 | 0.065731 | 0.000 | 126.361 | 200 |grad exchange .SYNC_COPY@1li.439

ARRERE] 0.0% | 0.061754 | 0.061754 | 126.361 | 0.000 | 200 |grad exchange .SYNC_COPYQ@1li.485

ARRERN] 0.0% | 0.056946 | 0.045612 | 0.000 | 0.000 | 200
|grad_exchange .ASYNC KERNEL@1li.453

ARRERN] 0.0% | 0.029640 | 0.028101 | 0.000 | 0.000 | 200
|grad_exchange .ASYNC KERNEL@1li.430

ARRERN] 0.0% | 0.025947 | 0.014719 | 0.000 | 0.000 | 200
|grad_exchange .ASYNC KERNEL(@1li.486

ARRERN] 0.0% | 0.012368 | 0.011011 | 0.000 | 0.000 | 200 |grad_exchange .ASYNC COPY@1li.496

ARERRE] 0.0% | 0.000070 | 0.000056 | 0.000 | 0.000 | 1 |grad_exchange_ .ASYNC_COPY@1li.428

This example is taken from a real user application and

“ported” using proposed OpenMP extensions.

CrayPAT Preview: Data Transfer Stats

Host | Host Time | Acc Time | Acc Copy | Acc Copy | Calls | Group="ACCELERATOR'
Time % | | | In(MB) | Out(MB) | | PE
100.0% | 42.763019 | 42.720514 | 21877.192 | 20076.420 | 703 |Total

100.0% | 42.763019 | 42.720514 | 21877.192 | 20076.420 | 703 | ACCELERATOR

4.6% | 31.319188 | 31.318755 | 19425.659 | 19425.659 | 140 |recolor_

4.5% | 30.661050 | 30.660616 | 18454.376 | 19425.659 | 139 |recolor_(exclusive)

I

I

I

|| 2.4% | 16.761967 | 16.761967 | 0.000 | 19425.659 | 20 |recolor_.SYNC_COPY@Ii.790
|| 1.9% | 13.227889 | 13.227889 | 18454.376 | 0.000 | 19 |recolor_.SYNC_COPY@Ii.793
|| 0.1% | 0.668515 | 0.668480 | 0.000| 0.000| 20 |recolor .ASYNC_KERNEL@Ii.781
|| 0.0% | 0.002122 | 0.002059 | 0.000| 0.000| 20 |Ibm3d2p_d_.ASYNC_COPY@Ii.118
|| 0.0% | 0.000332 | 0.000105| 0.000| 0.000| 20 |recolor .ASYNC_COPY@Ii.794
|| 0.0% | 0.000116 | 0.000057 | 0.000| 0.000| 20 |recolor_.ASYNC_COPY@Ii.789
|| 0.0% | 0.000110 | 0.000060 | 0.000| 0.000| 20 |recolor_.ASYNC_COPY@Ii.781
I

I

I

0.1% | 0.658138 | 0.658138 | 971.283 | 0.000| 1 |streaming_exchange_
| | | | | | recolor_.SYNC_COPY@Ii.793

NO—NSNSNSNSNSNSN—O—UU—— —

Full PCle data transfer information without any code

modifications.

Cray Tools: More Information

* Cray is developing a lot of tools that deserve
more time than this tutorial allows, so...

* Goto “Cray GPU Programming Tools” BOF at
4:15 on Wednesday (Track 15B)

e Talk to Luiz DeRose and/or Heidi Poxon while
you’re here.

BASIC OPTIMIZATIONS

OCCUPANCY

Calculating Occupancy

Occupancy is the degree to which the hardware is
saturated by your kernel

— Generally higher occupancy results in higher
performance

Heavily affected by

— Thread decomposition

— Register usage

— Shared memory use

Nvidia provides an “occupancy calculator”
spreadsheet as part of the SDK

— Live example to follow

Calculating Occupancy

1. Get the register count

ptxas info : Compiling entry function
'laplace sphere wk kernel3' for 'sm 20
ptxas info : Used 36 registers, 7808+0 bytes

smem, 88 bytes cmem[0], 768 bytes cmem[2]

2. Get the thread decomposition
blockdim = dim3(4, 4, 26)
griddim = dim3 (101, 16, 1)

3. Enter into occupancy calculator

Result: 54%

Improving the Results

1o0ssasoldynpy

[
vV QO
o wun
128 (©
124 L o
120 O [l .
116 Qo >
112 ...u... c O
1 = S
100 B0 > ®©
96 V ot
o o £ 3
84 3 Munb m
= 80 o
m C 76 .._m o p— d O
2 L 72 & O @©
3] - 68 8 5 m
s [80 ¢ o=
W L - 56 m) +—
= B o L 52 5 o
o =Y - 48 8
=] = - 44
£ o | - 40
z . [32
3 [32 49152
| 54 L 47104
- 20 L 45056
| ._m |
B 43008
L g L 40960
- 4 L 38912
t 0
L 36864
w0 o <t (=] [==]
<+)] — I 34818
Aouednooo diep) 32768
J10ssasoxdpnin b - 30720 §
W_ - 28672 @
5 - o26624 @
m — F 24576
= b 22528 E
- @
@ P 20480 =
o =]
= 18432 @
] 2
o L 16384 &
g [s
>
L 10240
2E - 8182
i L6144
+5 L 4098
F=
L2048
W P = | 0
M =+ =+ o] % -
Asuednaag duepp
m ._Omwooo._a_u_—..__.s__
=t
<
o
© 3
a 2
N @
v o = 4]
x N o (¢°)
o 0 - C
3 | £
m S o ()
«© -
g o S 3
= ! T 5
© (¢ (@]
S 3 v >0
= [
3 Pt gy
c O T
+ m
Aﬁ/u b B = ()
3 Qo =
M~ (o]0} m o+
. c cx
- =T
3 5 3 e o rally
fouednoop diepp O <
> ©
-
(V5]

Reducing Registers/Thread

* Maximum number of
registers/thread can be

Varying Block Size Set Via Compiler flag

e e wemezt * Reducing the number of
0 /V\\J/ \.{f{ registers/thread to 18
:f . increases occupancy to
Ll 81%
22 s /f * Time Before: 924us
: * Time After: 837us
c}16 SID 14‘14 2{I}8 2%2 SCI".G 4{IJD 464 ¢ Improvement: NlO%

Threads Per Block

 QOccupancy isn’t a silver

bullet

Occupancy Case Study

e Results from a Finite Difference Kernel,
provided by Paulius Micikevicius of Nvidia

* Default compilation

— 46 registers, no spills to Imem

— runs a single 32x16 threadblock per SM
concurrently

— Occupancy: 33%
— 3,395 MCells/s throughput (39.54ms)

Occupancy Case Study cont.

* Reducing Maximum Registers to 32
— Set maximum register count via compiler flag
— 32 registers, 44 bytes spilled to Imem
— runs two 32x16 threadblocks per SM concurrently
— Occupancy: 67%
— 4,275 MCells/s (31.40ms)

* Improvement: ~26%

ASYNCHRONICITY

Asynchronous Execution

* Most GPU Operations are Asynchronous from
the CPU code

— Hint: The CPU can be busy doing other things

* Current Hardware can handle 1 Copy-in, 1
Kernel, and 1 Copy-out simultaneous, if in
separate streams

— Hint: Data transfer costs can be hidden by running
multiple streams and asynchronous tranfers

Asynchronous Execution with Streams

e Synchronous Execution (1 Stream):

* If data cannot remain resident on device,
streaming may allow GPU to offset transfer costs

Asynchronous Execution: Example

Add some number of streams to _
existing code integer :: streams(3)
integer :: ierr,j,mystream

Use Asynchronous memory copies

to copy part of data to/from device do j=1,3
— GOTCHA: Host arrays must be ierr = cudaStreamCreate(streams(j))
“pinned” in order to use Async enddo
copies do j=1m
Add stream parameter to kernel mystream = mod(j,3)
launch ierr = cudaMemcpyAsync&
(d_a(:,j),al:,j),size(a(:,j)),streams(mystream))
call
Sync Time: 0.6987200 scaleit_kernel<<<grd,blk,0,streams(mystrea
. m)>>>(d_a(:,j),n)
AsynC Time: 0.2472000 ierr = cudaMemcpyAsync&
(a(:,j),d_al:,j),size(a(:,j)),streams(mystream))
enddo

ierr = cudaStreamSynchronize(streams(1))
ierr = cudaStreamSynchronize(streams(2))
ierr = cudaStreamSynchronize(streams(3))

Asvnchronous Case Study

Euler Step Comparisons
2088

CPU ——
GPU {sync) ——
1@ BPU_{async} —%—

168

148

128

188

Tine {ns)

&e

68

48

28

B T 1 1 1 1 1 1 1
a a8 188 158 288 2958 388 358 488

Total Hunber of Elenents

CAVEAT: The above kernel over-emphasizes data transfer, thus necessitating

streaming.

SHARED MEMORY

Shared Memory

 Much like CPU cache, shared memory is much faster
than global memory (up to 100X lower latency)

— Staging Area
— Scratch Pad

* 64KB Shared Memory sits on each SM

— With Fermi, this is split between User-Manager and L1:
48/16 or 16/48

— Split can be determined kernel to kernel
e |f datais shared between threads in a thread block or

reused well, staging it into shared memory may be
beneficial

— Think: Cache Prefetching

Simple Matrix Multiply

attributes (global) &
subroutine mml kernel (C,A,B,N)

integer, value, intent(in) :: N
real (8), intent(in)

A(N,N) ,B(N,N)
real (8), intent(inout) :: C(N,N)

integer i,j,k
real(8) :: wval

i = (blockIdx%$x - 1) * blockDim%x
+ threadIdx%x

j = (blockIdx%y - 1) * blockDim$%y
+ threadIdx%y

val = C(i,3)
do k=1,N
val = val + A(i,k) * B(k,J)
enddo
C(i,j) = val
end

euq

ptxas info Compiling entry
function 'mml kernel' for
'sm 20'

ptxas info Used 22
registers, 60 bytes cmem[O0]

* No shared memory use,
totally relies on
hardware L1

Simple 269.0917 67%

Tiled Matrix Multiply

integer,parameter :: M = 32
real (8) ,shared :: AS(M,M) , BS (M, M)
real(8) :: val

val = C(i,])

do blk=1,N,M

AS (threadIdx%x, threadIdx%y) = &
A (blk+threadIdx%x-1,blk+threadIdx%y-1)
BS (threadIdx%x, threadIdx%y) = &

B (blk+threadIdx%$x-1,blk+threadIdx%$y-1)
call syncthreads()

do k=1,M
val = val + AS(threadIdx%x,k) &
* BS (k, threadIdx%y)

enddo

call syncthreads ()
enddo
C(i,j) = val
endif

6UQTE

ptxas info Compiling entry
function 'mm2 kernel' for
'sm 20'

ptxas info Used 18
registers, 16384+0 bytes

smem, 60 bytes cmem[0], 4
bytes cmem[16]

e Now uses 16K of shared
memory

kemel | Tume(ms) | Occupaney

Simple 269.0917 67%
Tiled 213.7160 67%

What if we increase the occupancy?

With 32x32 blocks, we’ll never get above 67%
Reduce block size from 32x32 to 16x167?

Kernel | Time (ms) | Occupancy

Simple (32x32) 269.0917 67%
Tiled (32x32) 213.7160 67%
Simple (16x16) 371.7050 83%
Tiled (16x16) 209.8233 83%

Reduce Max Registers to 187

ame e | e

Simple (16x16) 371.7050 83%
Tiled (16x16) 209.8233 83%
Simple (16x16) 18 registers 345.7340 100%
Tiled (16x16) 18 registers 212.2826 100%

Turns out the 16 is even worse.

MEMORY COALESCING

Coalescing Memory Accesses

 The GPU will try to load needed memory in as
few memory transactions as possible.

— 128 B if possible

—Ifnot, 2 X 64 B

— If not, 64 B may be splitto 32 B

— Continue until every thread has needed data

* Coalescing is possible if:
— 128B aligned
— All threads access elements in same segment

Why is coalescing important?

* |ssuing 1 128B transaction reduces memory
atency and better utilizes memory bandwidth

* L1/Shared Memory cache lines are 128B
— Not using all fetched addresses wastes bandwidth

* Nvidia Guide: “Because of this possible
performance degradation, memory coalescing
is the most critical aspect of performance
optimization of device memory.”

Coalescing Examples

Simple, Stride-1:

Segment 1
Segment 0

Threads in same warp

Every thread accesses memory within same
128B-aligned memory segment, so the
hardware will coalesce into 1 transaction.

Will This Coalesce?

X X X X X X X X X X X X X X X X

Yes! Every thread is still accessing memory within a single
128B segment and segment is 128B aligned.

No. Although this is stride-1, it is misalighed, accessing 2
128B segments. 2 64B transactions will result.

Will This Coalesce?

Stride-2, half warp:

G

Yes, but..
* Half of the memory transaction is wasted.

* Poor utilization of the memory bus.

Striding

e Striding results in more
memory transactions
and wastes cache line
entries

//’;ttributes(global)&
subroutine stride kernel (datin,
datout, st)
integer,value :: st
real (8) :: datin(n), datout(n)

integer 1

i = (blockIdx%x * blockDim%x)
+ (threadIdx%x * st)

datout (i) = datin(i)

\\\¥end subroutine stride kernel

~

&

/

&SITCT eI T OoOoONnNIrTIG e rrT T Y&TITGT

1/Time(s)

Striding: Relative Bandwidth

Stride

35

Offsets (Not 128B-aligned)

* Memory offsets result
In More memory
transactions by crossing
segment boundaries

~

//,fattributes(global)&
subroutine offset kernel (datin,

datout, st)
integer,value :: st
real (8) :: datin(n), datout(n)

integer 1

i = (blockIdx%x * blockDim%x) &

datout (i) = datin(i)
\\\¥end subroutine offset_kernel

+ threadIdx%$x + st

6UQ 2PLOALTUE6 OLL26f KG6LUGT

1/Time(ms)

Offset: Relative Bandwidth

A !

rorllnn!

N

128B Boundaries

Offset

ADDITIONAL RESOURCES

On The Web

e GTC 2010 Tutorials:

http://www.nvidia.com/object/gtc2010-
presentation-archive.html

 Nvidia CUDA online resources:
http://developer.nvidia.com/cuda-education-
training

* PG| CUDA Fortran:

http://www.pgroup.com/resources/cudafortra
n.htm

http://www.nvidia.com/object/gtc2010-presentation-archive.html
http://www.nvidia.com/object/gtc2010-presentation-archive.html
http://www.nvidia.com/object/gtc2010-presentation-archive.html
http://www.nvidia.com/object/gtc2010-presentation-archive.html
http://www.nvidia.com/object/gtc2010-presentation-archive.html
http://developer.nvidia.com/cuda-education-training
http://developer.nvidia.com/cuda-education-training
http://developer.nvidia.com/cuda-education-training
http://developer.nvidia.com/cuda-education-training
http://developer.nvidia.com/cuda-education-training
http://www.pgroup.com/resources/cudafortran.htm
http://www.pgroup.com/resources/cudafortran.htm

