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Overview of the Next Generation Cray XMT 
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ABSTRACT: The next generation of Cray’s multithreaded supercomputer is 
architecturally very similar to the Cray XMT, but the memory system has been improved 
significantly and other features have been added to improve reliability, productivity, and 
performance.  This paper begins with a review of the Cray XMT followed by an overview 
of the next generation Cray XMT implementation.  Finally, the new features of the next 
generation XMT are described in more detail and preliminary performance results are 
given. 
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1. Introduction 

Cray XMT 
The Cray XMT is a scalable multithreaded computer 

built with the Cray Threadstorm processor.  This custom 
processor is designed to exploit parallelism that is only 
available through its unique ability to rapidly context-
switch among many independent hardware execution 
streams.  The Cray XMT excels at large graph problems 
that are poorly served by conventional cache-based 
microprocessors. 

 
The Cray XMT is a shared memory machine.  The 

programming model assumes a flat, globally accessible, 
shared address space.  The memory distribution hardware 
deliberately scatters data structures across the machine so 
that the application developer is neither required nor 
encouraged to worry about data placement in order to 
achieve good results.  As such, the primary goal of the 
hardware design team is to provide the best possible 
bandwidth when all processors randomly access global 
shared memory.  Each potential bandwidth limiter is 
evaluated within this context.  The most significant of 
these are the processor injection bandwidth to the 
network, the network bisection bandwidth, and the DIMM 
bandwidth. The current Cray XMT is built within the 
Cray XT3 infrastructure and uses DDR1 technology [2].  
For random access applications, performance is limited by 
the DIMM bandwidth. 

 

 
The primary objective when designing the next 

generation Cray XMT was to increase the DIMM 
bandwidth and capacity.  It is built using the Cray XT5 
infrastructure with DDR2 technology.  This change 
increases each node’s memory capacity by a factor of 
eight and DIMM bandwidth by a factor of three.  

 
Reliability and productivity were important goals for 

the next generation Cray XMT as well.  A source of 
frustration, especially for new users of the current Cray 
XMT, is the issue of hot spots.  Since all memory is 
globally accessible and the application has access to 
approximately one hundred hardware streams on each 
processor, it is relatively simple to construct an 
application that oversubscribes a particular location in 
memory.  When this happens, the memory controller and 
network back up, resulting in performance degradation.  
In extreme cases, system services can be disrupted.  In the 
next generation Cray XMT, this issue is addressed 
through the addition of hot spot avoidance logic in the 
processor. 

2.  The Cray XMT 
As the disparity between processor and memory 

speeds has grown, processor architectures have adapted to 
deal with increasing latencies to memory.  Vector 
computers attempt to amortize the latency by accessing 
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data in large blocks.  Cache-based architectures attempt to 
reduce the latency by keeping the working set of the 
application in the processor’s cache.  However, when 
spatial and temporal locality of data is minimal, such as in 
many graph applications, these methods are not as 
effective.  Multithreaded processors tolerate memory 
latency by working on many independent threads in 
parallel [1]. 

 
On the Cray XMT, threads are very lightweight 

software objects.  Threads are mapped onto hardware 
streams.  A stream stores the thread state and executes its 
instructions.  Stream creation requires a single instruction 
and may be executed from user space.  Typically, the 
compiler generates many more threads than the number of 
streams in the machine.  These threads are multiplexed 
onto the hardware streams. 

 
To facilitate coordination among many streams, the 

Cray XMT supports extended memory semantics.  Each 
64-bit word of memory in the Cray XMT is tagged with 
several state bits, the most important of which is the 
full/empty bit.  Each memory operation can interact with 
the full/empty bit.  For example, the readfe operation 
waits for a memory location to be full, loads it, and 
atomically sets it empty.  This functionality allows for 
very fine-grained synchronization among streams. 

 

2.1 The Cray XMT Blade 
 
A logical view of the Cray XMT blade is shown in 

Figure 1.  Each of four Cray Threadstorm3 processors is 
connected to four DDR1 DIMMs.  Each processor is 
connected to a Cray Seastar network chip with a 
HyperTransport link.  The remaining Cray Seastar 
network links are not shown here. 

 

 
Figure 1: Cray XMT Blade Logical View 
 

2.2 The Cray Threadstorm3 

A high level view of the Cray Threadstorm3 used by 
the Cray XMT is shown in Figure 2.  All memory 
references pass through a crossbar switch.  Remote 
memory traffic is sent through a HyperTransport link to 
the network. 

 

 
Figure 2: Cray Threadstorm3  
 

2.3 Cray Threadstorm Processor 
 
The Cray Threadstorm processor contains 128 

independent instruction streams.  Each stream includes its 
own complete set of register state.  On each clock cycle, 
the instruction issue unit selects a stream to execute from 
among the pool of ready streams.  Each instruction 
consists of up to three operations, one from each of three 
execution units.  The A-unit performs arithmetic 
operations as well as a rich set of bit and bit matrix 
operations.  The C-unit is responsible for branching but 
also includes arithmetic and bit operations.  The M-unit 
handles all memory references.  When an M-operation is 
issued, the associated lookahead field in the instruction 
indicates how many more instructions may be executed 
by this stream before the M-operation completes.  This 
allows each stream to keep running while up to eight 
memory references are being serviced on its behalf by the 
M-unit.  
 

Figure 3: Cray Threadstorm CPU 

Each application runs in one of sixteen protection 
domains.  Each protection domain contains program and 
data state descriptors that define the privileges and 
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mappings for streams executing within that domain.  Each 
protection domain also includes a variety of performance 
counters. 

 

2.4 M-unit 
 
When the M-unit receives an M-operation from the 

instruction issue unit, it first stores the information needed 
to retry the operation in the Data Control and Data Value 
Registers.  Assuming the virtual address is valid, the data 
address translation proceeds as follows.  First, the 
segment number of the virtual address is used to select a 
data map entry.  Data map entries are stored in memory 
and cached by the data map translation lookaside buffer 
(DTLB) in the M-unit.  The data map entry is used to 
relocate the virtual address into a logical unit number and 
logical unit offset. In addition, the data map entry 
specifies whether the address is to be scrambled and/or 
distributed.  Certain local data structures, such as the 
program text and the data map entries themselves, are 
neither scrambled nor distributed.  Most addresses, 
however, are both scrambled and distributed.  The 
purpose of scrambling and distribution is to guarantee that 
memory references of any access pattern larger than a 
cache line are evenly spread across all memory controllers 
and memory banks. Scrambling and distribution does not 
affect the lower six bits (the cache line offset) of the 
address.  During the scrambling step, the logical unit 
offset is multiplied by a constant bit matrix in order to 
hash the address.  To distribute, the logical unit number 
and the scrambled offset are appended and then divided 
by the system size.  The quotient is the physical unit 
offset and the residue is the physical unit number. 

 
When data address translation has completed 

successfully, if the M-unit has the appropriate network 
credits, the M-unit releases the packet to the Switch.  If 
the address is local, it is directed to the on-chip memory 
controller.  Otherwise, it is sent over the HyperTransport 
link to the network.  When a normal response arrives at 
the M-unit, if the operation was a load, the M-unit updates 
the register file with the data result.  It also informs the 
instruction issue logic that it has completed so that the 
barrier created by the operation’s lookahead value may be 
lifted.  If an M-operation was a synchronized operation 
such as a readfe operation, the M-unit may receive a busy 
response instead of a normal response.  In this case, the 
M-unit puts the operation in its Retry Queue.  When 
traffic permits, the M-unit retries the operation.  These 
retries do not use instruction issue slots but they do use 
network and memory bandwidth.  The M-unit keeps track 
of how many times each operation has been retried.  
Eventually, the operation either completes successfully or 
exceeds its retry limit as specified by the data state 
descriptor.  In this case, an exception is raised and the trap 
handler takes over. 

 

Figure 4: M-unit 
 

2.5 Remote Memory Access 

Both the Cray Threadstorm processor and the Cray 
Seastar network ASIC contain a Remote Memory Access 
(RMA) block.  The RMA blocks reside on either end of 
the HyperTransport link and serve three important 
purposes.  First, the RMA blocks allow up to 512TB of 
memory to be referenced directly without the need for 
messaging, windowing, or remote translation.  Second, 
support is provided for the Cray XMT’s extended 
memory semantics, which require a richer set of function, 
control, and response codes than may be achieved 
natively with HyperTransport.  Finally, multiple remote 
references are encapsulated into each HyperTransport 
packet to allow more efficient use of the interface. 

 
All RMA traffic is sent across the HyperTransport 

link in the form of posted writes.  As requests are received 
in the HT Bridge on the Cray Threadstorm, the RMA 
block encapsulates these requests into the 64-byte payload 
of a posted write packet.  The eight-byte HyperTransport 
header is used primarily to identify the packet as an RMA 
packet.  On the Cray Seastar, the HyperTransport packet 
is unpacked and each request is sent to the appropriate 
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node.  When a request packet arrives at its destination at 
the remote node, it is encapsulated on the Seastar with 
other requests, sent over the HyperTransport link, and 
once again unpacked on the Cray Threadstorm.  This 
process is repeated in reverse for response packets.  For 
symmetric traffic (each node making and servicing 
requests simultaneously), this method allows the Cray 
Threadstorm to sustain 100 million single word memory 
references per second. 

 

2.6 Memory System. 
 
The Cray XMT memory system processes requests 

from local and remote CPUs as well as the Seastar DMA 
engines.  Memory operations can succeed or fail based 
upon the access control bits in the request used in 
conjunction with Extended Memory Semantics (EMS) 
bits contained in the memory word.  These four EMS bits 
consist of: 

• Full/Empty bit (F/E) 
• Forwarding Bit 
• Two Trap bits 

All memory words have the F/E bit defined, but only 
pointers can have the remaining three bits.  A separate 
control bit in each memory word indicates whether or not 
the location has forward and trap bits defined. 
 
    System memory is constructed with up to four slots of 
PC3200 (200MHz) DDR1 DIMMs.  These are arranged 
in ganged pairs of two DIMMs providing a 16B data 
interface.  The DIMMs are read in bursts of four, resulting 
in a complete cache line of 64 bytes read or written for 
each operation.  While multiple words from the cache line 
are used in some situations, the principal mode of 
memory access is single word requests to random 
memory locations.  Using 2MB DIMMs, the memory 
capacity is 8GB per node. 
 

The memory system has two clock domains, 
500MHz and 200MHz.  Operations cross between the two 
domains in a synchronous manner.  
 
 

A block diagram of the Cray XMT memory system is 
shown in Figure 5.  

 
Figure 5:  Cray XMT Memory Subsystem 

 

2.6.1 Mem_top 
 

The Mem_top block handles traffic to and from the 
switch at 500MHz.  It is composed of four major 
functional sub-blocks. 

 
 The Request Buffer sub-block manages up to 32 data 

requests and eight instruction requests at a time.  These 
are stored in a buffer and are prioritized for processing 
based upon age, state of the buffer cache, and a 
configurable instruction/data priority setting. 

 
The Buffer Cache sub-block contains 128kB of 

storage and is the hub of the memory system through 
which all operations pass.  This storage is organized as a 
four-way set associative cache with 512 indices.  Each 
entry stores a complete 64B cache line and associated tag 
state. 

 
If the request misses in the Buffer Cache, a DIMM 

read is issued to the DIMM Request Buffer.  This sub-
block has storage for 24 reads and 24 writes.  It issues 
read and write requests to the Denali Software DIMM 
controller, handles responses, and maintains storage for 
pending DIMM operations.  The DIMM Request Buffer 
sub-block straddles the 500MHz / 200MHz boundary. 

 
When a memory operation has been satisfied, it is 

released to the Response Pipe for processing and returned 
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to the requestor.  This logic takes the current value of the 
memory location (now in the Buffer Cache) as well as the 
request information and emits a response to the Switch 
and potentially a modified value for memory.  The AMO 
logic in the response pipe handles Fetch & Add, partial 
word stores, and pass-through functions.  The returned 
result code is based upon the memory location’s EMS bits 
and the requesting operation’s access control bits. 

 

2.6.2 DIMM Controller 
 

Reads that are not found in the Buffer Cache and 
modified cache locations that are evicted are sent to the 
DIMM controller.  This 200MHz logic IP from Denali 
Software consists of RTL synthesizable Verilog code that 
integrates the controller and PHY functions.  It schedules 
the DIMM operations and controls the initialization and 
refresh functions.  Operations are scheduled to optimize 
the utilization of the control and data signals, thus 
maximizing bandwidth.  A highly boot-time configurable 
Command and Status Register set accommodates DIMMs 
with different capacities and timing characteristics.  

 

3. The Next Generation Cray XMT 
The next generation Cray XMT is the latest 

multithreaded offering from Cray.  It is architecturally 
very similar to the original Cray XMT, but it is built with 
the new Cray Threadstorm4 processor in the Cray XT5 
infrastructure.   This infrastructure uses DDR2 technology 
and provides twice the number of DIMM slots per node as 
the Cray XMT.  The Cray Threadstorm4 takes advantage 
of the upgraded memory system and provides important 
new hot spot avoidance techniques. 

 

3.1 The Next Generation Cray XMT Blade 
 
The next generation Cray XMT Blade is shown in 

Figure 6.  Each node includes two Cray Threadstorm4 
ASICs.  Those connected to the network function as 
processors whereas those labelled TSmc operate as 
memory controllers only.  One processor per node is 
sufficient to saturate the network bandwidth.  The two 
Cray Threadstorm4 ASICs within a node are connected 
by a custom interface called the Node Pair Link (NPL). 

 

 
Figure 6: Next Generation Cray XMT Blade 
 

3.2 The Cray Threadstorm4 
 
A block diagram of the Cray Threadstorm4 is shown 

in Figure 7.  There are two significant differences as 
compared to the Cray Threadstorm3.  First, the memory 
controller has been upgraded to support DDR2.  Second, 
the NPL link has been added as another port on the 
Switch.  Note that for the TSmc sockets in Figure 6 above, 
the CPU and HT interfaces are disabled.  

 

 
Figure 7: Cray Threadstorm4 

4. Next Generation XMT Memory System 
In the next generation Cray XMT, the memory 

system was changed to support DDR2. This is shown in 
Figure 8.  The DIMM control block is now IP from 
Northwest Logic.  It is internally organized into a 144-bit 
wide controller and two 72-bit wide PHY blocks.  
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Figure 8: Next Generation XMT Memory System 
 

4.1 Why DDR2? 
 
With a short 18-month design cycle, keeping 

discretionary risks to a minimum was crucial.  Towards 
this end, we decided to leverage existing Cray 
infrastructure as much as possible.  By adopting proven 
mechanical, power, and cooling implementations, the 
design team could focus more on the processor design.  
The production-deployed Cray XT5 platform offered this 
opportunity.  It supports registered DDR2 memory 
technology.  In addition to risk mitigation, DDR2 also 
offers performance advantages to the next generation 
Cray XMT.  When accessing memory in a Double Data 
Rate device, a minimum number of words must be read 
out in a single operation.  This parameter, called the burst 
size, is four for DDR2.  With a 16B wide memory 
channel and burst length of four, each access reads or 
writes 64 bytes of data.  Since the dominant memory 
access mode for the Cray XMT is to single word random 
addresses, 56 of these bytes are often not used.  We also 
considered DDR3, which has a minimum burst size of 
eight.  This leads to a minimum access of 128 bytes of 
data, only eight of which may be used.  While a DDR3 
channel could run faster (twice as fast would provide 
equivalent single word random access bandwidth), 
DDR2’s smaller burst size allows us to run at slower 
speeds with lower power and larger timing margins.  

 

4.2 Capacity 
 
The next generation Cray XMT supports eight DDR2 

slots per node, twice that of its predecessor.  With the 
larger capacity DIMMs available in DDR2 as compared 
to DDR1, the next generation Cray XMT supports up to 
64GB per node, or 32TB of flat shared memory for a 512-
processor system.  This is an 8x improvement over the 
current Cray XMT. 

 

4.3 Bandwidth 
 
Memory bandwidth was improved as well in the next 

generation Cray XMT.  The DIMM clocks run at 
300MHz, compared to the current rate of 200MHz.  In 
addition, there are twice as many memory channels per 
node.  This leads to a three-fold improvement in overall 
memory bandwidth and ensures it is not the critical 
system resource. 

 

4.4 RandomAccess Performance 
 
The RandomAccess benchmark is a good 

representation of the sort of application that excels on the 
Cray XMT.  It measures the global memory bandwidth of 
the system when all processors make random accesses to 
memory.  It reports billions of updates per second.  Each 
update includes two single-word memory operations--one 
load and one store.  On the current Cray XMT, this 
application is limited by DDR1 bandwidth.  On the next 
generation Cray XMT, however, the increased memory 
bandwidth allows the network to be saturated as shown in 
Figure 9.  According to the optimized results of the 2010 
HPC Challenge [3], these results are only exceeded by 
other machines with at least one thousand processing 
nodes. 

 

 
Figure 9: XMT RandomAccess performance 
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5. Hot Spot Avoidance 
One challenge for application writers on the current 

Cray XMT is the inadvertent generation of hot spots.  The 
Cray XMT provides useful synchronization primitives 
and atomic operations, but if all streams on the machine 
try to reference the same location in memory, a hot spot 
can be created.  This causes a backup in the affected 
memory module that extends into the network.  The 
typical result is poor performance for the application, but 
in the worst case, system services can be affected as well.  
For new users in particular, these sorts of problems can be 
difficult to diagnose.  The solution often requires 
distributing data structures and making a simple 
application more complicated.  In the next generation 
Cray XMT, this problem was addressed by adding content 
addressable memories (CAMs) in the processor to reduce 
unnecessary traffic on the network. 

 

5.1 Synchronized References 
 
Perhaps the simplest way to generate a hot spot on 

the current Cray XMT is to have many streams make 
synchronized references to the same memory location.  A 
readfe operation waits for a memory location to become 
full and then atomically reads the location while setting it 
empty.  Likewise, the writeef operation waits for a 
location to become empty and then atomically writes the 
location while setting it full.  If exclusive access to a 
commonly accessed data structure is maintained through 
these primitives, a hot spot can occur. 

 
Consider the situation in which one stream has 

emptied the synchronized location and many others are 
trying to read it.  In each Cray XMT processor, perhaps 
100 streams make the same readfe request.  The M-unit 
sends these readfe requests out onto the network.  
Eventually, a response is received for each of these 
requests.  At most one response contains the requested 
data; the others are guaranteed to receive a busy response.  
Those streams that receive a busy response are retried.  
For an extended period of time, each processor always has 
about 100 requests outstanding in the network. 

 
Since at most one of these readfe may succeed, it is 

counterproductive to release the others to the network.  In 
the next generation Cray XMT, the SynchRef CAM has 
been added to the M-unit.  When the readfe would be 
injected into the Switch, it checks in the SynchRef CAM 
first.  If a matching address is found, the readfe operation 
is returned to the Retry Queue.  Otherwise, the address is 
added to the CAM and the operation proceeds normally.  

Thus, each processor never has more than one readfe 
operation outstanding to the same location. 

 

Figure 10: SynchRef CAM operation 
 

5.2 readfe Reduction 

To test the effectiveness of the SynchRef CAM, an 
extremely degenerate program was tested on 128-
processor versions of the current and next generation Cray 
XMT.  This program performs a million-element 
reduction on a single memory location using readfe and 
writeef to guarantee atomicity.  As a result, only one 
stream at a time ever does any useful work and 
performance degrades as processors are added. 100 
streams are requested on each processor.  The kernel of 
the reduction is shown here: 
 
    for (int i=0; i < N; i++){ 
        int local_sum; 
        local_sum = readfe(&sum); 
        local_sum += rand_array[i]; 
        writeef(&sum, local_sum); 
    } 

As shown in Figure 11, on the current Cray XMT, the 
application generates billions of retries and millions of 
retry limit traps; performance suffers as a result.  It was 
not feasible to run the application on more than 64 
processors.  On the next generation Cray XMT, however, 
a negligible number of traps occur.  At 96 and 128 
processors, we begin to see more retries and traps as the 
network injection limit at the busy memory node becomes 
an issue.  While this code still reflects a very poor way to 
perform a reduction, the next generation Cray XMT is 
much more forgiving than its predecessor.  
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Figure 11(a): readfe Reduction execution time 
 

 
Figure 11(b): readfe Reduction traps (millions) 
 

 
Figure 11(c): readfe Reduction retries (billions) 
 
5.3 Fetch & Add Combining 

 
Another commonly used method for coordinating 

among many streams or for updating a shared 
accumulator is to use the Cray XMT’s atomic Fetch & 
Add operation.  Unlike the readfe operation, the Fetch & 
Add operation is satisfied without the need for retrying.  
However, if many streams on all processors try to access 
the same memory location, the affected memory 

controller is still oversubscribed by a factor that grows 
with the number of processors in the system. 

 
In the next generation Cray XMT, Fetch & Add 

operations are combined in the M-unit in order to reduce 
network and memory bandwidth requirements.  The Fetch 
& Add Combining logic includes a small, four-entry, 
Fetch & Add Combining CAM (FACC), a 128-entry Fetch 
& Add Linked List (FALL), and a sixteen-entry Fetch & 
Add Retirement CAM (FARC). 

 
When a Fetch & Add operation would be issued to 

the Switch, it checks for a match in the FACC.  If a match 
is not found and there is an available entry, the packet 
allocates in the FACC and waits for a specified period of 
time to permit combining.  The FACC includes an 
accumulator for the data and a pointer to the first element 
(initially null) of a linked list of its dependents.  If a 
match is found and there is room in the FALL, the packet 
allocates in the FALL, adds itself to the FACC entry’s 
dependent list, and updates the accumulator in the FACC 
with its data.  If a packet cannot make the desired 
allocation (either a match is found but there is no room in 
the FALL, or a match is not found but there is no room in 
the FACC), the Fetch & Add operation is immediately 
released to the Switch. 

 
When an entry in the FACC has waited for the 

specified period of time to allow combining, it allocates 
an entry in the FARC, removes itself from the FACC, and 
a network request is created.  This Fetch & Add request 
includes the address and identifiers associated with the 
Fetch & Add operation that first allocated in the FACC, 
but specifies the accumulated data of all Fetch & Add 
operations that were combined in this entry.  The FARC 
contains a pointer to the first element of the FALL.  When 
the response to the Fetch & Add request is received by the 
M-unit, the FARC is consulted and the linked list is 
traversed.  Each response to the register file is constructed 
by re-accumulating the data from memory with the data 
from the elements in the linked list.  The FARC and 
FALL entries are deallocated as they are referenced.  
Figure 12 gives an example of three Fetch & Add requests 
that are combined in the M-unit. 
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Figure 12: Fetch & Add Combining Example 

 
What about that wait time?  Since Fetch & Add 

operations are required to wait to allow combining, we 
must consider applications that do not benefit from 
combining.  For example, when generating a histogram of 
a large table, very little combining may be expected.   
Consider an application with 100 streams building a 
histogram with Fetch & Add operations.  If each stream 
always has only one Fetch & Add operation outstanding 
at once, then four (the size of the FACC) out of 100 Fetch 
& Add operations are delayed.  Early experience has 
shown that adding latency to 4% of these Fetch & Add 
operations has little to no effect on performance.  As long 
as there is sufficient concurrency in the application, the 
additional latency is completely hidden.  The benefits of 
this feature as demonstrated below far exceed the 
potential drawback.  

 

5.4 Fetch & Add Reduction Performance 

On the current Cray XMT, when an accumulator is 
frequently updated in memory using the Fetch & Add 

operator, it is common practice to replicate the 
accumulator to spread out the updates.  When an update is 
to be made, one of the copies is randomly selected.  We 
wrote a simple program to compare the usefulness of this 
optimization on the current and next generation Cray 
XMTs.  The kernel of this program is shown here: 
 
for(int i = 0; i < num_updates; i++) { 
    int copy = MTA_CLOCK(0) & (num_copies-1); 
    int_fetch_add(&array[copy*CACHE_LINE], 1); 
} 
 

The MTA_CLOCK intrinsic returns the free-running 
processor clock and is used here as an inexpensive way to 
generate a somewhat random value.  The number of 
copies (num_copies) is required to be a power of two.  
Note that each copy must reside in its own cache line so 
that the copies are mapped to different memory 
controllers. 

 
This program was run with 32 billion updates on 512-

processor machines.  As shown in Figure 13, simply 
updating a single memory location on the current Cray 
XMT creates a significant hot spot and results in very 
poor performance.  Performance is improved as copies are 
added.  On the next generation Cray XMT, however, best 
performance is achieved with a single accumulator.  As 
copies are added, the FACC becomes polluted and less 
effective as a result.  When many copies are added, the 
FACC becomes less of a factor and performance more 
closely resembles that of the original Cray XMT.  In all 
cases, however, the FACC improves performance.  By 
optimizing the simplest implementation, new users on the 
next generation Cray XMT should not have to learn about 
this ugly coding trick. 
 

Figure 13: Fetch & Add Reduction 
 

6. Conclusion 
The Cray XMT has proven to be very effective at 

solving applications with very large data sets that are 
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randomly accessed.  Many of these applications are 
currently limited by the DDR1 bandwidth.  The next 
generation Cray XMT eliminates this bottleneck by 
providing three times the bandwidth using DDR2 
technology.  The memory capacity is also greatly 
increased, allowing much larger problems to be solved. 

 
Hot spots have been a very difficult issue for many 

programmers of the current Cray XMT.  The next 
generation Cray XMT addresses this by adding hot spot 
avoidance techniques for synchronized references and 
Fetch & Add operations.  These techniques prevent 
services from being disrupted in all cases, and often allow 
the simplest implementation to perform most effectively.  
This should translate to improved productivity for 
application developers.  
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