Overview of the Next Generation Cray XMT

Andrew Kopser and Dennis Vollrath, Cray Inc.

ABSTRACT: The next generation of Cray’s multithreaded supercomputer is
architecturally very similar to the Cray XMT, but the memory system has been improved
significantly and other features have been added to improve reliability, productivity, and
performance. This paper begins with a review of the Cray XMT followed by an overview
of the next generation Cray XMT implementation. Finally, the new features of the next
generation XMT are described in more detail and preliminary performance results are

given.

KEYWORDS: Cray, XMT, multithreaded, multithreading, architecture

1. Introduction

Cray XMT

The Cray XMT is a scalable multithreaded computer
built with the Cray Threadstorm processor. This custom
processor is designed to exploit parallelism that is only
available through its unique ability to rapidly context-
switch among many independent hardware execution
streams. The Cray XMT excels at large graph problems
that are poorly served by conventional cache-based
microprocessors.

The Cray XMT is a shared memory machine. The
programming model assumes a flat, globally accessible,
shared address space. The memory distribution hardware
deliberately scatters data structures across the machine so
that the application developer is neither required nor
encouraged to worry about data placement in order to
achieve good results. As such, the primary goal of the
hardware design team is to provide the best possible
bandwidth when all processors randomly access global
shared memory. Each potential bandwidth limiter is
evaluated within this context. The most significant of
these are the processor injection bandwidth to the
network, the network bisection bandwidth, and the DIMM
bandwidth. The current Cray XMT is built within the
Cray XT3 infrastructure and uses DDR1 technology [2].
For random access applications, performance is limited by
the DIMM bandwidth.

The primary objective when designing the next
generation Cray XMT was to increase the DIMM
bandwidth and capacity. It is built using the Cray XTS5
infrastructure with DDR2 technology. This change
increases each node’s memory capacity by a factor of
eight and DIMM bandwidth by a factor of three.

Reliability and productivity were important goals for
the next generation Cray XMT as well. A source of
frustration, especially for new users of the current Cray
XMT, is the issue of hot spots. Since all memory is
globally accessible and the application has access to
approximately one hundred hardware streams on each
processor, it is relatively simple to construct an
application that oversubscribes a particular location in
memory. When this happens, the memory controller and
network back up, resulting in performance degradation.
In extreme cases, system services can be disrupted. In the
next generation Cray XMT, this issue is addressed
through the addition of hot spot avoidance logic in the
processor.

2. The Cray XMT

As the disparity between processor and memory
speeds has grown, processor architectures have adapted to
deal with increasing latencies to memory. Vector
computers attempt to amortize the latency by accessing

Cray User Group 2011 Proceedings 1 of 10

data in large blocks. Cache-based architectures attempt to
reduce the latency by keeping the working set of the
application in the processor’s cache. However, when
spatial and temporal locality of data is minimal, such as in
many graph applications, these methods are not as
effective. ~Multithreaded processors tolerate memory
latency by working on many independent threads in
parallel [1].

On the Cray XMT, threads are very lightweight
software objects. Threads are mapped onto hardware
streams. A stream stores the thread state and executes its
instructions. Stream creation requires a single instruction
and may be executed from user space. Typically, the
compiler generates many more threads than the number of
streams in the machine. These threads are multiplexed
onto the hardware streams.

To facilitate coordination among many streams, the
Cray XMT supports extended memory semantics. Each
64-bit word of memory in the Cray XMT is tagged with
several state bits, the most important of which is the
Sfull/empty bit. Each memory operation can interact with
the full/empty bit. For example, the readfe operation
waits for a memory location to be full, loads it, and
atomically sets it empty. This functionality allows for
very fine-grained synchronization among streams.

2.1 The Cray XMT Blade

A logical view of the Cray XMT blade is shown in
Figure 1. Each of four Cray Threadstorm3 processors is
connected to four DDR1 DIMMs. Each processor is
connected to a Cray Seastar network chip with a
HyperTransport link. The remaining Cray Seastar
network links are not shown here.

pmangll pmangl pmangll nmangl
TIS et Tis PRt TIS et Tis pRE
S SS SS SS

Figure 1: Cray XMT Blade Logical View

2.2 The Cray Threadstorm3

A high level view of the Cray Threadstorm3 used by
the Cray XMT is shown in Figure 2. All memory
references pass through a crossbar switch. Remote
memory traffic is sent through a HyperTransport link to
the network.

CPU <«— Switch «—» MEM «—»
: DDR1
v
HT
Bridge
HT
Host

&

Figure 2: Cray Threadstorm3

2.3 Cray Threadstorm Processor

The Cray Threadstorm processor contains 128
independent instruction streams. Each stream includes its
own complete set of register state. On each clock cycle,
the instruction issue unit selects a stream to execute from
among the pool of ready streams. FEach instruction
consists of up to three operations, one from each of three
execution units. The A-unit performs arithmetic
operations as well as a rich set of bit and bit matrix
operations. The C-unit is responsible for branching but
also includes arithmetic and bit operations. The M-unit
handles all memory references. When an M-operation is
issued, the associated lookahead field in the instruction
indicates how many more instructions may be executed
by this stream before the M-operation completes. This
allows each stream to keep running while up to eight
memory references are being serviced on its behalf by the
M-unit.

-

Domain v
State | | Stream State |

v JLH? N

N . .
Fetch I\/I-_unlt A-_unlt C-_unlt
pibe pipe pipe
|
|

Issue Unit |
A

To Switch

Figure 3: Cray Threadstorm CPU

Each application runs in one of sixteen protection
domains. Each protection domain contains program and
data state descriptors that define the privileges and

Cray User Group 2011 Proceedings 2 of 10

mappings for streams executing within that domain. Each
protection domain also includes a variety of performance
counters.

2.4 M-unit

When the M-unit receives an M-operation from the
instruction issue unit, it first stores the information needed
to retry the operation in the Data Control and Data Value
Registers. Assuming the virtual address is valid, the data
address translation proceeds as follows. First, the
segment number of the virtual address is used to select a
data map entry. Data map entries are stored in memory
and cached by the data map translation lookaside buffer
(DTLB) in the M-unit. The data map entry is used to
relocate the virtual address into a logical unit number and
logical unit offset. In addition, the data map entry
specifies whether the address is to be scrambled and/or
distributed. Certain local data structures, such as the
program text and the data map entries themselves, are
neither scrambled nor distributed. = Most addresses,
however, are both scrambled and distributed. The
purpose of scrambling and distribution is to guarantee that
memory references of any access pattern larger than a
cache line are evenly spread across all memory controllers
and memory banks. Scrambling and distribution does not
affect the lower six bits (the cache line offset) of the
address. During the scrambling step, the logical unit
offset is multiplied by a constant bit matrix in order to
hash the address. To distribute, the logical unit number
and the scrambled offset are appended and then divided
by the system size. The quotient is the physical unit
offset and the residue is the physical unit number.

When data address translation has completed
successfully, if the M-unit has the appropriate network
credits, the M-unit releases the packet to the Switch. If
the address is local, it is directed to the on-chip memory
controller. Otherwise, it is sent over the HyperTransport
link to the network. When a normal response arrives at
the M-unit, if the operation was a load, the M-unit updates
the register file with the data result. It also informs the
instruction issue logic that it has completed so that the
barrier created by the operation’s lookahead value may be
lifted. If an M-operation was a synchronized operation
such as a readfe operation, the M-unit may receive a busy
response instead of a normal response. In this case, the
M-unit puts the operation in its Retry Queue. When
traffic permits, the M-unit retries the operation. These
retries do not use instruction issue slots but they do use
network and memory bandwidth. The M-unit keeps track
of how many times each operation has been retried.
Eventually, the operation either completes successfully or
exceeds its retry limit as specified by the data state
descriptor. In this case, an exception is raised and the trap
handler takes over.

To Issue Unit & From Issue Unit
Register File & Register File
G e
Queue
Y 4|
DTLB Data State
Relocation
Reply
Queue i
Scrambling
Distribution
" @)
N
(o)
Y
From Switch To Switch

Figure 4: M-unit

2.5 Remote Memory Access

Both the Cray Threadstorm processor and the Cray
Seastar network ASIC contain a Remote Memory Access
(RMA) block. The RMA blocks reside on either end of
the HyperTransport link and serve three important
purposes. First, the RMA blocks allow up to 512TB of
memory to be referenced directly without the need for
messaging, windowing, or remote translation. Second,
support is provided for the Cray XMT’s extended
memory semantics, which require a richer set of function,
control, and response codes than may be achieved
natively with HyperTransport. Finally, multiple remote
references are encapsulated into each HyperTransport
packet to allow more efficient use of the interface.

All RMA traffic is sent across the HyperTransport
link in the form of posted writes. As requests are received
in the HT Bridge on the Cray Threadstorm, the RMA
block encapsulates these requests into the 64-byte payload
of a posted write packet. The eight-byte HyperTransport
header is used primarily to identify the packet as an RMA
packet. On the Cray Seastar, the HyperTransport packet
is unpacked and each request is sent to the appropriate

Cray User Group 2011 Proceedings 3 of 10

node. When a request packet arrives at its destination at
the remote node, it is encapsulated on the Seastar with
other requests, sent over the HyperTransport link, and
once again unpacked on the Cray Threadstorm. This
process is repeated in reverse for response packets. For
symmetric traffic (each node making and servicing
requests simultaneously), this method allows the Cray
Threadstorm to sustain 100 million single word memory
references per second.

2.6 Memory System.

The Cray XMT memory system processes requests
from local and remote CPUs as well as the Seastar DMA
engines. Memory operations can succeed or fail based
upon the access control bits in the request used in
conjunction with Extended Memory Semantics (EMS)
bits contained in the memory word. These four EMS bits
consist of:

¢ Full/Empty bit (F/E)

¢ Forwarding Bit

* Two Trap bits
All memory words have the F/E bit defined, but only
pointers can have the remaining three bits. A separate
control bit in each memory word indicates whether or not
the location has forward and trap bits defined.

System memory is constructed with up to four slots of
PC3200 (200MHz) DDR1 DIMMs. These are arranged
in ganged pairs of two DIMMs providing a 16B data
interface. The DIMM:s are read in bursts of four, resulting
in a complete cache line of 64 bytes read or written for
each operation. While multiple words from the cache line
are used in some situations, the principal mode of
memory access is single word requests to random
memory locations. Using 2MB DIMMs, the memory
capacity is 8GB per node.

The memory system has two clock domains,
500MHz and 200MHz. Operations cross between the two
domains in a synchronous manner.

A block diagram of the Cray XMT memory system is
shown in Figure 5.

From Switch To Switch
[+
- \
Request Buffer Response Pipe

I I

Buffer Cache

I

DIMM Request Buffer

D enali DIMM Controller

l

\ DDR1DIMM | DDR1 DIMM |

\ DDR1 DIMM | DDR1DIMM |

Figure 5: Cray XMT Memory Subsystem

2.6.1 Mem_top

The Mem_top block handles traffic to and from the
switch at 500MHz. It is composed of four major
functional sub-blocks.

The Request Buffer sub-block manages up to 32 data
requests and eight instruction requests at a time. These
are stored in a buffer and are prioritized for processing
based upon age, state of the buffer cache, and a
configurable instruction/data priority setting.

The Buffer Cache sub-block contains 128kB of
storage and is the hub of the memory system through
which all operations pass. This storage is organized as a
four-way set associative cache with 512 indices. Each
entry stores a complete 64B cache line and associated tag
state.

If the request misses in the Buffer Cache, a DIMM
read is issued to the DIMM Request Buffer. This sub-
block has storage for 24 reads and 24 writes. It issues
read and write requests to the Denali Software DIMM
controller, handles responses, and maintains storage for
pending DIMM operations. The DIMM Request Buffer
sub-block straddles the 5S00MHz / 200MHz boundary.

When a memory operation has been satisfied, it is
released to the Response Pipe for processing and returned

Cray User Group 2011 Proceedings 4 of 10

to the requestor. This logic takes the current value of the
memory location (now in the Buffer Cache) as well as the
request information and emits a response to the Switch
and potentially a modified value for memory. The AMO
logic in the response pipe handles Fetch & Add, partial
word stores, and pass-through functions. The returned
result code is based upon the memory location’s EMS bits
and the requesting operation’s access control bits.

2.6.2 DIMM Controller

Reads that are not found in the Buffer Cache and
modified cache locations that are evicted are sent to the
DIMM controller. This 200MHz logic IP from Denali
Software consists of RTL synthesizable Verilog code that
integrates the controller and PHY functions. It schedules
the DIMM operations and controls the initialization and
refresh functions. Operations are scheduled to optimize
the utilization of the control and data signals, thus
maximizing bandwidth. A highly boot-time configurable
Command and Status Register set accommodates DIMMs
with different capacities and timing characteristics.

3. The Next Generation Cray XMT

The next generation Cray XMT is the latest
multithreaded offering from Cray. It is architecturally
very similar to the original Cray XMT, but it is built with
the new Cray Threadstorm4 processor in the Cray XTS5
infrastructure. This infrastructure uses DDR2 technology
and provides twice the number of DIMM slots per node as
the Cray XMT. The Cray Threadstorm4 takes advantage
of the upgraded memory system and provides important
new hot spot avoidance techniques.

3.1 The Next Generation Cray XMT Blade

The next generation Cray XMT Blade is shown in
Figure 6. Each node includes two Cray Threadstorm4
ASICs. Those connected to the network function as
processors whereas those labelled TS,. operate as
memory controllers only. One processor per node is
sufficient to saturate the network bandwidth. The two
Cray Threadstorm4 ASICs within a node are connected
by a custom interface called the Node Pair Link (NPL).

i
i

T Sme [por2 T Sme [por2 TSme |oor2 TSme|oor2
]]

INF'L 1NPL INPL 1NPL
TScpu DDRZH D TScpu DDRZH D TScpu DDR 2 TScpu DDR2

SS SS SS SS

i
i

[mE]
[
[mE]
I —

Figure 6: Next Generation Cray XMT Blade

3.2 The Cray Threadstorm4

A block diagram of the Cray Threadstorm4 is shown
in Figure 7. There are two significant differences as
compared to the Cray Threadstorm3. First, the memory
controller has been upgraded to support DDR2. Second,
the NPL link has been added as another port on the
Switch. Note that for the TS, sockets in Figure 6 above,
the CPU and HT interfaces are disabled.

INPL

NPL
Block
A

CPU

A
\ 4

Switch

A
Y

MEM <«—»
DDR2

v

HT
Bridge
HT
Host

i

Figure 7: Cray Threadstorm4

4. Next Generation XMT Memory System

In the next generation Cray XMT, the memory
system was changed to support DDR2. This is shown in
Figure 8. The DIMM control block is now IP from
Northwest Logic. It is internally organized into a 144-bit
wide controller and two 72-bit wide PHY blocks.

Cray User Group 2011 Proceedings 5 of 10

From Switch To Switch
[+
- \
Request Buffer Response Pipe

I I

Buffer Cache

I

DIMM Request Buffer

Northwest Logic DIMM Controller

l

\ DDR2 DIMM | DDR2 DIMM |

\ DDR2 DIMM | DDR2DIMM |

Figure 8: Next Generation XMT Memory System

4.1 Why DDR2?

With a short 18-month design cycle, keeping
discretionary risks to a minimum was crucial. Towards
this end, we decided to Ileverage existing Cray
infrastructure as much as possible. By adopting proven
mechanical, power, and cooling implementations, the
design team could focus more on the processor design.
The production-deployed Cray XT5 platform offered this
opportunity. It supports registered DDR2 memory
technology. In addition to risk mitigation, DDR2 also
offers performance advantages to the next generation
Cray XMT. When accessing memory in a Double Data
Rate device, a minimum number of words must be read
out in a single operation. This parameter, called the burst
size, is four for DDR2. With a 16B wide memory
channel and burst length of four, each access reads or
writes 64 bytes of data. Since the dominant memory
access mode for the Cray XMT is to single word random
addresses, 56 of these bytes are often not used. We also
considered DDR3, which has a minimum burst size of
eight. This leads to a minimum access of 128 bytes of
data, only eight of which may be used. While a DDR3
channel could run faster (twice as fast would provide
equivalent single word random access bandwidth),
DDR2’s smaller burst size allows us to run at slower
speeds with lower power and larger timing margins.

4.2 Capacity

The next generation Cray XMT supports eight DDR2
slots per node, twice that of its predecessor. With the
larger capacity DIMMs available in DDR2 as compared
to DDRI1, the next generation Cray XMT supports up to
64GB per node, or 32TB of flat shared memory for a 512-
processor system. This is an 8x improvement over the
current Cray XMT.

4.3 Bandwidth

Memory bandwidth was improved as well in the next
generation Cray XMT. The DIMM clocks run at
300MHz, compared to the current rate of 200MHz. In
addition, there are twice as many memory channels per
node. This leads to a three-fold improvement in overall
memory bandwidth and ensures it is not the critical
system resource.

4.4 RandomAccess Performance

The RandomAccess benchmark is a good
representation of the sort of application that excels on the
Cray XMT. It measures the global memory bandwidth of
the system when all processors make random accesses to
memory. It reports billions of updates per second. Each
update includes two single-word memory operations--one
load and one store. On the current Cray XMT, this
application is limited by DDR1 bandwidth. On the next
generation Cray XMT, however, the increased memory
bandwidth allows the network to be saturated as shown in
Figure 9. According to the optimized results of the 2010
HPC Challenge [3], these results are only exceeded by
other machines with at least one thousand processing
nodes.

XMT RandomAccess

Gups

/ = 128p Next Generation
3 N N N e

_________________ 128p Cray XMT

—+ XMTMemory BW

------- XMT Network BW

30 40 50 60 70 80 90 100

of HW streams per processor

Figure 9: XMT RandomAccess performance

Cray User Group 2011 Proceedings 6 of 10

5. Hot Spot Avoidance

One challenge for application writers on the current
Cray XMT is the inadvertent generation of hot spots. The
Cray XMT provides useful synchronization primitives
and atomic operations, but if all streams on the machine
try to reference the same location in memory, a hot spot
can be created. This causes a backup in the affected
memory module that extends into the network. The
typical result is poor performance for the application, but
in the worst case, system services can be affected as well.
For new users in particular, these sorts of problems can be
difficult to diagnose. The solution often requires
distributing data structures and making a simple
application more complicated. In the next generation
Cray XMT, this problem was addressed by adding content
addressable memories (CAMs) in the processor to reduce
unnecessary traffic on the network.

5.1 Synchronized References

Perhaps the simplest way to generate a hot spot on
the current Cray XMT is to have many streams make
synchronized references to the same memory location. A
readfe operation waits for a memory location to become
full and then atomically reads the location while setting it
empty. Likewise, the writeef operation waits for a
location to become empty and then atomically writes the
location while setting it full. If exclusive access to a
commonly accessed data structure is maintained through
these primitives, a hot spot can occur.

Consider the situation in which one stream has
emptied the synchronized location and many others are
trying to read it. In each Cray XMT processor, perhaps
100 streams make the same readfe request. The M-unit
sends these readfe requests out onto the network.
Eventually, a response is received for each of these
requests. At most one response contains the requested
data; the others are guaranteed to receive a busy response.
Those streams that receive a busy response are retried.
For an extended period of time, each processor always has
about 100 requests outstanding in the network.

Since at most one of these readfe may succeed, it is
counterproductive to release the others to the network. In
the next generation Cray XMT, the SynchRef CAM has
been added to the M-unit. When the readfe would be
injected into the Switch, it checks in the SynchRef CAM
first. If a matching address is found, the readfe operation
is returned to the Retry Queue. Otherwise, the address is
added to the CAM and the operation proceeds normally.

Thus, each processor never has more than one readfe
operation outstanding to the same location.

readfe

operation
Back to Retry Queue L

yes L

no

Room in the

CAMP? Allocate

|ssue to Switch

Figure 10: SynchRef CAM operation

5.2 readfe Reduction

To test the effectiveness of the SynchRef CAM, an
extremely degenerate program was tested on 128-
processor versions of the current and next generation Cray
XMT. This program performs a million-element
reduction on a single memory location using readfe and
writeef to guarantee atomicity. As a result, only one
stream at a time ever does any useful work and
performance degrades as processors are added. 100
streams are requested on each processor. The kernel of
the reduction is shown here:

for (int i=0; i < N; 1i++){
int local sum;
local_sum = readfe (&sum);
local sum += rand arrayl[i];
writeef (&sum, local sum);

}

As shown in Figure 11, on the current Cray XMT, the
application generates billions of retries and millions of
retry limit traps; performance suffers as a result. It was
not feasible to run the application on more than 64
processors. On the next generation Cray XMT, however,
a negligible number of traps occur. At 96 and 128
processors, we begin to see more retries and traps as the
network injection limit at the busy memory node becomes
an issue. While this code still reflects a very poor way to
perform a reduction, the next generation Cray XMT is
much more forgiving than its predecessor.

Cray User Group 2011 Proceedings 7 of 10

readfe Reduction Time
2500
2000 7/
/
= 1500 y]
2 / - = 128pXMT
= 1000 v
/
500 7z —_—128p Ngxt
P - Generation
-
0
16 32 64 9% 128
Processors
Figure 11(a): readfe Reduction execution time
readfe Reduction Mtraps
250
200 /
z /
2 150 !
E II - — 128pXMT
« 100
& /
- 50 / —_—128p Ngxt
J Generation
- -
o -
16 32 64 9% 128
Processors
Figure 11(b): readfe Reduction traps (millions)
readfe Reduction Gretries
1200
1000 ;
= /
g 800 7
= / - = 128pXMT
< 600 7
Q2
E 200 1 — 128p Next
[1 Generation
200 /
- - I
o =
16 32 64 96 128

Figure 11(c): readfe Reduction retries (billions)

5.3 Fetch & Add Combining

Another commonly used method for coordinating
among many streams or for updating a shared
accumulator is to use the Cray XMT’s atomic Fetch &
Add operation. Unlike the readfe operation, the Fetch &
Add operation is satisfied without the need for retrying.
However, if many streams on all processors try to access
the same memory location, the affected memory

controller is still oversubscribed by a factor that grows
with the number of processors in the system.

In the next generation Cray XMT, Fetch & Add
operations are combined in the M-unit in order to reduce
network and memory bandwidth requirements. The Fetch
& Add Combining logic includes a small, four-entry,
Fetch & Add Combining CAM (FACC), a 128-entry Fetch
& Add Linked List (FALL), and a sixteen-entry Fetch &
Add Retirement CAM (FARC).

When a Fetch & Add operation would be issued to
the Switch, it checks for a match in the FACC. If a match
is not found and there is an available entry, the packet
allocates in the FACC and waits for a specified period of
time to permit combining. The FACC includes an
accumulator for the data and a pointer to the first element
(initially null) of a linked list of its dependents. If a
match is found and there is room in the FALL, the packet
allocates in the FALL, adds itself to the FACC entry’s
dependent list, and updates the accumulator in the FACC
with its data. If a packet cannot make the desired
allocation (either a match is found but there is no room in
the FALL, or a match is not found but there is no room in
the FACC), the Fetch & Add operation is immediately
released to the Switch.

When an entry in the FACC has waited for the
specified period of time to allow combining, it allocates
an entry in the FARC, removes itself from the FACC, and
a network request is created. This Fetch & Add request
includes the address and identifiers associated with the
Fetch & Add operation that first allocated in the FACC,
but specifies the accumulated data of all Fetch & Add
operations that were combined in this entry. The FARC
contains a pointer to the first element of the FALL. When
the response to the Fetch & Add request is received by the
M-unit, the FARC is consulted and the linked list is
traversed. Each response to the register file is constructed
by re-accumulating the data from memory with the data
from the elements in the linked list. The FARC and
FALL entries are deallocated as they are referenced.
Figure 12 gives an example of three Fetch & Add requests
that are combined in the M-unit.

Cray User Group 2011 Proceedings 8 of 10

F&A request packet F &A request packet F &A request packet
Tag1‘ addr ‘ D1 ‘ ‘Tagz‘ addrT D2 ‘ ‘Tags addrT D3 ‘

Three packets in Munit request pipeline

FACC entr
ol | = [

Step 1. Tag1 allocates in FACC

or |

Step 2. Tag2 hitsin FACG adds itself to linked list

Tag3| D1+D2 E

addr |D1+D2+D3

Step 3. Tag3 hitsin FACG adds itself to linked list

FARC entry

TIENE

Step4: FACC entry times out FE&A issued to network Tag! moved to F&A Retirement CAM(FARC).
Response from Switch
EENE

Redister File write
Step5: FEA response returned from Switch Forward to Register FilePop FARC entry

| on |
Tag3| D1+D2 =

Packet to Switch
Tagl| addr D1+DZ+D3‘

-

Register File write

Stepb. Generate response to Tag?

Redgister File write

agl3|DM+D1+D2

Step7. Generate response to TagB

Figure 12: Fetch & Add Combining Example

-

What about that wait time? Since Fetch & Add
operations are required to wait to allow combining, we
must consider applications that do not benefit from
combining. For example, when generating a histogram of
a large table, very little combining may be expected.
Consider an application with 100 streams building a
histogram with Fetch & Add operations. If each stream
always has only one Fetch & Add operation outstanding
at once, then four (the size of the FACC) out of 100 Fetch
& Add operations are delayed. Early experience has
shown that adding latency to 4% of these Fetch & Add
operations has little to no effect on performance. As long
as there is sufficient concurrency in the application, the
additional latency is completely hidden. The benefits of
this feature as demonstrated below far exceed the
potential drawback.

5.4 Fetch & Add Reduction Performance

On the current Cray XMT, when an accumulator is
frequently updated in memory using the Fetch & Add

operator, it is common practice to replicate the
accumulator to spread out the updates. When an update is
to be made, one of the copies is randomly selected. We
wrote a simple program to compare the usefulness of this
optimization on the current and next generation Cray
XMTs. The kernel of this program is shown here:

for(int 1 = 0; i < num updates; i++) {
int copy = MTA CLOCK(0) & (num copies-1);
int fetch add(&array[copy*CACHE LINE], 1);

The MTA_CLOCK intrinsic returns the free-running
processor clock and is used here as an inexpensive way to
generate a somewhat random value. The number of
copies (num_copies) is required to be a power of two.
Note that each copy must reside in its own cache line so
that the copies are mapped to different memory
controllers.

This program was run with 32 billion updates on 512-
processor machines. As shown in Figure 13, simply
updating a single memory location on the current Cray
XMT creates a significant hot spot and results in very
poor performance. Performance is improved as copies are
added. On the next generation Cray XMT, however, best
performance is achieved with a single accumulator. As
copies are added, the FACC becomes polluted and less
effective as a result. When many copies are added, the
FACC becomes less of a factor and performance more
closely resembles that of the original Cray XMT. In all
cases, however, the FACC improves performance. By
optimizing the simplest implementation, new users on the
next generation Cray XMT should not have to learn about
this ugly coding trick.

Fetch & Add Reduction

- = 512pXMT

Time (s)

~ =— 512p Next
~ Generation

num_copies

Figure 13: Fetch & Add Reduction

6. Conclusion

The Cray XMT has proven to be very effective at
solving applications with very large data sets that are

Cray User Group 2011 Proceedings 9 of 10

randomly accessed. Many of these applications are
currently limited by the DDRI1 bandwidth. The next
generation Cray XMT eliminates this bottleneck by
providing three times the bandwidth using DDR2
technology. The memory capacity is also greatly
increased, allowing much larger problems to be solved.

Hot spots have been a very difficult issue for many
programmers of the current Cray XMT. The next
generation Cray XMT addresses this by adding hot spot
avoidance techniques for synchronized references and
Fetch & Add operations. These techniques prevent
services from being disrupted in all cases, and often allow
the simplest implementation to perform most effectively.
This should translate to improved productivity for
application developers.

References

[1] Alverson, R. et al., “The Tera Computer System”,
Proceedings of the 4" International Conference on
Supercomputing, pl-6, June 11-15, 1990, Amsterdam,
The Netherlands.

[2] Feo, J. et al, “Eldorado”, Proceedings of the 2"
Conference on Computing Frontiers, p 28-34, May 4-6,
2005, Ischia, Italy.

[3] “HPC Challenge Benchmark Results — Condensed
Results — Optimized Runs”, accessed April 21, 2002,
http://icl.cs.utk.edu/hpcc/hpec_results.cgi?display=opt

Acknowledgments

The authors would like to thank the entire Cray XMT
team for making it work and evaluating its performance.

About the Authors

Andrew Kopser is a senior principal engineer at Cray
Inc. Email: kopser@cray.com. Dennis Vollrath is a
principal engineer at Cray Inc. Email: dennis@cray.com.
Both authors have worked on this multithreaded
architecture since its origins at Tera Computer Company.
Both are located at Cray Inc., 901 Fifth Avenue, Suite
1000, Seattle, WA 98164.

Cray User Group 2011 Proceedings 10 of 10

