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ABSTRACT: The application of Cybersecurity in HPC has historically been considered 
as counterproductive to research in Open Science.  NERSC proposes a systematic way of 
determining where Cybersecurity-significant data should be sampled as well as an 
overview of our analysis methodology.  To demonstrate this we look at the Bro Intrusion 
Detection system as well as the instrumented SSHD currently in use. 
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1 Introduction 
Successful High Performance Computing requires a 
combination of technical innovation as well as political 
and operational experience to balance out the many 
(sometimes contradictory) pressures encountered in this 
field.  This is particularly true with respect to operational 
cybersecurity that, at best, is seen as a necessary evil, and 
considered as generally restrictive of performance and/or 
functionality. As a representative high-performance open-
computing site, NERSC has decided to place as few 
roadblocks as possible for access to site computational 
and networking resources.  The apparent tension between 
efficient system operation and cybersecurity is from our 
perspective a false dichotomy – in fact, we have come to 
see the role of cybersecurity as an enabling technology to 
facilitate maximum performance and functionality. 
 
Rather than providing a new tool, method or schema for 
analysis, this paper presents a survey of our evaluation 
and design practices.  The motivation for doing this is not 
merely to share ideas that we have found to work, but also 
to examine what can be done regarding recurring system 
security problems found within a representative HPC site 
as well as identifying potential bottlenecks we envision in 
near-future systems and network designs. 
 
When an application, host or cluster comes under attack, 
the activity can typically be broken out into two parts - 
the initial attack and the followup hacking steps taken if 
local access is gained.  Because NERSC’s role in open-
science means that we provide a rather porous face for the 
scientists using our facility, the initial attack can come 
from almost anywhere.  There is no site-wide firewall as 
it would interfere with high performance networking. 

Firewalls are in place, however, as part of the 
infrastructure protecting staff and core internal resources. 
Once an attacker lands on a system - something that we 
assume as possible from the beginning – the attacker’s 
behavior tends to become somewhat better defined and 
easier to identify.  As an analogy, although it is simpler to 
look for ripples on a pond than for the rock that makes 
them, we strive to look for both. 
 
Determining what to look for, and where to look for it is 
probably the most complicated cybersecurity problem in 
our environment.  No HPC site, particularly within the 
domain of open science, has a simple task in identifying 
and reducing the risk associated with attacks against 
systems and infrastructure.  Two fundamental issues - the 
rapid, changing pace in both networking and 
computational systems themselves as well as an 
increasing sophistication of attackers, exacerbate 
effectively addressing this problem. 

 

2 Solution Methodology 
In addressing the question of what, how and where to 
monitor in order to identify security incidents, NERSC 
follows a methodology stressing the culture of open 
science - data gathering and measurement, repeatable 
testing and careful analysis. This methodology assumes a 
significant understanding of systems, networking and 
computer science theory, so it can hardly be represented 
in a red light - green light style.   
 
A summary of our methodology is as follows: 

1. Gather as much raw data as possible, focusing on 
high yield areas, as defined below. 
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2. Filter and organize this data for efficient 
analysis. 

3. Analyze data, comparing to expected and normal 
activity. 

The source of data can be envisioned in a way analogous 
to protocol layering.  Data types can interact with each 
other, and may be useful only in terms of the local system 
by which they are derived, or be wholly independent.  
This data can also be derived from sources outside 
individual systems like network traffic, to inter-system 
data like batch scheduler logs.  A table providing 
examples of these data types can be found in Table. 1. 
 
Per Host process accounting, application (ex Apache), 

sshd 

Inter-
System 

batch scheduler, xcat logs 

Cross-Site network data, syslog, dns logs1 
 
Table 1, Sample data types and sources. 

Note that Table 1 is not to be construed as a 
comprehensive list. 
 
While each layer has different characteristics and data 
source(s), the same general approach and methodology 
can be applied to all of them.  These are discussed in 
more detail in the next section. 
 
2.1 Design Patterns in Data Gathering 
A design pattern is a general solution to some sort of 
commonly occurring problem.  It is a description or 
template for how to solve a problem that can be applied in 
many different situations.   At a higher level there are 
architectural patterns that are larger in scope, usually 
describing an overall pattern followed by an entire 
system. [DP11]  For the class of problems we are 
addressing here, we have a pair of design patterns that 
help us identify optimal locations for data gathering by 
focusing detection efforts on data types on interfaces 
between zones of trust and control as well as data types 
that are more homogeneous across the site.  Note that a 
design pattern does not describe the activities taken with 
respect to the data gathered. 
 

DP1: Information rich data is located at 
boundaries between trust layers within an 
organization.  This concept scales from the 
inside/outside boundary all the way down to 
within individual systems.  For example, we 

                                                
1 Syslog and DNS data are included in this section since they 
are gathered collectively for the entire site. 

gather network data not only from the external 
border interface, but also at firewall boundaries 
and across the network attaching public facing 
web services to NERSC proper.  Trying to get 
inter-system network data would not only be 
technically very difficult, but also be low in 
information value as the computational systems 
exist within the same area of trust. 

 
Within a system, this pattern can be applied to 
(for example) process accounting information 
where individual records are not nearly as 
interesting as those found from transitions 
between unprivileged to privileged state.  

 
DP2: Permeated data - this pattern embodies data 
types that exist throughout the site in a more or 
less homogeneous state.  The most common 
example of this design pattern would be data 
derived from a syslog server.  Data that matches 
this characteristic tends to have tremendous 
breadth of scope but is also unstructured and 
takes a fair amount of work to generate 
actionable results. 

 
Each source layer has different characteristics, but the 
interesting feature from an analysis perspective is the 
location of the layer.  The mechanics of gathering are 
strongly dependant on the type of data and the expected 
rate.  Border traffic can go to network tapping equipment, 
application logs can be syslogged or accessed via a local 
script and process accounting information can be copied 
to a global file system.  Note once again that this step is 
solely concerned with identifying and gathering data that 
may potentially be of forensic interest. 
 
2.2 Filter and Normalize 
Once the data is gathered, it becomes necessary to process 
and reduce the data volume to a level where it can be 
efficiently accessed and analyzed.  A useful way to 
conceptualize this step is to identify it with the idea of 
data abstraction.  As an example, network packets can be 
bunched together and abstracted as connections.  Web 
traffic can be broken down into a small number of 
fundamental components such as URI, return code, 
header values, etc.  For SSH logins, corresponding 
abstractions would be items such as account names, 
failure/success of authentication, source address, etc.  
Much of the detail in the data is abstracted without 
changing the basic information content. 
 
A principal tool NERSC uses to performs this abstraction 
is the Bro Intrusion Detection System [PA98] - the 
architecture (detailed in §3.1) is broken into two parts 
with the event generation component doing the 
mechanical part of the abstraction via event generation.   
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Reduction is not done by deleting data (since we may 
need to go back and look at something new), but by 
filtering and abstracting from the data stream and 
(whenever possible) recording the raw data for as long a 
time as practical.  A useful example of this concept is our 
analysis of SSH login data.  SSH login success and failure 
messages are extracted from the stream, parsed into a 
regular form and passed to the analysis framework 
detailed later in §2.3 . 
 
The final step is to take the abstracted data and 
canonicalize it so that it is in normal form and can be 
machine processed.  Without this last step it becomes 
quite difficult to process and compare results.  Even 
something as seemingly straightforward as ssh login 
results as delivered by a syslog process require that the 
various formats provided by individual vendors and 
software versions be parsed to provide the same data 
types in a predictable and automated manner. 
 
2.3 Analysis and Presentation 
Up until this point, the information that we have gathered 
has not been tainted with any notion about it being benign 
or hostile – all that has been done is that we have 
abstracted and normalized the data into a standardized 
format.  This purposeful decision reflects our desire to 
provide reproducible evidence-based decision-making.   
 
In the Analysis step, local site security policy is used to 
evaluate the standardized data.  In a practical sense, this 
means that network data is analyzed for (among other 
things) scanning activity, and HTTP semantics and 
content are analyzed for hostile activity.  Non-network 
traffic such as syslog or ssh keystroke data is digested in 
much the same way.  As this is the point of monitoring, 
there are fairly complex details at this stage. 
 Notwithstanding, this is ultimately a reasonably simple 
task.  At this stage, we can also analyze based on 
divergences from historical or statistical norms.   
 
The Presentation process is tied into the analysis step – 
we aggregate the information created during the analysis 
process and present it for human consumption.  This stage 
tends to be one of the most important given the volume of 
data and data types that need to be looked at.  As 
expected, we are constantly evolving presentation 
capabilities in an attempt to access the increasing 
information volumes. 
 
The interface between the raw agnostic information and 
the policy defines what we see as either a known problem 
or interesting enough to warrant reporting on. 
 

3 Solution Examples 
In order to more completely explain what we mean by the 
generalities described in §2, we will provide two fleshed-

out examples.  In each case, we expect to provide enough 
background information to fully understand both the tool 
and the threat that the tool was designed to address. 
 
Our first example is the Bro Intrusion Detection System.  
We will describe both its use as a general analysis and 
reporting tool and the architectural changes made for high 
bandwidth situations. The second presents the 
instrumented Secure Shell daemon, which provides real 
time analysis of user keystrokes, command execution and 
ssh metadata information like TCP port forwarding. 

Given our space limitations only general descriptions will 
be provided, but adequate information is available in the 
reference section to help answer most typical questions. 
 
3.1 The Bro Intrusion Detection System 

Intrusion Detection Systems (IDS) are fundamental 
security tools for any large publicly accessible network. 
This is particularly true when running a large multi-user 
system with thousands of remote accounts and a 
tremendous diversity of running software. 

The Bro intrusion detection system is fairly complex, but 
can be described in general terms without much difficulty. 
From the network analysis perspective, traffic is received 
via a standard pcap interface, and processed into a series 
of events by an event engine integral to Bro.  An event is a 
basic functional unit within bro and is a major mechanism 
Bro uses to communicate internally and externally. These 
events are not assigned any sort of value in terms of 
security bias (and are often referred to as agnostic), but 
instead are passed over to the policy side of the 
application via an event-handler (essentially a function 
that is called when an event is generated).  For instance, 
when a SYN packet is seen by Bro’s network engine, 
generally a new_connection event is triggered which 
handles setting up state for that connection via a 
new_connection event handler. 
 
Event-handlers are written in a domain-specific scripting 
language designed for (near) real time network traffic 
analysis.  The scripting language provides a huge 
advantage over pattern matching schema - constructs such 
as data structures, timers, tables and asynchronous events 
are all built in and the Bro distribution contains thousands 
of lines of policy-script that cover most typical 
configurations.  Network state, including domains, IP 
addresses and counts of significant actions can also be 
maintained.  This scripting language is used to translate a 
local site’s security policy into an actionable mechanism 
that maps directly to the ideas presented in §2.3. 
 
Recent changes have allowed bro to offer a useful 
mechanism for interaction with external applications via 
the event mechanism.   Events can be registered with Bro 
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as external, and the broccoli library, along with 
appropriate language bindings, is used to allow Bro to 
send data to, and trigger an action of, an external 
program.  Similarly, external programs can use broccoli 
to communicate data and trigger an event within Bro 
using any well structured information (such as normalized 
syslog data).  This allows bro to be used as a general state 
engine so that in addition to, or in place of, network 
traffic, any sort of event can be processed and analyzed. 
 
Such a capability also allows for asynchronous processing 
of data, while allowing Bro to simultaneously perform 
real time analysis.  Data can be assembled in an event for 
further processing, and sent to an external process, with 
Bro then continuing until the event returns.  When a result 
is available (perhaps by performing a database query or 
name resolution), it can signal bro via an event, and bro 
will pick up the results, and can act on them 
appropriately.  The ability of a Bro instance to share state 
information and operate asynchronously is key to the 
success of the Bro Cluster, described next. 
 
3.1.1 The Bro Cluster 
 
HPC sites are often on the bleeding edge of network 
bandwidth usage, due to the user-base’s increasingly 
voracious appetite for data.  This presents a substantial 
challenge to IDS operations, as it is important to 
effectively monitor this ever-increasing bandwidth 
without impeding traffic flow or missing cybersecurity-
significant data.  Although impressive hardware advances 
have, to some extent, allowed ever-increased monitoring 
functionality, IDS hardware is increasingly less able to 
fully monitor the high-bandwidth traffic patterns now 
common in the HPC community.  To address this 
problem, LBNL partnered with cPacket [CP] to create an 
intelligent load-balancing hardware front-end which 
would allow traffic to be distributed amongst a series of 
worker nodes in order to allow for continued analysis at 
high bandwidths.   
 
Although high-speed interconnects are common in the 
HPC community, IDS operations have generally 
depended on off-the-shelf hardware to monitor and 
communicate.  The key concepts guiding the architectural 
decisions for the clustering of Bro systems on commodity 
hardware are: 

1. Intelligently split the traffic in real time, so that 
each individual monitoring node only sees a 
portion of the traffic, but sees sufficient traffic to 
independently operate. 

2. The data transferred between the nodes ought to 
be the analysis results of the individual nodes, 
and not raw traffic or any significant subset of it. 

 
Decision 1 precludes the naive round robin approach to 
the traffic-distribution problem, since if System A sees 
the initial SYN packet of a TCP connection, and System 
B sees the response SYN/ACK, inter-worker node 
communication must necessarily take place to have a full 
view of the session, and thus performance suffers.  A 
sensible approach, therefore, is to ensure that at least all 
the traffic matching a 5-tuple [protocol, source host, 
source port, destination host, destination port] is mapped 
to a single analysis node (we temporarily put aside the 
possibility of a large flow between two systems taken an 
inordinate amount of bandwidth, and thus overwhelming 
the analysis node).  The Bro Cluster approach is, in 
practice, to send all traffic matching each 2-tuple [source 
host, destination host] to a designated worker node for 
three reasons.  First the operation is quite cheap as a 
simple hash is appropriate. Second, operational results 
have shown that there are few hot spots (spikes in CPU 
utilization) within the worker nodes, and when they exist 
it is not typically pathological.  Finally the operation is 
symmetric for most hashing operations so that 
hash(src,dst) = hash(dst,src) - this fulfills the design 
requirement to keep all connection state on the same 
worker node. 

 
3.1.2 Performance Characteristics 

The most complete published performance characteristics 
for the Bro Cluster can be found in the Vallentin et.al 
NIDS Clustering paper [2].  This paper covers both the 
decision making process in creating the Bro cluster as 
well as performance evaluations on 10 Gbps internet 
links. 

Figure 1 provides two perspectives on the cluster scaling 
problem by monitoring the amount of user CPU time used 
per second.  Figure 1 (left) shows that nine of the ten 
backends (all except node 8) show very similar 
distributions, indicating quite similar CPU loads.  Across 
these nine backends, the largest mean CPU utilization was 
10.0%, and the largest standard deviation σ = 4.8%, 
reflecting that both the loads and the load fluctuations 
leave ample headroom for increases in traffic.  However, 
backend node 8 shows a notably different density shape 
(mean 10.7%, σ = 5.7%). Upon examining the trace 
processed by node 8, the slice contained a single TCP 
connection which makes up 86% of the trace’s total bytes 
(33 GB of 38 GB!). Just by being assigned this one 
connection, node 8 receives a significantly larger share of 
the overall traffic (other nodes on average received 6.5 
GB). Note, though, that pretty much any flow-based 
traffic distribution scheme will wind up introducing this 
disparity, since it manifests at even the finest flow-based 
granularity. However, even so, node 8’s CPU load stayed 
well within a manageable range (below 30% for 99.5% of 
the time). 
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Fig. 1.  Probability densities of backend CPU load (left), and probability densities for varying numbers of backends (right).  Figure taken directly from [2]. 

Figure 1 (right) plots the CPU utilization for setups with 
3, 5, and 10 worker nodes. For each run, we first averaged 
the one-second CPU samples across all nodes.  We then 
plotted the probability density of these mean CPU loads. 
In the plot we see that the load indeed scales nearly 
linearly with the number of nodes: the mean load for 3 
nodes is 27.4%, for 5 nodes it is 18.0%, and for 10 nodes 
it is 9.4%, with the corresponding values of σ being 5.5%, 
3.0%, and 2.0%. 

 
Note that the symmetric distribution of loads indicates a 
reasonably effective hashing mechanism for traffic 
distribution. 

 

 
Fig. 2. CPU Load on U.C. Berkeley cluster.  Taken directly from 
[VA07]. 

 

 
3.1.3 Results 
The clustered version of the Bro IDS can provide deep 
(and normally expensive) analysis of high volume traffic 
without significant packet loss or exceptional expense.  
There are already installations at 10 Gbps, and plans exist  
for moving to 100 Gbps late this year. 
 
 

 
3.2 Instrumented SSHD 
 
While the adoption of SSH as the standard form of 
communication between users and HPC services has 
proven to be extremely successful in terms of avoiding 
traditional keystroke logging and man in the middle 
attacks, it has also created problems in terms of attack 
detection and forensic analysis for the computer security 
community. While the benefits gained vastly exceed the 
difficulties introduced by this protocol, the loss of 
visibility into user activity created problems with the 
security groups tasked with monitoring network based 
logins and activity. 
 
To address the lack of visibility into activity happening on 
our multi-user HPC infrastructure, we introduced an 
instrumentation layer into the OpenSSH application and 
tied the resultant data set into a real time analysis using 
the Bro IDS. This instrumentation provides both 
application layer data like keystrokes and login details, as 
well as metadata from the sshd such as session and 
channel creation details. This data is then fed to an 
analyzer, where it is interpreted based on local site 
security policy. A key differentiator between the 
instrumented sshd (iSSHD) and many other security tools 
and research projects is that the iSSHD is not designed to 
detect and act on single anomalous events (like 
unexpected command sequences), but rather it is designed 
to enforce local security policy on data provided by the 
running sshd instances. 
 
The data analyzer is based on the Bro intrusion detection 
system [PA98]. This IDS normally takes network traffic, 
turns it into agnostic events and processes it via local 
policy script. By using the broccoli library, it is possible 
to convert structured data into serialized bro events that 
can be handed to the actual analyzer system [HD05]. This 
separation of policy and data generation mechanism 
provides the ability to take remotely generated events and 
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use the native scripting language to handle data structures, 
tables, timers and local security policy. In this capacity, 
we are principally using Bro as a powerful state engine 
which is being fed raw/agnostic events from the iSSHD 
application. 
 
It is worth mentioning that we make no attempt to hide 
the fact that iSSHD is installed.  An announcement was 
made to the user community, and an opportunity to 
provide feedback was provided.  In addition the version 
string clearly provides indication of a non-standard 
installation. 
 
3.2.1 Architecture and Design 
 
The design for the iSSHD was driven by a series of 
principles that focused more on not degrading the user 
experience than on any sort of security directive.  These 
principles were: 

1. Avoid instability or security problems from 
our code: We need to demonstrate with high 
confidence that our modified version of SSH is 
just as stable and secure as the original code 
base. 

2. Unchanged user experience: The modified 
version of SSH must not affect the way users 
interact with NERSC systems, require a special 
version of the SSH client or application, nor 
remove any existing capabilities. 

3. Minimal impact on system resources: System 
resources including CPU time, memory, and 
network bandwidth are at a premium. Additional 
demands made by the instrumented SSH must be 
insignificant compared to an unmodified SSH 
instance. 

 
Some results from this seem quite intuitive such as the use 
of OpenSSH [3] as the code base.  Others, like decoupling 
analysis from data collection, were somewhat more 
involved and required testing and experimentation to 
reach our goals.  The final design incorporated a three-
part strategy that completely separates the data collection, 
transfer and analysis from one another.  This is quite 
similar to the design of Bro described in §3.1 that also 
decouples the creation of agnostic (typically network) 
events from the analysis that enforces local security 
policy. 
 
In addition to adding our desired auditing functionality, 
we also added the Pittsburgh Supercomputing Center’s 
high performance OpenSSH patch set [RB08]. These 
patches provide significant gains in terms of bulk data 
transfer performance, which was seen as an additional 
win. 

 
Figure 3, Architecture of iSSHD. 
 

As we see in Fig. 3, there are three components of the 
iSSHD solution.  First, we see the server engine which 
exists within the iSSHD process space and generates the 
raw event data; secondly, stunnel [4] is used to transport 
data from the iSSHD process to the analyser in a non-
blocking manner; and thirdly, the analysis procedure – 
note that no changes are needed to the SSH clients, and 
operationally, the entire process is transparent to the user. 

 
When a user logs in using iSSHD, a session is created on 
the analysis side and information about the activity is 
logged.  If behaviour is indicative of known suspicious 
activity such as running a known bad command)\, 
remotely executing a shell, or performing some action 
like connection proxying, an alarm is propagated, and 
appropriate action taken.  In addition, the entire session is 
logged and available for forensic  analysis in the event 
that the data requires further review. 

 
Table 2 provides a subset of the total available 
information types available from iSSHD. 
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Connection 
SSHD_CONNECTION_START  Log connection 4-tuple and 

local interface addresses. 
 Create session id. 

SSHD_CONNECTION_END Close session id. 
 

Authentication 
AUTH_INFO General authentication event - 

type, result id etc 

AUTH_INVALID_USER Log id, source IP 

AUTH_KEY_FINGERPRINT Log RDA/DSA and fingerprint. 
 Can test against known bad 
values. 

AUTH_PASS_ATTEMPT Attempted password, SSH v. 1 
 

Session/Channel 
CHANNEL_DATA_CLIENT 
CHANNEL_DATA_SERVER 
CHANNEL_DATA_SERVER_SUM 

Data created by or returned to 
the ssh client.  There are non-tty 
versions of these as well.  The 
final event happens when data 
is skipped. 

CHANNEL_NEW  
CHANNEL_END 

Creation or destruction of 
channel within the ssh session. 

CHANNEL_PORTFWD_REQ 
CHANNEL_SOCKS4/5 

Sample port forward and socks 
request events. 

SESSION_REMOTE_DO_EXEC 
SESSION_REMOTE_EXEC_PTY 
SESSION_REMOTE_EXEC_NO
_PTY 

Events tied to remote command 
execution 

SESSION_REQUEST_DIRECT_
TCPIP 
SESSION_TUN_INIT 
SESSION_X11FWD 

Session events related to the 
directed TCP/IP, tunneling and 
X11 forwarding of traffic. 

 

Misc 
SSHD_START 
SSHD_EXIT 

Start/exit of the sshd process. 

SSHD_SERVER_HEARTBEAT Periodic message sent from 
running iSSHD to identify that (1) 
it is alive and (2) it has not been 
replaced.  

 
Table 2, iSSHD sample event set. 
 
3.2.2 Performance Data 
 
Based on points (2) and (3) of the Architecture and 
Design principles, it was expected that there would be 
little impact on performance for running iSSHD.  Table 3 
confirms our expectations, as far as non-interactive 
sessions are concerned.  We are still gathering data for 

interactive shell access since it is difficult to take a “real” 
user session and run it on two sshd instances at the same 
time. 
 

Remote 
Exec 

SCP 
Binary 

SCP 
ASCII 

SFTP 
ASCII 

5.8p1 
NoMod 

3.45 
[0.10] 

9.85 
[0.11] 

0.70 
[0.01] 

1.01 
[0.39] 

5.8p1 
NERSC 

3.31 
[0.12] 

9.85 
[0.15] 

0.69 
[0.02] 

1.56 
[0.34] 

Table 3, iSSHD performance measurements. 

The data provided by keystroke logging presents an 
interesting problem in that the content can be of arbitrary 
length, and will probably contain non-printing ASCII 
characters. As a performance enhancement, we cache 
keystroke data in a channel buffer queue using the native 
channel buffer types until a new line character is seen or 
data volume is exceeded. In situations where too much 
data is generated (such as large compile runs), the volume 
of data is huge and the value of the data is almost zero. To 
address this we adopted the same idea as used in the 
network Time Machine [MS08]: specifically that most 
security sensitive data and events tend to cluster them 
selves to the beginning of interactive sessions. By making 
the distinction between interactive sessions (where there 
are roughly the same order of magnitude of client initiated 
data events as server) and highly asymmetric connections 
(dozens or hundreds of server data events per client data 
event), we can avoid transmitting excess data from the 
iSSHD. This was one situation where it was necessary to 
build logic into the code running within the sshd process. 
For both normal tty channels as well as channels not 
bound to a tty cutoff values are put in place to avoid 
excessive data copying. For the situation of non-tty 
communications (which can include file transfers), the 
ratio of printing to non-printing characters is looked at to 
avoid needlessly copying binary files. 

 
The differentiation between binary and ASCII results for 
both SCP and SFTP file transfers is understandable based 
on how non-tty data channel is examined.  ASCII files 
will have significantly more data copied to the analyzer so 
there will be somewhat higher overhead.   

 
3.2.3 Results 
 

The most useful thing to show here is an example session 
which includes many if the alert and auditing functions. 
Given space and column limitations, we have included a 
typical login session and other sample logs in Appendix I. 

 
From a more pragmatic perspective the auditing and 
analysis functionality has allowed NERSC to quickly 
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identify dozens of compromised user credentials as well 
as the knowledge that entire generations of attack tools 
will alarm on their use.  Besides attack detection, the 
iSSHD provides considerable insight into the tactics and 
motivations for many of the attackers on our systems. In 
many cases the forensic logs quickly provide a clear 
indication of the success, skill level and threat presented 
by an intruder.  This provides an important window into 
attacker activities that can be a sobering reminder that not 
all the attackers we see are naive or unskilled. 

 
4. Future Work 

 
There are a number of areas of future work including 100 
Gbps border traffic, integration with on system data 
sources like process accounting as well as the initial 
analysis of code categorization based on inter-
computational node behaviour.   

 

5. Summary 

Intrusion detection in the HPC realm is a reasonably 
young field and subject to considerable change in short 
time.  We present our methodology for data source 
selection and two sample tools – the Bro Cluster IDS and 
Instrumented SSHD – as examples of this design strategy 
in action. 
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Appendix 1 – Example of user login auditing log 
 
#1 - host 16 SSHD_CONNECTION_START 127.0.0.1:62186/tcp -> 0.0.0.0:2222/tcp 
#1 - host 16 SSHD_CONNECTION_START 127.0.0.1_128.105.18.134_10.37.129.2_10.211.55.2 

 
#1 - host 16 AUTH_KEY_FINGERPRINT 05:b1:...:16:45 type DSA 
#1 - host 16 AUTH Postponed scottc publickey 127.0.0.1:62186/tcp > 0.0.0.0:2222/tcp 
#1 - host 16 AUTH_KEY_FINGERPRINT 05:b1:...:16:45 type DSA 
#1 - host 16 AUTH Accepted scottc publickey 127.0.0.1:62186/tcp > 0.0.0.0:2222/tcp 

 
#1 - host 16 SESSION_NEW SSH2 
#1 - host 16 CHANNEL_NEW [0] server-session server-session 
#1 - host 16 CHANNEL_NEW [1] auth socket auth socket 
#1 0-server-session host 16 SESSION_INPUT_CHAN_REQUEST AUTH-AGENT-REQ@OPENSSH.COM 
#1 0-server-session host 16 SESSION_INPUT_CHAN_REQUEST PTY-REQ 
#1 0-server-session host 16 SESSION_INPUT_CHAN_REQUEST SHELL 

 
#1 0-server-session host 16 DATA_SERVER Last login: Thu May  5 16:25:33 2011 
#1 0-server-session host 16 DATA_SERVER 
#1 0-server-session host 16 DATA_SERVER 
 
#1 0-server-session host 16 DATA_SERVER_SUM_SKIP: 1067 
#1 0-server-session host 16 DATA_SERVER 
#1 0-server-session host 16 DATA_CLIENT pwd 
#1 0-server-session host 16 DATA_SERVER cisco-wifi-134:~ scottc$ pwd 
#1 0-server-session host 16 DATA_SERVER /Users/scottc 
#1 0-server-session host 16 DATA_CLIENT unset HISTFILE 
#1 0-server-session host 16 DATA_SERVER cisco-wifi-134:~ scottc$ unset HISTFILE 
#1 0-server-session host 16 DATA_CLIENT exit 
#1 0-server-session host 16 DATA_SERVER cisco-wifi-134:~ scottc$ exit 
#1 0-server-session host 16 DATA_SERVER logout 

 
#1 - host SESSION_EXIT 
#1 0-server-session host 16 CHANNEL_FREE 
#1 1-auth socket host 16 CHANNEL_FREE 

 
#1 - host 16 SSHD_CONNECTION_END 127.0.0.1:62186/tcp -> 0.0.0.0:2222/tcp 
 
 
 
 
Instance of ‘unset HISTFILE’ triggers an alarm which is logged and can be attached to 
an email or pager. 
 
 
SSHD_Hostile #1 server-session host:2222 16  

scottc @ 127.0.0.1 -> 0.0.0.0:2222/tcp  
unset HISTFILE [ ] 

 
 
 
 
 
 
Field Values 
  
#1 0-server-session host 16 SESSION_INPUT_CHAN_REQUEST SHELL 
 
1-  Session identification 
2-  Channel number and type, ‘-‘ means no channel  
3 - Host identifier 
4 - Client session id. Random 32 bit number 
5 - Event identifier 
6 - Event information 
 

CONNECTION 

AUTHENTICATIO
N 

SESSION 

USER DATA 

EXIT 


