

CUG 2011 Proceedings 1 of 9

Experiences with Intrusion Detection
in High Performance Computing

Scott Campbell, Jim Mellander
Lawrence Berkeley National Laboratory
National Energy Research Scientific Computing Center
scottc@nersc.gov, jmellander@lbl.gov

ABSTRACT: The application of Cybersecurity in HPC has historically been considered
as counterproductive to research in Open Science. NERSC proposes a systematic way of
determining where Cybersecurity-significant data should be sampled as well as an
overview of our analysis methodology. To demonstrate this we look at the Bro Intrusion
Detection system as well as the instrumented SSHD currently in use.

KEYWORDS: Intrusion Detection, Security

1 Introduction
Successful High Performance Computing requires a
combination of technical innovation as well as political
and operational experience to balance out the many
(sometimes contradictory) pressures encountered in this
field. This is particularly true with respect to operational
cybersecurity that, at best, is seen as a necessary evil, and
considered as generally restrictive of performance and/or
functionality. As a representative high-performance open-
computing site, NERSC has decided to place as few
roadblocks as possible for access to site computational
and networking resources. The apparent tension between
efficient system operation and cybersecurity is from our
perspective a false dichotomy – in fact, we have come to
see the role of cybersecurity as an enabling technology to
facilitate maximum performance and functionality.

Rather than providing a new tool, method or schema for
analysis, this paper presents a survey of our evaluation
and design practices. The motivation for doing this is not
merely to share ideas that we have found to work, but also
to examine what can be done regarding recurring system
security problems found within a representative HPC site
as well as identifying potential bottlenecks we envision in
near-future systems and network designs.

When an application, host or cluster comes under attack,
the activity can typically be broken out into two parts -
the initial attack and the followup hacking steps taken if
local access is gained. Because NERSC’s role in open-
science means that we provide a rather porous face for the
scientists using our facility, the initial attack can come
from almost anywhere. There is no site-wide firewall as
it would interfere with high performance networking.

Firewalls are in place, however, as part of the
infrastructure protecting staff and core internal resources.
Once an attacker lands on a system - something that we
assume as possible from the beginning – the attacker’s
behavior tends to become somewhat better defined and
easier to identify. As an analogy, although it is simpler to
look for ripples on a pond than for the rock that makes
them, we strive to look for both.

Determining what to look for, and where to look for it is
probably the most complicated cybersecurity problem in
our environment. No HPC site, particularly within the
domain of open science, has a simple task in identifying
and reducing the risk associated with attacks against
systems and infrastructure. Two fundamental issues - the
rapid, changing pace in both networking and
computational systems themselves as well as an
increasing sophistication of attackers, exacerbate
effectively addressing this problem.

2 Solution Methodology
In addressing the question of what, how and where to
monitor in order to identify security incidents, NERSC
follows a methodology stressing the culture of open
science - data gathering and measurement, repeatable
testing and careful analysis. This methodology assumes a
significant understanding of systems, networking and
computer science theory, so it can hardly be represented
in a red light - green light style.

A summary of our methodology is as follows:

1. Gather as much raw data as possible, focusing on
high yield areas, as defined below.

CUG 2011 Proceedings 2 of 9

2. Filter and organize this data for efficient
analysis.

3. Analyze data, comparing to expected and normal
activity.

The source of data can be envisioned in a way analogous
to protocol layering. Data types can interact with each
other, and may be useful only in terms of the local system
by which they are derived, or be wholly independent.
This data can also be derived from sources outside
individual systems like network traffic, to inter-system
data like batch scheduler logs. A table providing
examples of these data types can be found in Table. 1.

Per Host process accounting, application (ex Apache),

sshd

Inter-
System

batch scheduler, xcat logs

Cross-Site network data, syslog, dns logs1

Table 1, Sample data types and sources.

Note that Table 1 is not to be construed as a
comprehensive list.

While each layer has different characteristics and data
source(s), the same general approach and methodology
can be applied to all of them. These are discussed in
more detail in the next section.

2.1 Design Patterns in Data Gathering
A design pattern is a general solution to some sort of
commonly occurring problem. It is a description or
template for how to solve a problem that can be applied in
many different situations. At a higher level there are
architectural patterns that are larger in scope, usually
describing an overall pattern followed by an entire
system. [DP11] For the class of problems we are
addressing here, we have a pair of design patterns that
help us identify optimal locations for data gathering by
focusing detection efforts on data types on interfaces
between zones of trust and control as well as data types
that are more homogeneous across the site. Note that a
design pattern does not describe the activities taken with
respect to the data gathered.

DP1: Information rich data is located at
boundaries between trust layers within an
organization. This concept scales from the
inside/outside boundary all the way down to
within individual systems. For example, we

1 Syslog and DNS data are included in this section since they
are gathered collectively for the entire site.

gather network data not only from the external
border interface, but also at firewall boundaries
and across the network attaching public facing
web services to NERSC proper. Trying to get
inter-system network data would not only be
technically very difficult, but also be low in
information value as the computational systems
exist within the same area of trust.

Within a system, this pattern can be applied to
(for example) process accounting information
where individual records are not nearly as
interesting as those found from transitions
between unprivileged to privileged state.

DP2: Permeated data - this pattern embodies data
types that exist throughout the site in a more or
less homogeneous state. The most common
example of this design pattern would be data
derived from a syslog server. Data that matches
this characteristic tends to have tremendous
breadth of scope but is also unstructured and
takes a fair amount of work to generate
actionable results.

Each source layer has different characteristics, but the
interesting feature from an analysis perspective is the
location of the layer. The mechanics of gathering are
strongly dependant on the type of data and the expected
rate. Border traffic can go to network tapping equipment,
application logs can be syslogged or accessed via a local
script and process accounting information can be copied
to a global file system. Note once again that this step is
solely concerned with identifying and gathering data that
may potentially be of forensic interest.

2.2 Filter and Normalize
Once the data is gathered, it becomes necessary to process
and reduce the data volume to a level where it can be
efficiently accessed and analyzed. A useful way to
conceptualize this step is to identify it with the idea of
data abstraction. As an example, network packets can be
bunched together and abstracted as connections. Web
traffic can be broken down into a small number of
fundamental components such as URI, return code,
header values, etc. For SSH logins, corresponding
abstractions would be items such as account names,
failure/success of authentication, source address, etc.
Much of the detail in the data is abstracted without
changing the basic information content.

A principal tool NERSC uses to performs this abstraction
is the Bro Intrusion Detection System [PA98] - the
architecture (detailed in §3.1) is broken into two parts
with the event generation component doing the
mechanical part of the abstraction via event generation.

CUG 2011 Proceedings 3 of 9

Reduction is not done by deleting data (since we may
need to go back and look at something new), but by
filtering and abstracting from the data stream and
(whenever possible) recording the raw data for as long a
time as practical. A useful example of this concept is our
analysis of SSH login data. SSH login success and failure
messages are extracted from the stream, parsed into a
regular form and passed to the analysis framework
detailed later in §2.3 .

The final step is to take the abstracted data and
canonicalize it so that it is in normal form and can be
machine processed. Without this last step it becomes
quite difficult to process and compare results. Even
something as seemingly straightforward as ssh login
results as delivered by a syslog process require that the
various formats provided by individual vendors and
software versions be parsed to provide the same data
types in a predictable and automated manner.

2.3 Analysis and Presentation
Up until this point, the information that we have gathered
has not been tainted with any notion about it being benign
or hostile – all that has been done is that we have
abstracted and normalized the data into a standardized
format. This purposeful decision reflects our desire to
provide reproducible evidence-based decision-making.

In the Analysis step, local site security policy is used to
evaluate the standardized data. In a practical sense, this
means that network data is analyzed for (among other
things) scanning activity, and HTTP semantics and
content are analyzed for hostile activity. Non-network
traffic such as syslog or ssh keystroke data is digested in
much the same way. As this is the point of monitoring,
there are fairly complex details at this stage.
 Notwithstanding, this is ultimately a reasonably simple
task. At this stage, we can also analyze based on
divergences from historical or statistical norms.

The Presentation process is tied into the analysis step –
we aggregate the information created during the analysis
process and present it for human consumption. This stage
tends to be one of the most important given the volume of
data and data types that need to be looked at. As
expected, we are constantly evolving presentation
capabilities in an attempt to access the increasing
information volumes.

The interface between the raw agnostic information and
the policy defines what we see as either a known problem
or interesting enough to warrant reporting on.

3 Solution Examples
In order to more completely explain what we mean by the
generalities described in §2, we will provide two fleshed-

out examples. In each case, we expect to provide enough
background information to fully understand both the tool
and the threat that the tool was designed to address.

Our first example is the Bro Intrusion Detection System.
We will describe both its use as a general analysis and
reporting tool and the architectural changes made for high
bandwidth situations. The second presents the
instrumented Secure Shell daemon, which provides real
time analysis of user keystrokes, command execution and
ssh metadata information like TCP port forwarding.

Given our space limitations only general descriptions will
be provided, but adequate information is available in the
reference section to help answer most typical questions.

3.1 The Bro Intrusion Detection System

Intrusion Detection Systems (IDS) are fundamental
security tools for any large publicly accessible network.
This is particularly true when running a large multi-user
system with thousands of remote accounts and a
tremendous diversity of running software.

The Bro intrusion detection system is fairly complex, but
can be described in general terms without much difficulty.
From the network analysis perspective, traffic is received
via a standard pcap interface, and processed into a series
of events by an event engine integral to Bro. An event is a
basic functional unit within bro and is a major mechanism
Bro uses to communicate internally and externally. These
events are not assigned any sort of value in terms of
security bias (and are often referred to as agnostic), but
instead are passed over to the policy side of the
application via an event-handler (essentially a function
that is called when an event is generated). For instance,
when a SYN packet is seen by Bro’s network engine,
generally a new_connection event is triggered which
handles setting up state for that connection via a
new_connection event handler.

Event-handlers are written in a domain-specific scripting
language designed for (near) real time network traffic
analysis. The scripting language provides a huge
advantage over pattern matching schema - constructs such
as data structures, timers, tables and asynchronous events
are all built in and the Bro distribution contains thousands
of lines of policy-script that cover most typical
configurations. Network state, including domains, IP
addresses and counts of significant actions can also be
maintained. This scripting language is used to translate a
local site’s security policy into an actionable mechanism
that maps directly to the ideas presented in §2.3.

Recent changes have allowed bro to offer a useful
mechanism for interaction with external applications via
the event mechanism. Events can be registered with Bro

CUG 2011 Proceedings 4 of 9

as external, and the broccoli library, along with
appropriate language bindings, is used to allow Bro to
send data to, and trigger an action of, an external
program. Similarly, external programs can use broccoli
to communicate data and trigger an event within Bro
using any well structured information (such as normalized
syslog data). This allows bro to be used as a general state
engine so that in addition to, or in place of, network
traffic, any sort of event can be processed and analyzed.

Such a capability also allows for asynchronous processing
of data, while allowing Bro to simultaneously perform
real time analysis. Data can be assembled in an event for
further processing, and sent to an external process, with
Bro then continuing until the event returns. When a result
is available (perhaps by performing a database query or
name resolution), it can signal bro via an event, and bro
will pick up the results, and can act on them
appropriately. The ability of a Bro instance to share state
information and operate asynchronously is key to the
success of the Bro Cluster, described next.

3.1.1 The Bro Cluster

HPC sites are often on the bleeding edge of network
bandwidth usage, due to the user-base’s increasingly
voracious appetite for data. This presents a substantial
challenge to IDS operations, as it is important to
effectively monitor this ever-increasing bandwidth
without impeding traffic flow or missing cybersecurity-
significant data. Although impressive hardware advances
have, to some extent, allowed ever-increased monitoring
functionality, IDS hardware is increasingly less able to
fully monitor the high-bandwidth traffic patterns now
common in the HPC community. To address this
problem, LBNL partnered with cPacket [CP] to create an
intelligent load-balancing hardware front-end which
would allow traffic to be distributed amongst a series of
worker nodes in order to allow for continued analysis at
high bandwidths.

Although high-speed interconnects are common in the
HPC community, IDS operations have generally
depended on off-the-shelf hardware to monitor and
communicate. The key concepts guiding the architectural
decisions for the clustering of Bro systems on commodity
hardware are:

1. Intelligently split the traffic in real time, so that
each individual monitoring node only sees a
portion of the traffic, but sees sufficient traffic to
independently operate.

2. The data transferred between the nodes ought to
be the analysis results of the individual nodes,
and not raw traffic or any significant subset of it.

Decision 1 precludes the naive round robin approach to
the traffic-distribution problem, since if System A sees
the initial SYN packet of a TCP connection, and System
B sees the response SYN/ACK, inter-worker node
communication must necessarily take place to have a full
view of the session, and thus performance suffers. A
sensible approach, therefore, is to ensure that at least all
the traffic matching a 5-tuple [protocol, source host,
source port, destination host, destination port] is mapped
to a single analysis node (we temporarily put aside the
possibility of a large flow between two systems taken an
inordinate amount of bandwidth, and thus overwhelming
the analysis node). The Bro Cluster approach is, in
practice, to send all traffic matching each 2-tuple [source
host, destination host] to a designated worker node for
three reasons. First the operation is quite cheap as a
simple hash is appropriate. Second, operational results
have shown that there are few hot spots (spikes in CPU
utilization) within the worker nodes, and when they exist
it is not typically pathological. Finally the operation is
symmetric for most hashing operations so that
hash(src,dst) = hash(dst,src) - this fulfills the design
requirement to keep all connection state on the same
worker node.

3.1.2 Performance Characteristics

The most complete published performance characteristics
for the Bro Cluster can be found in the Vallentin et.al
NIDS Clustering paper [2]. This paper covers both the
decision making process in creating the Bro cluster as
well as performance evaluations on 10 Gbps internet
links.

Figure 1 provides two perspectives on the cluster scaling
problem by monitoring the amount of user CPU time used
per second. Figure 1 (left) shows that nine of the ten
backends (all except node 8) show very similar
distributions, indicating quite similar CPU loads. Across
these nine backends, the largest mean CPU utilization was
10.0%, and the largest standard deviation σ = 4.8%,
reflecting that both the loads and the load fluctuations
leave ample headroom for increases in traffic. However,
backend node 8 shows a notably different density shape
(mean 10.7%, σ = 5.7%). Upon examining the trace
processed by node 8, the slice contained a single TCP
connection which makes up 86% of the trace’s total bytes
(33 GB of 38 GB!). Just by being assigned this one
connection, node 8 receives a significantly larger share of
the overall traffic (other nodes on average received 6.5
GB). Note, though, that pretty much any flow-based
traffic distribution scheme will wind up introducing this
disparity, since it manifests at even the finest flow-based
granularity. However, even so, node 8’s CPU load stayed
well within a manageable range (below 30% for 99.5% of
the time).

CUG 2011 Proceedings 5 of 9

Fig. 1. Probability densities of backend CPU load (left), and probability densities for varying numbers of backends (right). Figure taken directly from [2].

Figure 1 (right) plots the CPU utilization for setups with
3, 5, and 10 worker nodes. For each run, we first averaged
the one-second CPU samples across all nodes. We then
plotted the probability density of these mean CPU loads.
In the plot we see that the load indeed scales nearly
linearly with the number of nodes: the mean load for 3
nodes is 27.4%, for 5 nodes it is 18.0%, and for 10 nodes
it is 9.4%, with the corresponding values of σ being 5.5%,
3.0%, and 2.0%.

Note that the symmetric distribution of loads indicates a
reasonably effective hashing mechanism for traffic
distribution.

Fig. 2. CPU Load on U.C. Berkeley cluster. Taken directly from
[VA07].

3.1.3 Results
The clustered version of the Bro IDS can provide deep
(and normally expensive) analysis of high volume traffic
without significant packet loss or exceptional expense.
There are already installations at 10 Gbps, and plans exist
for moving to 100 Gbps late this year.

3.2 Instrumented SSHD

While the adoption of SSH as the standard form of
communication between users and HPC services has
proven to be extremely successful in terms of avoiding
traditional keystroke logging and man in the middle
attacks, it has also created problems in terms of attack
detection and forensic analysis for the computer security
community. While the benefits gained vastly exceed the
difficulties introduced by this protocol, the loss of
visibility into user activity created problems with the
security groups tasked with monitoring network based
logins and activity.

To address the lack of visibility into activity happening on
our multi-user HPC infrastructure, we introduced an
instrumentation layer into the OpenSSH application and
tied the resultant data set into a real time analysis using
the Bro IDS. This instrumentation provides both
application layer data like keystrokes and login details, as
well as metadata from the sshd such as session and
channel creation details. This data is then fed to an
analyzer, where it is interpreted based on local site
security policy. A key differentiator between the
instrumented sshd (iSSHD) and many other security tools
and research projects is that the iSSHD is not designed to
detect and act on single anomalous events (like
unexpected command sequences), but rather it is designed
to enforce local security policy on data provided by the
running sshd instances.

The data analyzer is based on the Bro intrusion detection
system [PA98]. This IDS normally takes network traffic,
turns it into agnostic events and processes it via local
policy script. By using the broccoli library, it is possible
to convert structured data into serialized bro events that
can be handed to the actual analyzer system [HD05]. This
separation of policy and data generation mechanism
provides the ability to take remotely generated events and

CUG 2011 Proceedings 6 of 9

use the native scripting language to handle data structures,
tables, timers and local security policy. In this capacity,
we are principally using Bro as a powerful state engine
which is being fed raw/agnostic events from the iSSHD
application.

It is worth mentioning that we make no attempt to hide
the fact that iSSHD is installed. An announcement was
made to the user community, and an opportunity to
provide feedback was provided. In addition the version
string clearly provides indication of a non-standard
installation.

3.2.1 Architecture and Design

The design for the iSSHD was driven by a series of
principles that focused more on not degrading the user
experience than on any sort of security directive. These
principles were:

1. Avoid instability or security problems from
our code: We need to demonstrate with high
confidence that our modified version of SSH is
just as stable and secure as the original code
base.

2. Unchanged user experience: The modified
version of SSH must not affect the way users
interact with NERSC systems, require a special
version of the SSH client or application, nor
remove any existing capabilities.

3. Minimal impact on system resources: System
resources including CPU time, memory, and
network bandwidth are at a premium. Additional
demands made by the instrumented SSH must be
insignificant compared to an unmodified SSH
instance.

Some results from this seem quite intuitive such as the use
of OpenSSH [3] as the code base. Others, like decoupling
analysis from data collection, were somewhat more
involved and required testing and experimentation to
reach our goals. The final design incorporated a three-
part strategy that completely separates the data collection,
transfer and analysis from one another. This is quite
similar to the design of Bro described in §3.1 that also
decouples the creation of agnostic (typically network)
events from the analysis that enforces local security
policy.

In addition to adding our desired auditing functionality,
we also added the Pittsburgh Supercomputing Center’s
high performance OpenSSH patch set [RB08]. These
patches provide significant gains in terms of bulk data
transfer performance, which was seen as an additional
win.

Figure 3, Architecture of iSSHD.

As we see in Fig. 3, there are three components of the
iSSHD solution. First, we see the server engine which
exists within the iSSHD process space and generates the
raw event data; secondly, stunnel [4] is used to transport
data from the iSSHD process to the analyser in a non-
blocking manner; and thirdly, the analysis procedure –
note that no changes are needed to the SSH clients, and
operationally, the entire process is transparent to the user.

When a user logs in using iSSHD, a session is created on
the analysis side and information about the activity is
logged. If behaviour is indicative of known suspicious
activity such as running a known bad command)\,
remotely executing a shell, or performing some action
like connection proxying, an alarm is propagated, and
appropriate action taken. In addition, the entire session is
logged and available for forensic analysis in the event
that the data requires further review.

Table 2 provides a subset of the total available
information types available from iSSHD.

CUG 2011 Proceedings 7 of 9

Connection
SSHD_CONNECTION_START Log connection 4-tuple and

local interface addresses.
 Create session id.

SSHD_CONNECTION_END Close session id.

Authentication
AUTH_INFO General authentication event -

type, result id etc

AUTH_INVALID_USER Log id, source IP

AUTH_KEY_FINGERPRINT Log RDA/DSA and fingerprint.
 Can test against known bad
values.

AUTH_PASS_ATTEMPT Attempted password, SSH v. 1

Session/Channel
CHANNEL_DATA_CLIENT
CHANNEL_DATA_SERVER
CHANNEL_DATA_SERVER_SUM

Data created by or returned to
the ssh client. There are non-tty
versions of these as well. The
final event happens when data
is skipped.

CHANNEL_NEW
CHANNEL_END

Creation or destruction of
channel within the ssh session.

CHANNEL_PORTFWD_REQ
CHANNEL_SOCKS4/5

Sample port forward and socks
request events.

SESSION_REMOTE_DO_EXEC
SESSION_REMOTE_EXEC_PTY
SESSION_REMOTE_EXEC_NO
_PTY

Events tied to remote command
execution

SESSION_REQUEST_DIRECT_
TCPIP
SESSION_TUN_INIT
SESSION_X11FWD

Session events related to the
directed TCP/IP, tunneling and
X11 forwarding of traffic.

Misc
SSHD_START
SSHD_EXIT

Start/exit of the sshd process.

SSHD_SERVER_HEARTBEAT Periodic message sent from
running iSSHD to identify that (1)
it is alive and (2) it has not been
replaced.

Table 2, iSSHD sample event set.

3.2.2 Performance Data

Based on points (2) and (3) of the Architecture and
Design principles, it was expected that there would be
little impact on performance for running iSSHD. Table 3
confirms our expectations, as far as non-interactive
sessions are concerned. We are still gathering data for

interactive shell access since it is difficult to take a “real”
user session and run it on two sshd instances at the same
time.

Remote
Exec

SCP
Binary

SCP
ASCII

SFTP
ASCII

5.8p1
NoMod

3.45
[0.10]

9.85
[0.11]

0.70
[0.01]

1.01
[0.39]

5.8p1
NERSC

3.31
[0.12]

9.85
[0.15]

0.69
[0.02]

1.56
[0.34]

Table 3, iSSHD performance measurements.

The data provided by keystroke logging presents an
interesting problem in that the content can be of arbitrary
length, and will probably contain non-printing ASCII
characters. As a performance enhancement, we cache
keystroke data in a channel buffer queue using the native
channel buffer types until a new line character is seen or
data volume is exceeded. In situations where too much
data is generated (such as large compile runs), the volume
of data is huge and the value of the data is almost zero. To
address this we adopted the same idea as used in the
network Time Machine [MS08]: specifically that most
security sensitive data and events tend to cluster them
selves to the beginning of interactive sessions. By making
the distinction between interactive sessions (where there
are roughly the same order of magnitude of client initiated
data events as server) and highly asymmetric connections
(dozens or hundreds of server data events per client data
event), we can avoid transmitting excess data from the
iSSHD. This was one situation where it was necessary to
build logic into the code running within the sshd process.
For both normal tty channels as well as channels not
bound to a tty cutoff values are put in place to avoid
excessive data copying. For the situation of non-tty
communications (which can include file transfers), the
ratio of printing to non-printing characters is looked at to
avoid needlessly copying binary files.

The differentiation between binary and ASCII results for
both SCP and SFTP file transfers is understandable based
on how non-tty data channel is examined. ASCII files
will have significantly more data copied to the analyzer so
there will be somewhat higher overhead.

3.2.3 Results

The most useful thing to show here is an example session
which includes many if the alert and auditing functions.
Given space and column limitations, we have included a
typical login session and other sample logs in Appendix I.

From a more pragmatic perspective the auditing and
analysis functionality has allowed NERSC to quickly

CUG 2011 Proceedings 8 of 9

identify dozens of compromised user credentials as well
as the knowledge that entire generations of attack tools
will alarm on their use. Besides attack detection, the
iSSHD provides considerable insight into the tactics and
motivations for many of the attackers on our systems. In
many cases the forensic logs quickly provide a clear
indication of the success, skill level and threat presented
by an intruder. This provides an important window into
attacker activities that can be a sobering reminder that not
all the attackers we see are naive or unskilled.

4. Future Work

There are a number of areas of future work including 100
Gbps border traffic, integration with on system data
sources like process accounting as well as the initial
analysis of code categorization based on inter-
computational node behaviour.

5. Summary

Intrusion detection in the HPC realm is a reasonably
young field and subject to considerable change in short
time. We present our methodology for data source
selection and two sample tools – the Bro Cluster IDS and
Instrumented SSHD – as examples of this design strategy
in action.

6. Acknowledgements

This work was supported by the Director, Office of
Science, Division of Mathematical, Information, and
Computational Sciences of the U.S. Department of
Energy under contract number DE-AC02-05CH11231.

This research used resources of the National Energy
Research Scientific Computing Center, which is
supported by the Office of Science of the U.S.
Department of Energy.

7. References
[DP11] http://en.wikipedia.org/wiki/Design_pattern_(com
puter_science)

[MS08] G. Maier, R. Sommer, H. Dreger, A. Feldmann,
V. Paxson and F. Schneider, Enriching Network Security
Analysis with Time Travel, Proc. ACM SIGCOMM,

[PA98] V. Paxson, Bro: A System for Detecting Network
Intruders in Real-Time. Proceedings of the 7th USENIX
Security Symposium, San Antonio, TX, January 1998

[VA07] M. Vallentin, R. Sommer, J. Lee, C. Leres, V.
Paxson, and Brian Tierney, The NIDS Cluster: Scalable,
Stateful Network Intrusion Detection on Commodity
Hardware, Proc. RAID 2007.

CUG 2011 Proceedings 9 of 9

Appendix 1 – Example of user login auditing log

#1 - host 16 SSHD_CONNECTION_START 127.0.0.1:62186/tcp -> 0.0.0.0:2222/tcp
#1 - host 16 SSHD_CONNECTION_START 127.0.0.1_128.105.18.134_10.37.129.2_10.211.55.2

#1 - host 16 AUTH_KEY_FINGERPRINT 05:b1:...:16:45 type DSA
#1 - host 16 AUTH Postponed scottc publickey 127.0.0.1:62186/tcp > 0.0.0.0:2222/tcp
#1 - host 16 AUTH_KEY_FINGERPRINT 05:b1:...:16:45 type DSA
#1 - host 16 AUTH Accepted scottc publickey 127.0.0.1:62186/tcp > 0.0.0.0:2222/tcp

#1 - host 16 SESSION_NEW SSH2
#1 - host 16 CHANNEL_NEW [0] server-session server-session
#1 - host 16 CHANNEL_NEW [1] auth socket auth socket
#1 0-server-session host 16 SESSION_INPUT_CHAN_REQUEST AUTH-AGENT-REQ@OPENSSH.COM
#1 0-server-session host 16 SESSION_INPUT_CHAN_REQUEST PTY-REQ
#1 0-server-session host 16 SESSION_INPUT_CHAN_REQUEST SHELL

#1 0-server-session host 16 DATA_SERVER Last login: Thu May 5 16:25:33 2011
#1 0-server-session host 16 DATA_SERVER
#1 0-server-session host 16 DATA_SERVER

#1 0-server-session host 16 DATA_SERVER_SUM_SKIP: 1067
#1 0-server-session host 16 DATA_SERVER
#1 0-server-session host 16 DATA_CLIENT pwd
#1 0-server-session host 16 DATA_SERVER cisco-wifi-134:~ scottc$ pwd
#1 0-server-session host 16 DATA_SERVER /Users/scottc
#1 0-server-session host 16 DATA_CLIENT unset HISTFILE
#1 0-server-session host 16 DATA_SERVER cisco-wifi-134:~ scottc$ unset HISTFILE
#1 0-server-session host 16 DATA_CLIENT exit
#1 0-server-session host 16 DATA_SERVER cisco-wifi-134:~ scottc$ exit
#1 0-server-session host 16 DATA_SERVER logout

#1 - host SESSION_EXIT
#1 0-server-session host 16 CHANNEL_FREE
#1 1-auth socket host 16 CHANNEL_FREE

#1 - host 16 SSHD_CONNECTION_END 127.0.0.1:62186/tcp -> 0.0.0.0:2222/tcp

Instance of ‘unset HISTFILE’ triggers an alarm which is logged and can be attached to
an email or pager.

SSHD_Hostile #1 server-session host:2222 16

scottc @ 127.0.0.1 -> 0.0.0.0:2222/tcp
unset HISTFILE []

Field Values

#1 0-server-session host 16 SESSION_INPUT_CHAN_REQUEST SHELL

1- Session identification
2- Channel number and type, ‘-‘ means no channel
3 - Host identifier
4 - Client session id. Random 32 bit number
5 - Event identifier
6 - Event information

CONNECTION

AUTHENTICATIO
N

SESSION

USER DATA

EXIT

