Chapel: Task Parallelism

Task Parallelism Terminology

Task: a unit of parallel work in a Chapel program
* all Chapel parallelism is implemented using tasks
* main () is the only task when execution begins

Thread: a system-level concept that executes tasks
* not exposed in the language
e occasionally exposed in the implementation

CRANY

THE SUPERCOMPUTER COMPANY

"Hello World" in Chapel: a Task-Parallel Version

e Multicore Hello World

config const numTasks = here.numCores;

coforall tid in O..#numTasks do
writeln (“Hello, world! 7,
“from task 7, tid, “ of ”, numTasks);

Outline e ——

e Primitive Task-Parallel Constructs
e Structured Task-Parallel Constructs

Chapel: Task Parallelism

CRRANY

THE SUPERCOMPUTER COMPANY

Unstructured Task Creation: Begin

e Syntax

begin-stmt:
begin stmt

e Semantics
Creates a task to execute stmt
Original (“parent”) task continues without waiting

e Example

begin writeln (“hello world”);
writeln (“good bye”);

* Possible output

hello world good bye
good bye hello world

Synchronization Variables

e Syntax

sync-type:]

sync type

e Semantics

Stores full/empty state along with normal value
Defaults to full if initialized, empty otherwise
Default read blocks until full, leaves empty
Default write blocks until empty, leaves full

e Examples: Critical sections and futures

var lock$: sync bool;\ var future$: sync real;)
lock$ = true; begin future$ = compute () ;
critical () ; computeSomethingElse () ;

var lockval = lock$; useComputedResults (futures) ;

=RaNy
SynCh ronization Type Methods THE SUPERCOMPUTER COMPANY

e readFE () : t block until full, leave empty, return value
e readFF () :t block until full, leave full, return value
e readXX () :t return value (non-blocking)

e writeEF (v:t) block until empty, set value to v, leave full
e writeFF (v:t) waituntil full, set value to v, leave full

e writeXF (v:t) setvalueto v, leave full (non-blocking)

e reset () reset value, leave empty (non-blocking)

e isFull: bool return true if full else false (non-blocking)

e Defaults: read: readFE, write: writeEF

Outline e —

e Primitive Task-Parallel Constructs
e Structured Task-Parallel Constructs

Chapel: Task Parallelism

CRRANY

THE SUPERCOMPUTER COMPANY

Block-Structured Task Creation: Cobegin

e Syntax

cobegin-stmt:
cobegin { stmt-1ist }

e Semantics
Creates a task for each statement in stmt-list
Parent task waits for stmt-list tasks to complete

e Example

cobegin {
consumer (1) ;
consumer (2) ;
producer () ;

} // wait here for both consumers and producer to return

CRANY

THE SUPERCOMPUTER COMPANY

Loop-Structured Task Invocation: Coforall

e Syntax

coforall-loop:
coforall index-expr in iteratable-expr { stmt-1ist }

e Semantics
Create a task for each iteration in iteratable-expr
Parent task waits for all iteration tasks to complete

e Example

begin producer () ;)

coforall i in 1..numConsumers {
consumer (1) ;
Y // wait here for all consumers to return

CRANY

THE SUPERCOMPUTER COMPANY

Comparison of Loops: For, Forall, and Coforall

e For loops: executed using one task

e use when a loop must be executed serially
e or when one task is sufficient for performance

e Forall loops: typically executed using 1 < #tasks << #iters
e use when a loop should be executed in parallel...
e ...but can legally be executed serially
e use when desired # tasks << # of iterations

e Coforall loops: executed using a task per iteration
* use when the loop iterations must be executed in parallel
* use when you want # tasks == # of iterations
» use when each iteration has substantial work

CRANY

THE SUPERCOMPUTER COMPANY

Bounded Buffer Producer/Consumer Example

var buff$: [0..#buffersize] sync real;

cobegin {
producer () ;
consumer () ;

}

proc producer () {
var 1 = 0O,
for .. {
i = (1+1) % buffersize;
buffs (i) = ..;
}
}
proc consumer () {
var i = 0O,
while .. {
i= (i+1l) % buffersize;

TS (i) ...;
}

EEEEEEEEEEEEEEEEEEEEEEE

Status: Task Parallel Features

e Most features working very well

see talk by Kyle Wheeler on Tuesday afternoon

Future Directions

e Task teams: provide a means of “coloring” tasks
* for code isolation

* to support task-based collective operations
e barriers, reductions, eurekas

e for the purposes of specifying execution policies
e Task-private variables and task-reduction variables
e Work-stealing and/or load-balancing tasking layers

Questions?

Chapel: Task Parallelism

