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Goals for this tutorial

• Understand the architectural differences 
between GPUs and CPUs and the associated 
trade-offs

• Recognize several GPU programming models 
and how/when to use each

• Understand how to analyze GPU performance

• Recognize very basic GPU optimizations



This tutorial is not…

• A deep-dive on GPU programming

• The be all and end all on GPU optimization

• A recipe for getting 10, 100, 1000X speed-ups 
for your application



GPU ARCHITECTURE BASICS



Section Goals

• Recognize the differences between CPU/GPU 
architectures

• Identify when one architecture may be better 
suited than the other.



CPU/GPU Architectures
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CPU/GPU Architectures

CPU

• Large memory, directly 
accessible

• Each core has own, 
independent control logic
– Allows independent 

execution

• Coherent caches between 
cores
– Can share & synchronize

GPU

• Relatively small memory, 
must be managed by CPU

• Groups of compute cores 
share control logic
– Saves space, power, …

• Shared cache & 
synchronization within 
groups
– None between groups



Play to your strengths

CPU

• Tuned for serial execution 
with short vectors

• Multiple independent 
threads of execution

• Branch-prediction 

• Memory latency hidden by 
cache & prefetching
– Requires regular data access 

patterns

GPU

• Tuned for highly parallel 
execution

• Threads work in lockstep 
within groups
– Much like vectors

• Serializes branchy code

• Memory latency hidden by 
swapping away stalled 
threads
– Requires 1000s of concurrent 

threads



GPU Glossary

• A Grid is a group of related Thread Blocks running the same kernel
• A Warp is Nvidia’s term for 32 Threads running in lock-step
• Warp Diversion is what happens when some threads within a warp 

stall due to a branch
• Shared Memory is a user-managed cache within a Thread Block
• Occupancy is the degree to which all of the GPU hardware can be 

used in a Kernel
– Heavily influenced by registers/thread and threads/block

• Stream is a series of data transfers and kernel launches that happen 
in series

Hardware Software

(CUDA) Core Thread/Work Unit

Streaming Multiprocessor (SM) Thread Block/Work Group



GPU PROGRAMMING MODELS



Section Goals

• Introduce several GPU programming models

• Discuss why someone may choose one 
programming paradigm over the others.



Explicit/Implicit GPU Programming

Explicit

• Bottom-up approach

• Explicit Kernel written from 
threads’ perspective

• Memory management 
controlled by programmer

• Thread Blocks & Grid 
defined by programmer

• GPU code usually distinct 
from CPU code

Implicit

• Traditional Top-down 
programming
– Big Picture

• Compiler handles memory 
and thread management
– May be guided by 

programmer

• CPU & GPU may use the 
same code
– Easier code maintenance



GPU Programming Models

• Explicit
– CUDA C (Free from Nvidia)

– CUDA Fortran (Commercial from PGI)

– OpenCL (Free from Multiple Vendors)

• Implicit
– Proposed OpenMP Directives (Multiple Vendors)

– PGI Directives (Commercial from PGI)

– HMPP Directives (Commercial from CAPS)

– Libraries (CUBLAS, MAGMA, etc.)



Multi-node Programming

• GPU papers & tutorials usually focus on 1 node, what about the rest 
of the machine?

• High-level MPI parallelism between nodes
– You’re probably already doing this

• Loose, on-node parallelism via threads
– Most codes today are using MPI, but threading is becoming more 

important

• Tight, on-node, vector parallelism 
– SSE/AVX on CPUs
– GPU threaded parallelism

Programmers need to expose the same parallelism with/without GPUs



Using the Machine Efficiently

So-So Hybridization

• Neglects the CPU

• Suffers from Amdahl’s Law

Better Hybridization

• Overlap CPU/GPU work and 
data movement.

• Even better if you can 
overlap communication too!
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Original S3D

5/24/2011 16

RHS – Called 6 times for each time step –
Runge Kutta iterations

Calculate Primary Variable – point wise
Mesh loops within 5 different routines

Perform Derivative computation – High 
order differencing

Calculate Diffusion – 3 different routines 
with some derivative computation

Perform Derivative computation for 
forming rhs – lots of communication

Perform point-wise chemistry 
computation 

All major loops are at low level of the
Call tree
Green – major computation – point-wise
Yellow – major computation – Halos 5 zones 
thick



Restructured S3D for multi-core systems

5/24/2011

RHS – Called 6 times for each time step –
Runge Kutta iterations

Calculate Primary Variable – point 
wise
Mesh loops within 3 different 
routines

Perform Derivative computation –
High order differencing

Perform derivative computation

Perform Derivative computation for 
forming rhs – lots of communication

Perform point-wise chemistry 
computation  (1) 

OMP loop over grid

Calculate Primary Variable – point 
wise
Mesh loops within 2 different 
routines

Overlapped

Perform point-wise chemistry 
computation (2) 

Calculate Diffusion – 3 different 
routines with some derivative 
computation

Overlapped

Overlapped

OMP loop over grid

OMP loop over grid

OMP loop over grid



The Hybridization of S3D

185/24/2011



Explicit: CUDA C/Fortran & OpenCL

• Programmer writes a kernel in C/Fortran that will be run on 
the GPU
– This is essentially the loop body from original CPU code

• GPU memory must be explicitly allocated, freed, and filled 
from CPU memory over PCIe
– Generally results in 2 variables referring to every pertinent array, 

one in each memory domain (hostA, devA)

• Programmer declares how to decompose into thread blocks 
and grid
– Must understand limits of thread block size and how to 

maximize occupancy

• CPU code launches kernel on device.
– May continue to work while GPU executes kernel(s)



CUDA C Example

Host Code

double a[1000], *d_a;
dim3 block( 1000, 1, 1 );
dim3 grid( 1, 1, 1 );

cudaMalloc((void**)&d_a, 1000*sizeof(double));
cudaMemcpy(d_a, a, 

1000*sizeof(double),cudaMemcpyHostToDev
ice);

scaleit_kernel<<<grid,block>>>(d_a,n);

cudaMemcpy(a, d_a, 
1000*sizeof(double),cudaMemcpyDeviceToH
ost);

cudaFree(d_a);

GPU Code

__global__
void scaleit_kernel(double *a,int n)
{
int i = threadIdx.x;

if (i < n)
a[i] = a[i] * 2.0l;

}

Allocate & 
Copy to GPU

Launch

Copy Back & Free

My Index

Calculate 
Myself



CUDA Fortran Example

Host Code

subroutine scaleit(a,n)
real(8),intent(inout) :: a(n)
real(8),device        :: d_a(n)
integer,intent(in)    :: n
type(dim3)            :: blk, grd

blk = dim3(1000,1,1)
grd = dim3(1,1,1)

d_a = a
call scaleit_kernel<<<grd,blk>>>(d_a,n)
a = d_a

end subroutine scaleit

GPU Code

attributes(global)&
subroutine scaleit_kernel(a,n)
real(8),intent(inout)    :: a(n)
integer,intent(in),value :: n
integer I

i = threadIdx%x

if (i.le.n) then
a(i) = 2.0 * a(i)

endif
end subroutine scaleit_kernel

Declare on 
Device

Copy To Device

Launch & Copy 
Back

My Index

Calculate 
Myself



Implicit: Directives

• Programmer adds directives to existing CPU 
code

• Compiler determines
– Memory management

– Thread management

• Programmer adds directives to guide compiler
– Higher-level data regions

– Partial array updates

– Improved thread blocking



Proposed OpenMP Directives Example

real*8 a(1000)
integer i
!$omp acc_region_loop acc_copy(a)
do i=1,1000
a(i) = 2 * a(i)

enddo
!$omp end acc_region_loop

Build for device, Copy a on and off



Implicit: Libraries

• Calls to existing Math libraries replaced with 
accelerated libraries

– BLAS, LAPACK

– FFT

– Sparse kernels

• Unless application spends very high % of 
runtime in library calls, this will need to be 
combined with other methods



Libraries Example

info = cublas_set_matrix(lda, na, sizeof_Z, a, lda, devA, lda)

info = cula_device_zgetrf(m,m,devA+idx2f(ioff+1,ioff+1,lda)*sizeof_Z,lda,devIPVT)
info = cula_device_zgetrs('n',m,ioff,devA+idx2f(ioff+1,ioff+1,lda)*sizeof_Z,lda,devIPVT,

&     devA+idx2f(ioff+1,1,lda)*sizeof_Z,lda)
call cublas_zgemm('n','n',n,ioff-k+1,na-ioff,cmone,devA+idx2f(joff+1,ioff+1,lda)*sizeof_Z,lda,

&     devA+idx2f(ioff+1,k,lda)*sizeof_Z,lda,cone,devA+idx2f(joff+1,k,lda)*sizeof_Z,lda)
call cublas_zgemm('n','n',blk_sz(1),blk_sz(1)-k+1,na-blk_sz(1),

&     cmone,devA+idx2f(1,blk_sz(1)+1,lda)*sizeof_Z,lda,
&     devA+idx2f(blk_sz(1)+1,k,lda)*sizeof_Z,lda,cone,devA,lda)

info = cublas_get_matrix(lda, na, sizeof_Z, devA, lda, a, lda)



PERFORMANCE ANALYSIS



Section Goals

• Understand multiple options for gathering 
GPU performance metrics

• Increasing number of tools available, I’ll cover 
3 methods

– Explicit event instrumentation

– CUDA Profiler

– CrayPAT Preview



CUDA Event API

• Most CUDA API calls are asynchronous: explicit 
CPU timers won’t work

• CUDA allows inserting events into the stream
– Insert an event before and after what needs to be 

timed

– Synchronize with events

– Calculate time between events

• Introduces small driver overhead and may 
synchronize asynchronous calls
– Don’t use in production



CUDA Event Example

ierr = cudaEventRecord(st0,0)

allocate(d_a(n))

ierr = cudaEventRecord(st1,0)

d_a = a

ierr = cudaEventRecord(st2,0)

call &

scaleit_kernel<<<grd,blk>>>&

(d_a,n)

ierr = cudaEventRecord(st3,0)

a = d_a

ierr = cudaEventRecord(st4,0)

deallocate(d_a)

ierr = cudaEventRecord(st5,0)

...

ierr = cudaEventSynchronize(st2)

ierr = cudaEventSynchronize(st3)

ierr = cudaEventElapsedTime &

(et, st2, st3)

write(*,*)‘Kernel Time',et

Event st0

Event st1

Event st2

Event st3

Allocate

Copy-in

Run Kernel

Copy-out

Deallocate
Event st5

Event st4

Synchronize



CUDA Profiler

• Silently built-in to CUDA driver and enabled via 
environment variable
– Works with both CUDA and Directives programs

• Returns time of memory copies and kernel 
launches by default
– Also reports kernel occupancy
– Can be configured to report many other metrics

• All metrics are recorded at driver level and high 
resolution
– May add small kernel overhead and synchronize 

asynchronous operations.



CUDA Profiler Example

# Enable Profiler

$ export CUDA_PROFILE=1

$ aprun ./a.out

$ cat cuda_profile_0.log

# CUDA_PROFILE_LOG_VERSION 2.0

# CUDA_DEVICE 0 Tesla M2090

# TIMESTAMPFACTOR fffff6f3e9b1f6c0

method,gputime,cputime,occupancy

method=[ memcpyHtoD ] gputime=[ 2.304 ] cputime=[ 23.000 ]

method=[ _Z14scaleit_kernelPdi ] gputime=[ 4.096 ] cputime=[ 

15.000 ] occupancy=[ 0.667 ]

method=[ memcpyDtoH ] gputime=[ 3.072 ] cputime=[ 34.000 ]



CUDA Profiler Example

# Customize Experiment

$ cat exp.txt

l1_global_load_miss

l1_global_load_hit

$ export CUDA_PROFILE_CONFIG=exp.txt

$ aprun ./a.out

$ cat cuda_profile_0.log

# CUDA_PROFILE_LOG_VERSION 2.0

# CUDA_DEVICE 0 Tesla M2090

# TIMESTAMPFACTOR fffff6f4318519c8

method,gputime,cputime,occupancy,l1_global_load_miss,l1_global_load_hit

method=[ memcpyHtoD ] gputime=[ 2.240 ] cputime=[ 23.000 ]

method=[ _Z14scaleit_kernelPdi ] gputime=[ 4.000 ] cputime=[ 36.000 ] 

occupancy=[ 0.667 ] l1_global_load_miss=[ 63 ] l1_global_load_hit=[ 

0 ]

method=[ memcpyDtoH ] gputime=[ 3.008 ] cputime=[ 33.000 ]



CrayPAT Prototype

• Luiz DeRose is giving a tutorial on CrayPAT future 
work at CUG (you’re missing it right now)

• The goal of the CrayPAT team is to make 
instrumenting applications and understanding 
the results as simple as possible
– No code modification
– Derived metrics
– Optimization suggestions
– …

• Several new tools are being developed that will 
help with accelerator development



CrayPAT Preview: Performance Stats

5||||   1.3% |  21.836221 |  21.630958 |  6760.318 | 6760.318 |  3201 |collisionb_

||||||-------------------------------------------------------------------------------

6|||||   1.1% |  18.888240 |  18.708450 |     0.000 | 6507.596 |  1400 |collisionb_(exclusive)

|||||||------------------------------------------------------------------------------

7||||||   0.4% |   7.306387 |   7.291820 |     0.000 |    0.000 |   200 |collisionb_.ASYNC_KERNEL@li.599

7||||||   0.4% |   7.158172 |   7.156827 |     0.000 |    0.000 |   200 |collisionb_.ASYNC_KERNEL@li.568

7||||||   0.2% |   3.799065 |   3.799065 |     0.000 | 6507.596 |   200 |collisionb_.SYNC_COPY@li.593

7||||||   0.0% |   0.527203 |   0.376397 |     0.000 |    0.000 |   200 |lbm3d2p_d_.ASYNC_COPY@li.129

7||||||   0.0% |   0.073654 |   0.064766 |     0.000 |    0.000 |   200 |collisionb_.ASYNC_COPY@li.703

7||||||   0.0% |   0.013917 |   0.011082 |     0.000 |    0.000 |   199 |grad_exchange_.ASYNC_COPY@li.428

7||||||   0.0% |   0.009707 |   0.008366 |     0.000 |    0.000 |   200 |collisionb_.ASYNC_KERNEL@li.581

7||||||   0.0% |   0.000134 |   0.000127 |     0.000 |    0.000 |     1 |collisionb_.ASYNC_COPY@li.566

6|||||   0.2% |   2.947981 |   2.922508 |  6760.318 |  252.722 |  1801 |grad_exchange_

|||||||------------------------------------------------------------------------------

7||||||   0.1% |   2.485119 |   2.485119 |  6507.596 |    0.000 |   200 |collisionb_.SYNC_COPY@li.596

7||||||   0.0% |   0.107396 |   0.107396 |     0.000 |  126.361 |   200 |grad_exchange_.SYNC_COPY@li.472

7||||||   0.0% |   0.103009 |   0.103009 |   126.361 |    0.000 |   200 |grad_exchange_.SYNC_COPY@li.452

7||||||   0.0% |   0.065731 |   0.065731 |     0.000 |  126.361 |   200 |grad_exchange_.SYNC_COPY@li.439

7||||||   0.0% |   0.061754 |   0.061754 |   126.361 |    0.000 |   200 |grad_exchange_.SYNC_COPY@li.485

7||||||   0.0% |   0.056946 |   0.045612 |     0.000 |    0.000 |   200 
|grad_exchange_.ASYNC_KERNEL@li.453

7||||||   0.0% |   0.029640 |   0.028101 |     0.000 |    0.000 |   200 
|grad_exchange_.ASYNC_KERNEL@li.430

7||||||   0.0% |   0.025947 |   0.014719 |     0.000 |    0.000 |   200 
|grad_exchange_.ASYNC_KERNEL@li.486

7||||||   0.0% |   0.012368 |   0.011011 |     0.000 |    0.000 |   200 |grad_exchange_.ASYNC_COPY@li.496

7||||||   0.0% |   0.000070 |   0.000056 |     0.000 |    0.000 |     1 |grad_exchange_.ASYNC_COPY@li.428

This example is taken from a real user application and 
“ported” using proposed OpenMP extensions.



CrayPAT Preview: Data Transfer Stats

Host | Host Time |  Acc Time |  Acc Copy |  Acc Copy | Calls |Group='ACCELERATOR'
Time % |           |           |   In (MB) |  Out (MB) |       | PE
100.0% | 42.763019 | 42.720514 | 21877.192 | 20076.420 |   703 |Total
|-----------------------------------------------------------------------------------
| 100.0% | 42.763019 | 42.720514 | 21877.192 | 20076.420 |   703 |ACCELERATOR
||----------------------------------------------------------------------------------
5||||   4.6% | 31.319188 | 31.318755 | 19425.659 | 19425.659 |   140 |recolor_
||||||------------------------------------------------------------------------------
6|||||   4.5% | 30.661050 | 30.660616 | 18454.376 | 19425.659 |   139 |recolor_(exclusive)
|||||||-----------------------------------------------------------------------------
7||||||   2.4% | 16.761967 | 16.761967 |     0.000 | 19425.659 |    20 |recolor_.SYNC_COPY@li.790
7||||||   1.9% | 13.227889 | 13.227889 | 18454.376 |     0.000 |    19 |recolor_.SYNC_COPY@li.793
7||||||   0.1% |  0.668515 |  0.668480 |     0.000 |     0.000 |    20 |recolor_.ASYNC_KERNEL@li.781
7||||||   0.0% |  0.002122 |  0.002059 |     0.000 |     0.000 |    20 |lbm3d2p_d_.ASYNC_COPY@li.118
7||||||   0.0% |  0.000332 |  0.000105 |     0.000 |     0.000 |    20 |recolor_.ASYNC_COPY@li.794
7||||||   0.0% |  0.000116 |  0.000057 |     0.000 |     0.000 |    20 |recolor_.ASYNC_COPY@li.789
7||||||   0.0% |  0.000110 |  0.000060 |     0.000 |     0.000 |    20 |recolor_.ASYNC_COPY@li.781
|||||||=============================================================================
6|||||   0.1% |  0.658138 |  0.658138 |   971.283 |     0.000 |     1 |streaming_exchange_
7|||||        |           |           |           |           |       | recolor_.SYNC_COPY@li.793
||||||==============================================================================

Full PCIe data transfer information without any code 
modifications.



Cray Tools: More Information

• Cray is developing a lot of tools that deserve 
more time than this tutorial allows, so…

• Go to “Cray GPU Programming Tools” BOF at 
4:15 on Wednesday (Track 15B)

• Talk to Luiz DeRose and/or Heidi Poxon while 
you’re here.



BASIC OPTIMIZATIONS



OCCUPANCY
Basic Optimizations



Calculating Occupancy

• Occupancy is the degree to which the hardware is 
saturated by your kernel
– Generally higher occupancy results in higher 

performance

• Heavily affected by
– Thread decomposition
– Register usage
– Shared memory use

• Nvidia provides an “occupancy calculator” 
spreadsheet as part of the SDK
– Live example to follow



Calculating Occupancy

1. Get the register count
ptxas info    : Compiling entry function 

'laplace_sphere_wk_kernel3' for 'sm_20'

ptxas info    : Used 36 registers, 7808+0 bytes 

smem, 88 bytes cmem[0], 768 bytes cmem[2]

2. Get the thread decomposition
blockdim = dim3( 4, 4, 26)

griddim = dim3(101, 16, 1)

3. Enter into occupancy calculator

Result: 54%



Improving the Results

Varying #threads or 
shared memory use has 

little effect

Reducing registers per 
thread may increase 

occupancy.



Reducing Registers/Thread

• Maximum number of 
registers/thread can be 
set via compiler flag

• Reducing the number of 
registers/thread to 18 
increases occupancy to 
81%

• Time Before: 924us
• Time After: 837us
• Improvement: ~10%
• Occupancy isn’t a silver 

bullet



Occupancy Case Study

• Results from a Finite Difference Kernel, 
provided by Paulius Micikevicius of Nvidia

• Default compilation

– 46 registers, no spills to lmem

– runs a single 32x16 threadblock per SM 
concurrently

– Occupancy: 33%

– 3,395 MCells/s throughput (39.54ms)



Occupancy Case Study cont.

• Reducing Maximum Registers to 32

– Set maximum register count via compiler flag

– 32 registers, 44 bytes spilled to lmem

– runs two 32x16 threadblocks per SM concurrently

– Occupancy: 67%

– 4,275 MCells/s (31.40ms)

• Improvement: ~26%



ASYNCHRONICITY
Basic Optimizations



Asynchronous Execution

• Most GPU Operations are Asynchronous from 
the CPU code

– Hint: The CPU can be busy doing other things

• Current Hardware can handle 1 Copy-in, 1 
Kernel, and 1 Copy-out simultaneous, if in 
separate streams

– Hint: Data transfer costs can be hidden by running 
multiple streams and asynchronous tranfers



Asynchronous Execution with Streams

• Synchronous Execution (1 Stream):

• Asynchronous Execution (3 Streams):

• If data cannot remain resident on device, 
streaming may allow GPU to offset transfer costs

In Run Out In Run Out In Run Out In Run Out

In Run Out

In Run Out

In Run Out

In Run Out



Asynchronous Execution: Example

• Add some number of streams to 
existing code

• Use Asynchronous memory copies 
to copy part of data to/from device
– GOTCHA: Host arrays must be 

“pinned” in order to use Async
copies

• Add stream parameter to kernel 
launch

• Sync Time: 0.6987200
• Async Time: 0.2472000

integer :: streams(3)
integer :: ierr,j,mystream

do j=1,3
ierr = cudaStreamCreate(streams(j))

enddo

do j=1,m
mystream = mod(j,3)
ierr = cudaMemcpyAsync&

(d_a(:,j),a(:,j),size(a(:,j)),streams(mystream))
call 

scaleit_kernel<<<grd,blk,0,streams(mystrea
m)>>>(d_a(:,j),n)

ierr = cudaMemcpyAsync&
(a(:,j),d_a(:,j),size(a(:,j)),streams(mystream))

enddo
ierr = cudaStreamSynchronize(streams(1))
ierr = cudaStreamSynchronize(streams(2))
ierr = cudaStreamSynchronize(streams(3))



Asynchronous Case Study

CAVEAT: The above kernel over-emphasizes data transfer, thus necessitating 
streaming.



SHARED MEMORY
Basic Optimizations



Shared Memory

• Much like CPU cache, shared memory is much faster 
than global memory (up to 100X lower latency)
– Staging Area
– Scratch Pad

• 64KB Shared Memory sits on each SM
– With Fermi, this is split between User-Manager and L1: 

48/16 or 16/48
– Split can be determined kernel to kernel

• If data is shared between threads in a thread block or 
reused well, staging it into shared memory may be 
beneficial
– Think: Cache Prefetching



Simple Matrix Multiply

ptxas info    : Compiling entry 

function 'mm1_kernel' for 

'sm_20'

ptxas info    : Used 22 

registers, 60 bytes cmem[0]

• No shared memory use, 
totally relies on 
hardware L1

attributes(global)&

subroutine mm1_kernel(C,A,B,N)

integer, value, intent(in) :: N

real(8), intent(in) :: 

A(N,N),B(N,N)

real(8), intent(inout) :: C(N,N)

integer i,j,k

real(8) :: val

i = (blockIdx%x - 1) * blockDim%x

+ threadIdx%x

j = (blockIdx%y - 1) * blockDim%y

+ threadIdx%y

val = C(i,j)

do k=1,N

val = val + A(i,k) * B(k,j)

enddo

C(i,j) = val

end

Kernel Time (ms) Occupancy

Simple 269.0917 67%



Tiled Matrix Multiply

ptxas info    : Compiling entry 

function 'mm2_kernel' for 

'sm_20'

ptxas info    : Used 18 

registers, 16384+0 bytes 

smem, 60 bytes cmem[0], 4 

bytes cmem[16]

• Now uses 16K of shared 
memory

integer,parameter :: M = 32

real(8),shared :: AS(M,M),BS(M,M)

real(8) :: val

val = C(i,j)

do blk=1,N,M

AS(threadIdx%x,threadIdx%y) = &

A(blk+threadIdx%x-1,blk+threadIdx%y-1)

BS(threadIdx%x,threadIdx%y) = &

B(blk+threadIdx%x-1,blk+threadIdx%y-1)

call syncthreads()

do k=1,M

val = val + AS(threadIdx%x,k) &

* BS(k,threadIdx%y)

enddo

call syncthreads()

enddo

C(i,j) = val

endif

Kernel Time (ms) Occupancy

Simple 269.0917 67%

Tiled 213.7160 67%



What if we increase the occupancy?

• With 32x32 blocks, we’ll never get above 67%
• Reduce block size from 32x32 to 16x16?

• Reduce Max Registers to 18?

• Turns out the 16 is even worse.

Kernel Time (ms) Occupancy

Simple (32x32) 269.0917 67%

Tiled (32x32) 213.7160 67%

Simple (16x16) 371.7050 83%

Tiled (16x16) 209.8233 83%

Kernel Time (ms) Occupancy

Simple (16x16) 371.7050 83%

Tiled (16x16) 209.8233 83%

Simple (16x16) 18 registers 345.7340 100%

Tiled (16x16) 18 registers 212.2826 100%



MEMORY COALESCING
Basic Optimizations



Coalescing Memory Accesses

• The GPU will try to load needed memory in as 
few memory transactions as possible.
– 128 B if possible

– If not, 2 X 64 B

– If not, 64 B may be split to 32 B

– Continue until every thread has needed data

• Coalescing is possible if:
– 128B aligned

– All threads access elements in same segment



Why is coalescing important?

• Issuing 1 128B transaction reduces memory 
latency and better utilizes memory bandwidth

• L1/Shared Memory cache lines are 128B

– Not using all fetched addresses wastes bandwidth

• Nvidia Guide: “Because of this possible 
performance degradation, memory coalescing 
is the most critical aspect of performance 
optimization of device memory.”



Coalescing Examples

Simple, Stride-1:

Every thread accesses memory within same 
128B-aligned memory segment, so the 
hardware will coalesce into 1 transaction.

Segment 0

Segment 1

Threads in same warp



Will This Coalesce?

Yes! Every thread is still accessing memory within a single 
128B segment and segment is 128B aligned.

No.  Although this is stride-1, it is misaligned, accessing 2 
128B segments.  2 64B transactions will result.



Will This Coalesce?

Stride-2, half warp:

Yes, but..

• Half of the memory transaction is wasted.

• Poor utilization of the memory bus.



Striding

• Striding results in more 
memory transactions 
and wastes cache line 
entries
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attributes(global)&

subroutine stride_kernel(datin, 

datout, st)

integer,value :: st

real(8) :: datin(n), datout(n)

integer i

i = (blockIdx%x * blockDim%x ) &

+ (threadIdx%x * st)

datout(i) = datin(i)

end subroutine stride_kernel



Offsets (Not 128B-aligned)

• Memory offsets result 
in more memory 
transactions by crossing 
segment boundaries

attributes(global)&

subroutine offset_kernel(datin, 

datout, st)

integer,value :: st

real(8) :: datin(n), datout(n)

integer i

i = (blockIdx%x * blockDim%x ) &

+ threadIdx%x + st

datout(i) = datin(i)

end subroutine offset_kernel
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ADDITIONAL RESOURCES



On The Web

• GTC 2010 Tutorials: 
http://www.nvidia.com/object/gtc2010-
presentation-archive.html

• Nvidia CUDA online resources: 
http://developer.nvidia.com/cuda-education-
training

• PGI CUDA Fortran: 
http://www.pgroup.com/resources/cudafortra
n.htm
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