

Application Characteristics and Performance on a Cray XE6

Courtenay T. Vaughan Sandia National Laboratories

Cray User Group May 2011

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Cielo

- Cray XE6 with 6654 compute nodes
- dual-socket oct-core AMD Magny-Cours nodes
- clocked at 2.4 GHz
- 32 GB of 1.333 GHz DDR3 memory per node
- 3D torus with Gemini interconnect
- have large machine and smaller machines
- were configured briefly as XT6 with same nodes and SeaStar interconnect

XT5

- Cray XT5 with 160 compute nodes
- dual socket with 6 core AMD Istanbul processors
- 2.4 GHz processors
- 32 GB of 800 MHz DDR2 Memory per node
- 6 x 4 x 8 3D torus with SeaStar 2.2

XE6 node

СТН

- Three-dimensional shock hydrodynamics code
- Ran in flat mesh mode no AMR (Automatic Mesh Refinement)
- Several points in each timestep where each processor sends a few large messages to up to six neighbors
- Messages are aggregated from several variables per cell
- Code is mostly FORTRAN with a little C

CTH Problems

- explosively formed Shaped-Charge problem with 4 materials, high explosives, and 90 x 216 x 90 cells/processor in weak scaling mode
 - Messages aggregate 40 variables per cell and average 5.2 MB
- impact Meso-Scale problem with 11 materials and 80 x 80 x 275 cells/processor in weak scaling mode
 - Messages aggregate 75 variables per cell and average 10.4 MB

Shaped Charge Problem

CTH Communication matrices on 64 cores

Shaped-Charge

Meso-Scale

CTH Communication traces from one timestep on 64 cores

Meso-Scale

PRONTO

- Structural mechanics code with contact algorithm
- Communication for structural mechanics portion consists of boundary exchanges for single variables from static decomposition
- Contact algorithm based on dynamic secondary decomposition which changes during calculation and requires communication from and back to the primary decomposition
- Code is FORTRAN 90 with C for contact communication

PRONTO Problems

- Walls problem
 - Two sets of two brick walls colliding
 - Each processor has 320 bricks each of which have 128 elements
 - All communication related to contact
- Can Crush problem
 - Cylinder crushed by block
 - Communication both for finite element and contact algorithms
 - More balanced problem

Walls Problem

Can Crush Problem

PRONTO Communication matrices on 64 cores

Walls

Can Crush

PRONTO Communication traces on 64 cores

Can Crush

CTH on XT5, XT6, and XE6

PRONTO on XT5, XT6, and XE6

Average message traffic on 256 cores

Summary of Results

- Large portion of performance difference for both codes related to memory contention on XT5 when using 6 cores per NUMA region
- CTH has large network bandwidth requirements and shows some performance improvement moving to the XE6
- PRONTO can send lots of small messages and shows more performance improvement moving to the XE6

Future Work

- Extend results to larger number of processors
- Develop mini-app for CTH to see if we can take advantage of the message injection rate of the Gemini interconnect

