
Introduction to GPU Computing

Jeff Larkin
Cray Supercomputing Center of

Excellence
larkin@cray.com

Goals for this tutorial

• Understand the architectural differences
between GPUs and CPUs and the associated
trade-offs

• Recognize several GPU programming models
and how/when to use each

• Understand how to analyze GPU performance

• Recognize very basic GPU optimizations

This tutorial is not…

• A deep-dive on GPU programming

• The be all and end all on GPU optimization

• A recipe for getting 10, 100, 1000X speed-ups
for your application

GPU ARCHITECTURE BASICS

Section Goals

• Recognize the differences between CPU/GPU
architectures

• Identify when one architecture may be better
suited than the other.

CPU/GPU Architectures

CPU GPU

RAM

RAM

Cache

Cache

Control

ALU

ALU

ALU

Cache

Control

ALU

ALU

ALU

Cache

CPU/GPU Architectures

CPU

• Large memory, directly
accessible

• Each core has own,
independent control logic
– Allows independent

execution

• Coherent caches between
cores
– Can share & synchronize

GPU

• Relatively small memory,
must be managed by CPU

• Groups of compute cores
share control logic
– Saves space, power, …

• Shared cache &
synchronization within
groups
– None between groups

Play to your strengths

CPU

• Tuned for serial execution
with short vectors

• Multiple independent
threads of execution

• Branch-prediction

• Memory latency hidden by
cache & prefetching
– Requires regular data access

patterns

GPU

• Tuned for highly parallel
execution

• Threads work in lockstep
within groups
– Much like vectors

• Serializes branchy code

• Memory latency hidden by
swapping away stalled
threads
– Requires 1000s of concurrent

threads

GPU Glossary

• A Grid is a group of related Thread Blocks running the same kernel
• A Warp is Nvidia’s term for 32 Threads running in lock-step
• Warp Diversion is what happens when some threads within a warp

stall due to a branch
• Shared Memory is a user-managed cache within a Thread Block
• Occupancy is the degree to which all of the GPU hardware can be

used in a Kernel
– Heavily influenced by registers/thread and threads/block

• Stream is a series of data transfers and kernel launches that happen
in series

Hardware Software

(CUDA) Core Thread/Work Unit

Streaming Multiprocessor (SM) Thread Block/Work Group

GPU PROGRAMMING MODELS

Section Goals

• Introduce several GPU programming models

• Discuss why someone may choose one
programming paradigm over the others.

Explicit/Implicit GPU Programming

Explicit

• Bottom-up approach

• Explicit Kernel written from
threads’ perspective

• Memory management
controlled by programmer

• Thread Blocks & Grid
defined by programmer

• GPU code usually distinct
from CPU code

Implicit

• Traditional Top-down
programming
– Big Picture

• Compiler handles memory
and thread management
– May be guided by

programmer

• CPU & GPU may use the
same code
– Easier code maintenance

GPU Programming Models

• Explicit
– CUDA C (Free from Nvidia)

– CUDA Fortran (Commercial from PGI)

– OpenCL (Free from Multiple Vendors)

• Implicit
– Proposed OpenMP Directives (Multiple Vendors)

– PGI Directives (Commercial from PGI)

– HMPP Directives (Commercial from CAPS)

– Libraries (CUBLAS, MAGMA, etc.)

Multi-node Programming

• GPU papers & tutorials usually focus on 1 node, what about the rest
of the machine?

• High-level MPI parallelism between nodes
– You’re probably already doing this

• Loose, on-node parallelism via threads
– Most codes today are using MPI, but threading is becoming more

important

• Tight, on-node, vector parallelism
– SSE/AVX on CPUs
– GPU threaded parallelism

Programmers need to expose the same parallelism with/without GPUs

Using the Machine Efficiently

So-So Hybridization

• Neglects the CPU

• Suffers from Amdahl’s Law

Better Hybridization

• Overlap CPU/GPU work and
data movement.

• Even better if you can
overlap communication too!

MPI

CPU 0 CPU 1

GPU 1GPU 0

CPU 0 CPU 1

MPI

CPU 0 CPU 1

MPI

MPI

Ti
m

e

MPI

0G0

MPI

1 2 3 0G1 1 2 3

MPI

MPI

Original S3D

5/24/2011 16

RHS – Called 6 times for each time step –
Runge Kutta iterations

Calculate Primary Variable – point wise
Mesh loops within 5 different routines

Perform Derivative computation – High
order differencing

Calculate Diffusion – 3 different routines
with some derivative computation

Perform Derivative computation for
forming rhs – lots of communication

Perform point-wise chemistry
computation

All major loops are at low level of the
Call tree
Green – major computation – point-wise
Yellow – major computation – Halos 5 zones
thick

Restructured S3D for multi-core systems

5/24/2011

RHS – Called 6 times for each time step –
Runge Kutta iterations

Calculate Primary Variable – point
wise
Mesh loops within 3 different
routines

Perform Derivative computation –
High order differencing

Perform derivative computation

Perform Derivative computation for
forming rhs – lots of communication

Perform point-wise chemistry
computation (1)

OMP loop over grid

Calculate Primary Variable – point
wise
Mesh loops within 2 different
routines

Overlapped

Perform point-wise chemistry
computation (2)

Calculate Diffusion – 3 different
routines with some derivative
computation

Overlapped

Overlapped

OMP loop over grid

OMP loop over grid

OMP loop over grid

The Hybridization of S3D

185/24/2011

Explicit: CUDA C/Fortran & OpenCL

• Programmer writes a kernel in C/Fortran that will be run on
the GPU
– This is essentially the loop body from original CPU code

• GPU memory must be explicitly allocated, freed, and filled
from CPU memory over PCIe
– Generally results in 2 variables referring to every pertinent array,

one in each memory domain (hostA, devA)

• Programmer declares how to decompose into thread blocks
and grid
– Must understand limits of thread block size and how to

maximize occupancy

• CPU code launches kernel on device.
– May continue to work while GPU executes kernel(s)

CUDA C Example

Host Code

double a[1000], *d_a;
dim3 block(1000, 1, 1);
dim3 grid(1, 1, 1);

cudaMalloc((void**)&d_a, 1000*sizeof(double));
cudaMemcpy(d_a, a,

1000*sizeof(double),cudaMemcpyHostToDev
ice);

scaleit_kernel<<<grid,block>>>(d_a,n);

cudaMemcpy(a, d_a,
1000*sizeof(double),cudaMemcpyDeviceToH
ost);

cudaFree(d_a);

GPU Code

__global__
void scaleit_kernel(double *a,int n)
{
int i = threadIdx.x;

if (i < n)
a[i] = a[i] * 2.0l;

}

Allocate &
Copy to GPU

Launch

Copy Back & Free

My Index

Calculate
Myself

CUDA Fortran Example

Host Code

subroutine scaleit(a,n)
real(8),intent(inout) :: a(n)
real(8),device :: d_a(n)
integer,intent(in) :: n
type(dim3) :: blk, grd

blk = dim3(1000,1,1)
grd = dim3(1,1,1)

d_a = a
call scaleit_kernel<<<grd,blk>>>(d_a,n)
a = d_a

end subroutine scaleit

GPU Code

attributes(global)&
subroutine scaleit_kernel(a,n)
real(8),intent(inout) :: a(n)
integer,intent(in),value :: n
integer I

i = threadIdx%x

if (i.le.n) then
a(i) = 2.0 * a(i)

endif
end subroutine scaleit_kernel

Declare on
Device

Copy To Device

Launch & Copy
Back

My Index

Calculate
Myself

Implicit: Directives

• Programmer adds directives to existing CPU
code

• Compiler determines
– Memory management

– Thread management

• Programmer adds directives to guide compiler
– Higher-level data regions

– Partial array updates

– Improved thread blocking

Proposed OpenMP Directives Example

real*8 a(1000)
integer i
!$omp acc_region_loop acc_copy(a)
do i=1,1000
a(i) = 2 * a(i)

enddo
!$omp end acc_region_loop

Build for device, Copy a on and off

Implicit: Libraries

• Calls to existing Math libraries replaced with
accelerated libraries

– BLAS, LAPACK

– FFT

– Sparse kernels

• Unless application spends very high % of
runtime in library calls, this will need to be
combined with other methods

Libraries Example

info = cublas_set_matrix(lda, na, sizeof_Z, a, lda, devA, lda)

info = cula_device_zgetrf(m,m,devA+idx2f(ioff+1,ioff+1,lda)*sizeof_Z,lda,devIPVT)
info = cula_device_zgetrs('n',m,ioff,devA+idx2f(ioff+1,ioff+1,lda)*sizeof_Z,lda,devIPVT,

& devA+idx2f(ioff+1,1,lda)*sizeof_Z,lda)
call cublas_zgemm('n','n',n,ioff-k+1,na-ioff,cmone,devA+idx2f(joff+1,ioff+1,lda)*sizeof_Z,lda,

& devA+idx2f(ioff+1,k,lda)*sizeof_Z,lda,cone,devA+idx2f(joff+1,k,lda)*sizeof_Z,lda)
call cublas_zgemm('n','n',blk_sz(1),blk_sz(1)-k+1,na-blk_sz(1),

& cmone,devA+idx2f(1,blk_sz(1)+1,lda)*sizeof_Z,lda,
& devA+idx2f(blk_sz(1)+1,k,lda)*sizeof_Z,lda,cone,devA,lda)

info = cublas_get_matrix(lda, na, sizeof_Z, devA, lda, a, lda)

PERFORMANCE ANALYSIS

Section Goals

• Understand multiple options for gathering
GPU performance metrics

• Increasing number of tools available, I’ll cover
3 methods

– Explicit event instrumentation

– CUDA Profiler

– CrayPAT Preview

CUDA Event API

• Most CUDA API calls are asynchronous: explicit
CPU timers won’t work

• CUDA allows inserting events into the stream
– Insert an event before and after what needs to be

timed

– Synchronize with events

– Calculate time between events

• Introduces small driver overhead and may
synchronize asynchronous calls
– Don’t use in production

CUDA Event Example

ierr = cudaEventRecord(st0,0)

allocate(d_a(n))

ierr = cudaEventRecord(st1,0)

d_a = a

ierr = cudaEventRecord(st2,0)

call &

scaleit_kernel<<<grd,blk>>>&

(d_a,n)

ierr = cudaEventRecord(st3,0)

a = d_a

ierr = cudaEventRecord(st4,0)

deallocate(d_a)

ierr = cudaEventRecord(st5,0)

...

ierr = cudaEventSynchronize(st2)

ierr = cudaEventSynchronize(st3)

ierr = cudaEventElapsedTime &

(et, st2, st3)

write(*,*)‘Kernel Time',et

Event st0

Event st1

Event st2

Event st3

Allocate

Copy-in

Run Kernel

Copy-out

Deallocate
Event st5

Event st4

Synchronize

CUDA Profiler

• Silently built-in to CUDA driver and enabled via
environment variable
– Works with both CUDA and Directives programs

• Returns time of memory copies and kernel
launches by default
– Also reports kernel occupancy
– Can be configured to report many other metrics

• All metrics are recorded at driver level and high
resolution
– May add small kernel overhead and synchronize

asynchronous operations.

CUDA Profiler Example

Enable Profiler

$ export CUDA_PROFILE=1

$ aprun ./a.out

$ cat cuda_profile_0.log

CUDA_PROFILE_LOG_VERSION 2.0

CUDA_DEVICE 0 Tesla M2090

TIMESTAMPFACTOR fffff6f3e9b1f6c0

method,gputime,cputime,occupancy

method=[memcpyHtoD] gputime=[2.304] cputime=[23.000]

method=[_Z14scaleit_kernelPdi] gputime=[4.096] cputime=[

15.000] occupancy=[0.667]

method=[memcpyDtoH] gputime=[3.072] cputime=[34.000]

CUDA Profiler Example

Customize Experiment

$ cat exp.txt

l1_global_load_miss

l1_global_load_hit

$ export CUDA_PROFILE_CONFIG=exp.txt

$ aprun ./a.out

$ cat cuda_profile_0.log

CUDA_PROFILE_LOG_VERSION 2.0

CUDA_DEVICE 0 Tesla M2090

TIMESTAMPFACTOR fffff6f4318519c8

method,gputime,cputime,occupancy,l1_global_load_miss,l1_global_load_hit

method=[memcpyHtoD] gputime=[2.240] cputime=[23.000]

method=[_Z14scaleit_kernelPdi] gputime=[4.000] cputime=[36.000]

occupancy=[0.667] l1_global_load_miss=[63] l1_global_load_hit=[

0]

method=[memcpyDtoH] gputime=[3.008] cputime=[33.000]

CrayPAT Prototype

• Luiz DeRose is giving a tutorial on CrayPAT future
work at CUG (you’re missing it right now)

• The goal of the CrayPAT team is to make
instrumenting applications and understanding
the results as simple as possible
– No code modification
– Derived metrics
– Optimization suggestions
– …

• Several new tools are being developed that will
help with accelerator development

CrayPAT Preview: Performance Stats

5|||| 1.3% | 21.836221 | 21.630958 | 6760.318 | 6760.318 | 3201 |collisionb_

||||||---

6||||| 1.1% | 18.888240 | 18.708450 | 0.000 | 6507.596 | 1400 |collisionb_(exclusive)

|||||||--

7|||||| 0.4% | 7.306387 | 7.291820 | 0.000 | 0.000 | 200 |collisionb_.ASYNC_KERNEL@li.599

7|||||| 0.4% | 7.158172 | 7.156827 | 0.000 | 0.000 | 200 |collisionb_.ASYNC_KERNEL@li.568

7|||||| 0.2% | 3.799065 | 3.799065 | 0.000 | 6507.596 | 200 |collisionb_.SYNC_COPY@li.593

7|||||| 0.0% | 0.527203 | 0.376397 | 0.000 | 0.000 | 200 |lbm3d2p_d_.ASYNC_COPY@li.129

7|||||| 0.0% | 0.073654 | 0.064766 | 0.000 | 0.000 | 200 |collisionb_.ASYNC_COPY@li.703

7|||||| 0.0% | 0.013917 | 0.011082 | 0.000 | 0.000 | 199 |grad_exchange_.ASYNC_COPY@li.428

7|||||| 0.0% | 0.009707 | 0.008366 | 0.000 | 0.000 | 200 |collisionb_.ASYNC_KERNEL@li.581

7|||||| 0.0% | 0.000134 | 0.000127 | 0.000 | 0.000 | 1 |collisionb_.ASYNC_COPY@li.566

6||||| 0.2% | 2.947981 | 2.922508 | 6760.318 | 252.722 | 1801 |grad_exchange_

|||||||--

7|||||| 0.1% | 2.485119 | 2.485119 | 6507.596 | 0.000 | 200 |collisionb_.SYNC_COPY@li.596

7|||||| 0.0% | 0.107396 | 0.107396 | 0.000 | 126.361 | 200 |grad_exchange_.SYNC_COPY@li.472

7|||||| 0.0% | 0.103009 | 0.103009 | 126.361 | 0.000 | 200 |grad_exchange_.SYNC_COPY@li.452

7|||||| 0.0% | 0.065731 | 0.065731 | 0.000 | 126.361 | 200 |grad_exchange_.SYNC_COPY@li.439

7|||||| 0.0% | 0.061754 | 0.061754 | 126.361 | 0.000 | 200 |grad_exchange_.SYNC_COPY@li.485

7|||||| 0.0% | 0.056946 | 0.045612 | 0.000 | 0.000 | 200
|grad_exchange_.ASYNC_KERNEL@li.453

7|||||| 0.0% | 0.029640 | 0.028101 | 0.000 | 0.000 | 200
|grad_exchange_.ASYNC_KERNEL@li.430

7|||||| 0.0% | 0.025947 | 0.014719 | 0.000 | 0.000 | 200
|grad_exchange_.ASYNC_KERNEL@li.486

7|||||| 0.0% | 0.012368 | 0.011011 | 0.000 | 0.000 | 200 |grad_exchange_.ASYNC_COPY@li.496

7|||||| 0.0% | 0.000070 | 0.000056 | 0.000 | 0.000 | 1 |grad_exchange_.ASYNC_COPY@li.428

This example is taken from a real user application and
“ported” using proposed OpenMP extensions.

CrayPAT Preview: Data Transfer Stats

Host | Host Time | Acc Time | Acc Copy | Acc Copy | Calls |Group='ACCELERATOR'
Time % | | | In (MB) | Out (MB) | | PE
100.0% | 42.763019 | 42.720514 | 21877.192 | 20076.420 | 703 |Total
|---
| 100.0% | 42.763019 | 42.720514 | 21877.192 | 20076.420 | 703 |ACCELERATOR
||--
5|||| 4.6% | 31.319188 | 31.318755 | 19425.659 | 19425.659 | 140 |recolor_
||||||--
6||||| 4.5% | 30.661050 | 30.660616 | 18454.376 | 19425.659 | 139 |recolor_(exclusive)
|||||||---
7|||||| 2.4% | 16.761967 | 16.761967 | 0.000 | 19425.659 | 20 |recolor_.SYNC_COPY@li.790
7|||||| 1.9% | 13.227889 | 13.227889 | 18454.376 | 0.000 | 19 |recolor_.SYNC_COPY@li.793
7|||||| 0.1% | 0.668515 | 0.668480 | 0.000 | 0.000 | 20 |recolor_.ASYNC_KERNEL@li.781
7|||||| 0.0% | 0.002122 | 0.002059 | 0.000 | 0.000 | 20 |lbm3d2p_d_.ASYNC_COPY@li.118
7|||||| 0.0% | 0.000332 | 0.000105 | 0.000 | 0.000 | 20 |recolor_.ASYNC_COPY@li.794
7|||||| 0.0% | 0.000116 | 0.000057 | 0.000 | 0.000 | 20 |recolor_.ASYNC_COPY@li.789
7|||||| 0.0% | 0.000110 | 0.000060 | 0.000 | 0.000 | 20 |recolor_.ASYNC_COPY@li.781
|||||||===
6||||| 0.1% | 0.658138 | 0.658138 | 971.283 | 0.000 | 1 |streaming_exchange_
7||||| | | | | | | recolor_.SYNC_COPY@li.793
||||||==

Full PCIe data transfer information without any code
modifications.

Cray Tools: More Information

• Cray is developing a lot of tools that deserve
more time than this tutorial allows, so…

• Go to “Cray GPU Programming Tools” BOF at
4:15 on Wednesday (Track 15B)

• Talk to Luiz DeRose and/or Heidi Poxon while
you’re here.

BASIC OPTIMIZATIONS

OCCUPANCY
Basic Optimizations

Calculating Occupancy

• Occupancy is the degree to which the hardware is
saturated by your kernel
– Generally higher occupancy results in higher

performance

• Heavily affected by
– Thread decomposition
– Register usage
– Shared memory use

• Nvidia provides an “occupancy calculator”
spreadsheet as part of the SDK
– Live example to follow

Calculating Occupancy

1. Get the register count
ptxas info : Compiling entry function

'laplace_sphere_wk_kernel3' for 'sm_20'

ptxas info : Used 36 registers, 7808+0 bytes

smem, 88 bytes cmem[0], 768 bytes cmem[2]

2. Get the thread decomposition
blockdim = dim3(4, 4, 26)

griddim = dim3(101, 16, 1)

3. Enter into occupancy calculator

Result: 54%

Improving the Results

Varying #threads or
shared memory use has

little effect

Reducing registers per
thread may increase

occupancy.

Reducing Registers/Thread

• Maximum number of
registers/thread can be
set via compiler flag

• Reducing the number of
registers/thread to 18
increases occupancy to
81%

• Time Before: 924us
• Time After: 837us
• Improvement: ~10%
• Occupancy isn’t a silver

bullet

Occupancy Case Study

• Results from a Finite Difference Kernel,
provided by Paulius Micikevicius of Nvidia

• Default compilation

– 46 registers, no spills to lmem

– runs a single 32x16 threadblock per SM
concurrently

– Occupancy: 33%

– 3,395 MCells/s throughput (39.54ms)

Occupancy Case Study cont.

• Reducing Maximum Registers to 32

– Set maximum register count via compiler flag

– 32 registers, 44 bytes spilled to lmem

– runs two 32x16 threadblocks per SM concurrently

– Occupancy: 67%

– 4,275 MCells/s (31.40ms)

• Improvement: ~26%

ASYNCHRONICITY
Basic Optimizations

Asynchronous Execution

• Most GPU Operations are Asynchronous from
the CPU code

– Hint: The CPU can be busy doing other things

• Current Hardware can handle 1 Copy-in, 1
Kernel, and 1 Copy-out simultaneous, if in
separate streams

– Hint: Data transfer costs can be hidden by running
multiple streams and asynchronous tranfers

Asynchronous Execution with Streams

• Synchronous Execution (1 Stream):

• Asynchronous Execution (3 Streams):

• If data cannot remain resident on device,
streaming may allow GPU to offset transfer costs

In Run Out In Run Out In Run Out In Run Out

In Run Out

In Run Out

In Run Out

In Run Out

Asynchronous Execution: Example

• Add some number of streams to
existing code

• Use Asynchronous memory copies
to copy part of data to/from device
– GOTCHA: Host arrays must be

“pinned” in order to use Async
copies

• Add stream parameter to kernel
launch

• Sync Time: 0.6987200
• Async Time: 0.2472000

integer :: streams(3)
integer :: ierr,j,mystream

do j=1,3
ierr = cudaStreamCreate(streams(j))

enddo

do j=1,m
mystream = mod(j,3)
ierr = cudaMemcpyAsync&

(d_a(:,j),a(:,j),size(a(:,j)),streams(mystream))
call

scaleit_kernel<<<grd,blk,0,streams(mystrea
m)>>>(d_a(:,j),n)

ierr = cudaMemcpyAsync&
(a(:,j),d_a(:,j),size(a(:,j)),streams(mystream))

enddo
ierr = cudaStreamSynchronize(streams(1))
ierr = cudaStreamSynchronize(streams(2))
ierr = cudaStreamSynchronize(streams(3))

Asynchronous Case Study

CAVEAT: The above kernel over-emphasizes data transfer, thus necessitating
streaming.

SHARED MEMORY
Basic Optimizations

Shared Memory

• Much like CPU cache, shared memory is much faster
than global memory (up to 100X lower latency)
– Staging Area
– Scratch Pad

• 64KB Shared Memory sits on each SM
– With Fermi, this is split between User-Manager and L1:

48/16 or 16/48
– Split can be determined kernel to kernel

• If data is shared between threads in a thread block or
reused well, staging it into shared memory may be
beneficial
– Think: Cache Prefetching

Simple Matrix Multiply

ptxas info : Compiling entry

function 'mm1_kernel' for

'sm_20'

ptxas info : Used 22

registers, 60 bytes cmem[0]

• No shared memory use,
totally relies on
hardware L1

attributes(global)&

subroutine mm1_kernel(C,A,B,N)

integer, value, intent(in) :: N

real(8), intent(in) ::

A(N,N),B(N,N)

real(8), intent(inout) :: C(N,N)

integer i,j,k

real(8) :: val

i = (blockIdx%x - 1) * blockDim%x

+ threadIdx%x

j = (blockIdx%y - 1) * blockDim%y

+ threadIdx%y

val = C(i,j)

do k=1,N

val = val + A(i,k) * B(k,j)

enddo

C(i,j) = val

end

Kernel Time (ms) Occupancy

Simple 269.0917 67%

Tiled Matrix Multiply

ptxas info : Compiling entry

function 'mm2_kernel' for

'sm_20'

ptxas info : Used 18

registers, 16384+0 bytes

smem, 60 bytes cmem[0], 4

bytes cmem[16]

• Now uses 16K of shared
memory

integer,parameter :: M = 32

real(8),shared :: AS(M,M),BS(M,M)

real(8) :: val

val = C(i,j)

do blk=1,N,M

AS(threadIdx%x,threadIdx%y) = &

A(blk+threadIdx%x-1,blk+threadIdx%y-1)

BS(threadIdx%x,threadIdx%y) = &

B(blk+threadIdx%x-1,blk+threadIdx%y-1)

call syncthreads()

do k=1,M

val = val + AS(threadIdx%x,k) &

* BS(k,threadIdx%y)

enddo

call syncthreads()

enddo

C(i,j) = val

endif

Kernel Time (ms) Occupancy

Simple 269.0917 67%

Tiled 213.7160 67%

What if we increase the occupancy?

• With 32x32 blocks, we’ll never get above 67%
• Reduce block size from 32x32 to 16x16?

• Reduce Max Registers to 18?

• Turns out the 16 is even worse.

Kernel Time (ms) Occupancy

Simple (32x32) 269.0917 67%

Tiled (32x32) 213.7160 67%

Simple (16x16) 371.7050 83%

Tiled (16x16) 209.8233 83%

Kernel Time (ms) Occupancy

Simple (16x16) 371.7050 83%

Tiled (16x16) 209.8233 83%

Simple (16x16) 18 registers 345.7340 100%

Tiled (16x16) 18 registers 212.2826 100%

MEMORY COALESCING
Basic Optimizations

Coalescing Memory Accesses

• The GPU will try to load needed memory in as
few memory transactions as possible.
– 128 B if possible

– If not, 2 X 64 B

– If not, 64 B may be split to 32 B

– Continue until every thread has needed data

• Coalescing is possible if:
– 128B aligned

– All threads access elements in same segment

Why is coalescing important?

• Issuing 1 128B transaction reduces memory
latency and better utilizes memory bandwidth

• L1/Shared Memory cache lines are 128B

– Not using all fetched addresses wastes bandwidth

• Nvidia Guide: “Because of this possible
performance degradation, memory coalescing
is the most critical aspect of performance
optimization of device memory.”

Coalescing Examples

Simple, Stride-1:

Every thread accesses memory within same
128B-aligned memory segment, so the
hardware will coalesce into 1 transaction.

Segment 0

Segment 1

Threads in same warp

Will This Coalesce?

Yes! Every thread is still accessing memory within a single
128B segment and segment is 128B aligned.

No. Although this is stride-1, it is misaligned, accessing 2
128B segments. 2 64B transactions will result.

Will This Coalesce?

Stride-2, half warp:

Yes, but..

• Half of the memory transaction is wasted.

• Poor utilization of the memory bus.

Striding

• Striding results in more
memory transactions
and wastes cache line
entries

0

1

2

3

4

5

6

7

0 5 10 15 20 25 30 35

1
/T

im
e

(s
)

Stride

Striding: Relative Bandwidth

attributes(global)&

subroutine stride_kernel(datin,

datout, st)

integer,value :: st

real(8) :: datin(n), datout(n)

integer i

i = (blockIdx%x * blockDim%x) &

+ (threadIdx%x * st)

datout(i) = datin(i)

end subroutine stride_kernel

Offsets (Not 128B-aligned)

• Memory offsets result
in more memory
transactions by crossing
segment boundaries

attributes(global)&

subroutine offset_kernel(datin,

datout, st)

integer,value :: st

real(8) :: datin(n), datout(n)

integer i

i = (blockIdx%x * blockDim%x) &

+ threadIdx%x + st

datout(i) = datin(i)

end subroutine offset_kernel

0

1

2

3

4

5

6

0 5 10 15 20 25 30 35

1
/T

im
e

(m
s)

Offset

Offset: Relative Bandwidth

128B Boundaries

ADDITIONAL RESOURCES

On The Web

• GTC 2010 Tutorials:
http://www.nvidia.com/object/gtc2010-
presentation-archive.html

• Nvidia CUDA online resources:
http://developer.nvidia.com/cuda-education-
training

• PGI CUDA Fortran:
http://www.pgroup.com/resources/cudafortra
n.htm

http://www.nvidia.com/object/gtc2010-presentation-archive.html
http://www.nvidia.com/object/gtc2010-presentation-archive.html
http://www.nvidia.com/object/gtc2010-presentation-archive.html
http://www.nvidia.com/object/gtc2010-presentation-archive.html
http://www.nvidia.com/object/gtc2010-presentation-archive.html
http://developer.nvidia.com/cuda-education-training
http://developer.nvidia.com/cuda-education-training
http://developer.nvidia.com/cuda-education-training
http://developer.nvidia.com/cuda-education-training
http://developer.nvidia.com/cuda-education-training
http://www.pgroup.com/resources/cudafortran.htm
http://www.pgroup.com/resources/cudafortran.htm

