
Real-Time System Log Monitoring/Analytics Framework

Raghul Gunasekaran, Sarp Oral, David Dillow, Byung Park, Galen Shipman, Al Geist

Oak Ridge National Laboratory

{gunasekaranr,oralhs,dillowda,parkph,gshipman,gst}@ornl.gov

Abstract

Analyzing system logs provides useful insights for identifying system/application anomalies and helps in
better usage of system resources. Nevertheless, it is simply not practical to scan through the raw log messages
on a regular basis for large-scale systems. First, the sheer volume of unstructured log messages affects the
readability, and secondly correlating the log messages to system events is a daunting task. These factors limit
large-scale system logs primarily for generating alerts on known system events, and post-mortem diagnosis
for identifying previously unknown system events that impacted the systems performance. In this paper,
we describe a log monitoring framework that enables prompt analysis of system events in real-time. Our
web-based framework provides a summarized view of console, netwatch, consumer, and apsched logs in real-
time. The logs are parsed and processed to generate views of applications, message types, individual/group of
compute nodes, and in sections of the compute platform. Also from past application runs we build a statistical
profile of user/application characteristics with respect to known system events, recoverable/non-recoverable
error messages and resources utilized. The web-based tool is being developed for Jaguar XT5 at the Oak
Ridge Leadership Computing facility.

1 Introduction

System logs, generally referred to as RAS (Reli-
ability, Availability and Serviceability) logs, provide
a wealth of information on the status of large scale
computing systems. Often these system logs are
large volumes of unstructured and redundant infor-
mation, which affect the readability and easy inter-
pretation. The Jaguar XT5 typically generates a
few hundred thousand log messages per day. More-
over, interpreting these logs for diagnosing system

This research used resources of the Oak Ridge Leader-

ship Computing Facility, located in the National Center for

Computational Sciences at Oak Ridge National Laboratory,

which is supported by the Office of Science of the Department

of Energy under Contract DE-AC05-00OR22725.

Notice: This manuscript has been authored by UT-

Battelle, LLC, under Contract No. DE-AC05-00OR22725

with the U.S. Department of Energy. The United States Gov-

ernment retains and the publisher, by accepting the article

for publication, acknowledges that the United States Gov-

ernment retains a non-exclusive, paid-up, irrevocable, world-

wide license to publish or reproduce the published form of

this manuscript, or allow others to do so, for United States

Government purposes.

or application anomalies requires an extensive un-
derstanding of the system state and environment.
System administrators are tasked with the tedious
and daunting effort of isolating problem and under-
standing system failures from logs. Though a num-
ber of commercial log analysis tools such as Splunk
are being adopted at a huge cost, they simply serve
as a sophisticated query interface. These factors
limit the usage of the logs on a regular basis and
are primarily used only for diagnosing previously
unknown system events that cause serious perfor-
mance degradation. This results in a number of
silent errors going undetected, which can result in
poor application performance.

System log and metrics are time stamped values
collected regularly over time and aggregated over
the entire machine. In general the log messages can
be parsed to identify the source generating the error,
the error type, the error message, and the potential
target (entity at fault) based on the type of error.
Combining the RAS and scheduler logs allows us
to associate errors with measurements to examine
a specific application that was running during the

1

Figure 1: Log Monitoring/Analysis Framework

time period. With an understanding of the compute
infrastructure, we can further categorize the mes-
sages based on source/target types, physical loca-
tion and mapping/dependence between the various
entities. Associating these information points with
each other, we can generate summarized views of
log messages in a more precise and readable format.
Furthermore, by observing multiple runs of applica-
tions over longer period, we can build a profile for
individual applications based on observed system
events and metrics. In comparison to traditional
tools, our approach of profiling does not provide
fine-grained details of application behavior, but sim-
ply model the runtime characteristics of the appli-
cation. Also, the general profiling tools [6, 2, 1, 14]
have a significant compute overhead (4-8%) and
bandwidth requirements while capturing trace in-
formation, so they carry an unacceptable cost when
used for continuous monitoring of applications. Our
approach of profiling will help model typical appli-
cation runs in terms of system events, which can be
used for understanding the resource utilization of
individual applications and anomaly detection. We
define anomaly as a deviation from the expected be-
havior of an application. This does not necessarily
imply that application is at fault, but the abnormal
behavior of an application could indicate shared re-
source constraints or impact by other applications
sharing the same platform. Our approach of char-
acterization and anomaly detection are indicators
of poor or undesirable application performance and
act as triggers for further investigation.

In summary, we propose a framework for pro-
cessing/analyzing log messages and enabling sum-

marized views of log messages via a web inter-
face. First, we process raw log message streams
by structuring the log messages and direct them
in to MySQL database tables. Second, we gen-
erate materialized views of log messages with re-
spect to application, error-type, physical location
(cabinets, nodes) and source-destination pairing.
Third, we enable querying/viewing log messages via
a web interface in real-time, and also allow other
users/tools to query raw log from the database. Fi-
nally, we use system log and other system metrics
to profile the runtime characteristics of individual
applications. Our implementation is based on the
Oak Ridge Leadership Computing Facility (OLCF)
Jaguar XT5 system logs and Spider center-wide file
system [13] backend disk stats. The framework de-
scribed in this paper extends our previous work de-
scribed in [10].

2 Monitoring Framework

To enhance the readability and ability to analyze
logs in real-time, we are developing a log monitoring
framework for the Jaguar XT5, illustrated in Figure
1. Organizing the log messages is a two step process,
first pre-processing where the raw logs are parsed
and stored in database tables. Second, the log en-
tries are grouped by associating messages within
a time window to provide a concise summary of
the log messages, referred to as materialized views.
The monitoring framework is being developed on
a dedicated server hosting a MySQL database and
apache webserver. The log streams are directed to

2

Table 1: A few examples of RAS and Apsched Log

Netwatch Log

Timestamp Node ID Port Remote Node Port Errs
100130 11:52:39 c4-6c2s0s0 5 c4-4c0s0s3 0 1 uPacket Squash
100130 11:52:39 c7-5c1s0s0 5 c7-7c1s0s3 0 3 uPacket Squash
100130 11:52:39 c23-2c1s0s0 6 * * Deadlock Timeout, Req Chan

Console Log

[2010-06-11 00:24:21][c14-2c0s4n0]beer: cpu id 9: nid 9812, cpu 0 has been unresponsive for 240 seconds
[2010-06-11 00:24:21][c14-2c0s4n0]LustreError: 773:0:(ptllnd tx.c:469:kptllnd tx callback()) Portals error

to 12345-9812@ptl1: PTL EVENT SEND END(9) tx=ffff8103f99bcd80 fail=PTL NAL FAILED(4)
unlinked=0 1276230767 ref 2 fl Rpc:N/0/0 rc 0/0

[2010-06-11 00:24:21][c14-2c0s4n0]Lustre: widow1-OST0015-osc-ffff8103f9e8d000: Connection to service
widow1-OST0015 via nid 10.36.227.118@o2ib was lost; in progress operations
this service will wait for recovery to complete.

[2010-06-11 00:24:23][c16-2c0s6n1]HARDWARE ERROR
[2010-06-11 00:24:23][c16-2c0s6n1]CPU 0: Machine Check Exception: 0 Bank 4: dc04400040080813
[2010-06-11 00:24:23][c16-2c0s6n1]TSC 4b9ec89ff4f6 ADDR 8e497800 MISC c0090fff01000000

Apsched Log

01:20:05: Confirmed apid 4325785 resId 349 pagg 0 nids: 12706,12710,13446,13506,13510,13696,13700,...
01:20:06: Bound apid 0 resId 349 pagg 16574 batch 418808
01:20:06: Placed apid 4325786 resId 349 pagg 16574 uid 63137 cmd jobcleanup nids: 12706,12710,...
02:14:23: Released apid 4325786 resId 349 pagg 16574 claim
02:14:23: Canceled apid 4325785 resId 349 pagg 16574

the server via syslog-ng from the Cray SMW. The
file system metrics are queried periodically from the
back-end storage system, described in [11].

2.1 Log pre-processing

The Jaguar XT5 system status is monitored via
four log streams, syslog, console, netwatch, and con-
sumer log. For our analysis we analyze only the
last three log streams, which are generally referred
to as the RAS logs, while the syslog is not used in
our analysis. We also study the apsched log from
the ALPS (Application Level Placement Scheduler)
subsystem, the Cray supported system for placing
and launching applications on the XT nodes.

To improve the readability without loss of infor-
mation, we parse the log streams and store them in
MySQL database tables, each log stream is stored
in a separate database table. The RAS log en-
tries are time stamped values and are generated
by a specific node, a few sample log entries are
shown in Table 1. From these log messages we can
parse out the timestamp, source, target, and

error type, which uniquely identify every log en-
try. Source refers to the node generating the er-
ror and target refers to the entity (node, router,
OSS) the source is complaining about. The ver-
bose description of the error in the log message is
also stored in the tables as error message for sup-
porting more detailed views, described in the next
subsection. The netwatch and consumer log have
a more definitive structure. For example, for the
netwatch log shown in Table 1, all messages have
the same structure with different error types. How-
ever, the console log messages are more verbose and
unstructured, and reports on Lustre (file system),
BEER, machine check exceptions, out of memory,
are a few of them. Identifying the target informa-
tion from the console logs is not straight forward
as the target information is embedded in the error
message, and the structure of the message varies
based on the error type. This gets more complicated
for Lustre error messages, as extracting the target
information depends on the specific error message.
For handling Lustre error messages we parsed CDE-
BUG messages from the source code categorized as

3

D EMERG and D ERROR. We then defined regu-
lar expressions for each individual message identify-
ing the various components of information [10]. All
the regular expressions are stored as a text file and
are accessed by the parser. Each log stream has a
separate parser, written is python, which uses reg-
ular expressions to match log messages, parses the
log, and writes to the database tables.

The apsched log records the allocation of nodes
for a specific user job. The log have a well defined
structure, as documented in [7], as shown in Ta-
ble 1. The log entry with keyword Confirmed and
Bound record the allocation of compute nodes to
be a specific user job identified by a application
ID (apid), reservation ID (resId), and session ID
(pagg), which uniquely identify an allocation. Log
entry with keyword Canceled marks the end of the
job. Entries with keyword Placed and Released
mark the usage of nodes for appruns initiated by
the user within the job, which is identified by a new
apid and the same reservation and session ID as
the job. For identifying a node to the scheduled
application we simply the use apid associated with
individual apprun.

Each raw RAS log entry, as described above,
is parsed to identify timestamp, source, target,

error type and error message, where each entry
is a table column. To facilitate further analysis of
the logs the following fields (columns in the table)
are also inserted into the tables in real-time.

• appID, from the apsched log we can associate
every node to an application ID or appID. This
information is added to every RAS log entry
identifying the application the source node is
running.

• sourceType, targetType, we identity very
source or target entity as a compute node, I/O
node, service node, router, OST, OSS, MDT or
MDS.

• sourceID, targetID, in general the source
node is labeled using CID (example c14-
2c4s5n3), which identifies the nodes physical
location in the cabinet. The target information
in the logs are represented as CID, IP address,
NID or hostname. NID is an integer value iden-
tifying the nodes on the compute platform. To
facilitate analysis we maintain a uniform iden-
tification schema, where all nodes on the com-
pute platform are identified by NIDs and all

other entities are prefixed by their type, such
as ost, mdt, oss, mds or ib followed by an
integer value, example ost432.

Apart from the appID-node mapping, the map-
pings described above are fixed and specific to the
OLCF compute infrastructure. The mappings are
encoded as a configuration file and made available
to the parser.

Table 2: Aggregated Log Messages

Console Log

Time: 05:10:00 05:20:00
Applications: 49
Source: 3427 SourceType: cnode
Target: 1 TargetType: rtr

Target Node: 6311

Lustre PTL errors: 10194
Netwatch Log

Time: 12:34:00 12:44:00
Applications: 17
Source: 1183 SourceType: cnode
Target: 1136 TargetType: cnode
Column: 1,2,3,4,5.24
Row: 5

upacket squash: 12115
Deadlock Timeout: 3542
Appid: 26457

Starttime: 18:34:00
Nodes: 2000
Source: 347 SourceType: cnode
Target: 34 TargetType: cnode, rtr
BEER errors: 234
MCE: 37
Lustre PTL errors: 592

2.2 Log views

Having organized the data in a structured and
queryable format, we are still overwhelmed with the
volume of information. Correlating these messages
to the systems state and environment we are able to
generate concise summarizes of the log. By system
state, we mean details of node allocations for ap-
plication and condition of system components (ac-
tive/failed). System environment refers to the prop-
erties and dependencies of various hardware compo-
nents, such as the mapping between OST, OSS and
RAID controllers and individual nodes types (com-
pute, I/O, service) on the compute platform.

4

To generate materialized views, which are precise
overview of multiple lines of log entries, we cluster
the log messages in two different ways. One, we clus-
ter log messages over the runtime of the application,
and secondly, we cluster log messages in fixed time
widows. The first approach will help view events
that are occurring on the nodes running the same
application, and the second approach will help iden-
tify errors related to specific hardware and are not
related to any specific application.

Table 2 shows examples of summarized view of
log messages. The console log message shows 3427
distinct source nodes complaining on a single router
node generating 10194 portal error messages within
a ten minute period, a total of 49 applications are
affected. In the second example, the grouping of the
netwatch log, we see heavy network congestion on
cabinets in row five, which implies congestion along
a specific axis in a segment of the 3D Torus. This
congestion affectings 17 different applications. Fi-
nally, when clustering with respect to application,
we see the errors generated by an application run-
ning on 2000 nodes since its start time. This appli-
cation generated Lustre portal errors, BEER, and
MCE (machine check exception) errors.

The clustering approach was implemented within
the mysql database with the help of sql events and
procedures. To enable materialized views we cre-
ate additional tables in the database that store ag-
gregate count of errors based on applications and
for individual logs streams. For aggregation based
on a application, a table(app log view) indexed in
timestamp and appid, maintains a list of source and
error types and a count of the errors being reported
for each type. A sql event is timed to execute a
sql procedure periodically in one minute intervals.
The sql procedure basically aggregates data from all
the RAS log tables generated in the last minute and
updates the app log view table. Similarly, for the
RAS logs we maintain individual aggregation table,
which are also updated in one minute granularities.
Also, we aggregate Lustre messages from the con-
sole log in a separate table. As described in ear-
lier section, we have extensively defined Lustre error
messages as regular expressions, which help present
more detailed views of the logs. This helps us iden-
tify errors with respect to the module within Lus-
tre, such as lnet, ptl, llite, ldlm, obd, or mdc, that
is causing the error. Though the aggregation within
the database is limited to one minute intervals, such
organization of data allows querying at lower gran-

ularity, say ten minute interval, through simple sql
queries, which execute in few tens of milliseconds.

2.3 Other System Metrics

Apart from the system logs, we collect file sys-
tem usage metrics from the back-end disk storage
system. The Spider [13] file system has 96 DDN
RAID controllers, which are accessed by the com-
pute nodes via the Object Storage Servers. We
monitor the read/write bandwidth and IOPS us-
age, tier delay and request size distribution from all
the RAID controllers. This information is used to
actively monitor the file system usage in real-time.
We use this information to model the file system us-
age of individual applications, detailed in the next
section.

Organizing the raw data and correlating them is
done within the database, which can be queried by
external users. However, the benefit of this work is
in presenting such correlated information via a web
interface in real-time and in a usable format for sys-
tem administrators. We have a basic web interface
to view the logs and metrics in real-time. We are
currently working on presenting this information via
a web interface in an interactive manner for system
administrators.

3 Profiling Applications

Profiling helps understand the functional and re-
source utilization characteristics of individual ap-
plications. In general, profiling is done using fine-
grained performance tools and is undertaken by ap-
plication developers in collaboration with perfor-
mance experts for optimization purposes. However,
the runtime behavior of application on shared re-
source environment is very different from that ob-
served on controlled test environments. Also, it is
important to profile individual user-application be-
havior rather than grouping users with a common
scientific application. Users, based on their scien-
tific needs, define various parameters at runtime,
such as the number of compute nodes, dimensions
of the compute grid, I/O usage (frequency of check-
pointing), all of which determine the true runtime
characteristic of an application. In our observation
of the jobs submitted to the Jaguar XT5, every user
has one or more fixed job allocation models. In this
section we present a few preliminary findings on pro-
filing user application based on netwatch log and

5

I/O usage. The analysis presented in this section
is based on four months of data collected between
June and September of 2010. Our approach of pro-
filing applications based on logs and system metrics
can help identify application’s resource needs and
provision system resources accordingly.

3.1 Network Utilization

The netwatch log reports on the link status of
the SeaStar 3D torus interconnect. A few sample
log entries are shown in Table 1. The first field
is the timestamp of the log entry, followed by the
source and remote node IDs and port numbers. Ev-
ery SeaStar router has 6 ports (numbered 0 to 5)
and is connected to six neighbor nodes. The last
two fields are the number of packet squashes and
the error type, read as micro-packet squashes. The
packet squash error indicates the number of retrans-
missions required on a specific link, which is sam-
pled every minute independently on each SeaStar
router. Log messages are generated when a nonzero
number of packet squashes are detected in the sam-
ple interval. The packet squash error, being a data
link layer message, can indicate data loss, data cor-
ruption or simply a bad link (hardware problem).
Hardware problems were ruled out in our analysis.
Hardware problems occur irrespective of the appli-
cation running, and links reporting packet squash
errors over long time periods are replaced during
scheduled maintenance periods. The other types
of error messages recorded in the netwatch log are
deadlock timeout and buffer overruns. For our pre-
liminary analysis we only analyze the packet squash
error messages.

We found a strong correlation between packet
squash errors and specific applications, as shown in
Table 3. This table shows the range of nodes report-
ing errors and range of number of error messages
whenever certain three applications were running.
From prior knowledge of these applications, App-1
is I/O intensive, App-3 is MPI intensive (interpro-
cess communication), and App-4 uses Global Ar-
rays. We found applications that are I/O intensive
and non-MPI intensive to generate the fewest packet
squash messages. Large numbers of packet squash
errors are reported when an MPI-intensive job is
running; an even larger number of errors are re-
ported when a job utilizes Global Arrays with MPI.
Our interpretations are based on observing multiple
runs of the same user application at different times,

even though these runs occured along with different
mixtures of other running applications during the
four month observation period. The results match
with the properties of the applications; the interest-
ing finding is that we were able to deduce such appli-
cation behavior from thenetwatch error log. Having
established a correlation between packet squashes
and and link utilization, we are working towards
quantifying the observed packet squash error rate
to the actual network utilization by an applications
in GB/s. With knowledge of such application char-
acteristics we will be able to make better scheduling
decisions.

Table 3: Netwatch Log Stats

Applications App-1 App-3 App-4

of Compute Nodes 2k 3-5k 5k

% of Nodes 0-0.7% 8-10% 15-18%
Reporting error

Error Rate (msg/min) <2 8-12 15-19

3.2 I/O Usage

Understanding I/O demands of applications is
critical for provisioning storage system resources.
A specific scientific application can define a generic
I/O demand, however the actual I/O utilization is
specific to the user running the application. In gen-
eral, observed patterns of I/O behavior are read at
the beginning of a run and write at the end of a
run, and for long running jobs, checkpointing at in-
termediate points. The frequency of checkpointing
usually drives the I/O demand of an application.
The utilization will also vary depending on how the
user performs parallel I/O, e.g., whether or not files
are shared between processes. Projecting individ-
ual users peak bandwidth (or I/O operations per
second) and frequency of file system usage will help
provision system resources more efficiently.

In Figure 2, we present a typical usage of the Spi-
der file system in a day. The figure has four sub-
plots with each presenting the write bandwidth us-
age observed during a period of six hours. The write
bandwidth usage is sampled in two seconds intervals

6

Figure 2: Plot of file system usage observed on a given
day.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5 10 15 20 25 30 35 40 45 50

D
is

tr
ib

ut
io

n
P

(X
<

x)

Bandwidth GB/s

Figure 3: CDF of write bandwidth usage derived from
multiple runs of the application (App-1).

from every RAID controller using the manufacturer
provided API, and the aggregate value across all
controllers gives the total file system usage. From
the scheduler’s log, our application (App-1) of inter-
est was running during the following time periods:
0:25 to 2:42 hrs, 9:30 to 9:56 hrs, 14:53 to 17:31
hrs, and 19:45 to 23:18 hrs. Observing the write
bandwidth usage during the above mentioned time
periods we see a clear pattern of high write band-
width by App-1. Though there might be other ap-
plications running concurrently and taxing the file

system resources, it is possible to get an estimate of
the I/O usage of the application of interest by ob-
serving multiple runs of the same application. The
bandwidth metrics captured at the controllers are
not per application, as that would require extensive
application trace information, adding considerable
overhead. It is worth mentioning that, we observed
an ongoing constant 5 GB/s write activity on back-
end disks at all times, which is taken into consider-
ation into our framework as background noise.

Using the time series data, we plot the Cumula-
tive Distribution Function (CDF) of the write band-
width usage by the application (App-1), as shown in
Figure 3. From the plot we can infer that for more
than 20% of total application runtime the user is
writing at a rate greater than 32 GB/s with peaks
around 42 GB/s. The CDF plot provides us with
an estimate of the user application’s I/O needs. In
our study of a few other applications, a similar pat-
tern was observable with two other applications, as
shown in Table 4. This table summarizes the I/O
usage for three applications, with the peak write
bandwidth observed for each application and what
percentage of the total runtime does the application
operate at more than 80% and 50% of the peak write
bandwidth. The application (App-1) is a short du-
ration routine that generally runs for a few tens of
minutes. However, for a longer running jobs, say
3 hours or more, it is difficult to capture such I/O
behavior by directly observing the file system us-
age. In general for long running applications, users
do frequent checkpointing, which is one of the most
I/O consuming task. An auto correlation over the
runtime stats of the application will give us the peri-
odic I/O usage pattern or the checkpointing pattern
of the application. This is evident in the Figure 2,
for the time period of 10:00 to 14:30 hrs, as two sep-
arate activities with two distinct frequencies with
two different amplitudes can be observed.

Table 4: Applications I/O Usage

Applications App-1 App-2 App-3

Observed Peak(GB/s) 38 -42 12-15 22-35

Runtime >80% of peak 18-20% 6-5% 4-5%

Runtime >50% of peak 38-42% 12-16% 20-25%

7

4 Related Work

Conventionally, log messages have been associ-
ated with temporal data mining techniques, where
the frequency and sequence of events are of inter-
est. Recent studies on HPC logs have focused on
machine learning and statistical methods for analyz-
ing and detecting system failures. In the machine-
learning paradigm described in [15], the log mes-
sage structures are parsed from the source code and
a feature vector is constructed as a sequence of log
messages. Using principal component analysis tech-
nique, deviations of the run-time log from the pre-
defined vectors are identified, and any variance is
defined as an anomaly. SLCT (Simple Logfile Clus-
tering tool [12]) is a data-clustering paradigm for
mining event patterns in log data. An apriori al-
gorithm, the first stage is to generate a count of
all unique words in the log, identify log messages
containing words above a threshold value, and then
clustering those log lines. This method is based
on the assumption that events of interests occur in
bursts and ignores errors with low frequency.

Nodeinfo [4], an entropy based anomaly detec-
tion system, tags every log message to quantify
the importance. Then, the entropy of every node
in the system is quantified based on the number
of occurrences of alerts within a given time pe-
riod. It is presumed that all nodes operate similarly,
and the entropy of every node should be the same.
Any variance of entropy would be categorized as
an alert/anomaly. Similarly, the models proposed
in [5] and [3] group log messages and use predic-
tive techniques under the assumption that the logs
carry all event information and occur in bursts. Re-
cent work [9] [8] have suggested using system logs
to understand component level interaction in large
scale systems and model the system state leverag-
ing machine learning techniques. First log events or
anomalies are correlated to specific hardware, and
then the successive events are mapped to other com-
ponents in the system that are affected by the spe-
cific event. This helps understand how system com-
ponents are interdependent and the cascading effect
of system events.

In reviewed papers, one of the principal assump-
tions in analyzing systems logs is that the system
supports logging of all events, which may be im-
practical for large systems like Jaguar. In peta-scale
system, logs in general capture only failure events,
which in itself generates a few gigabytes of data per

day. In general, the above reviewed papers leverage
on machine learning techniques for finding trends
or abnormalities that occur multiple times over a
period of time. However, it is of interest in iden-
tifying such abnormalities on the first occurrence.
Our approach of profiling characterizes normal be-
havior, which can they be used for capturing ab-
normal activities. Our approach towards using logs
for application characterization comes with a pro-
found understanding of the system architecture and
applications. This helps correlating events to errors
and understanding the impact of such errors on the
system and application’s performance.

5 Conclusion

As systems have grown to peta-scale the debug
levels of logs have decreased (less verbose), while,
the volume of log generated has increased. This
poses a challenge in terms of readability and the
valuable interpretations that can be made from the
logs. Apart from the need to enhance the read-
ability of the logs, our approach is focused towards
using structured log data for building and support-
ing analytical tools that can enhance our interpre-
tations of the log. Currently, we are working on
presenting this information via a web interface in
a more interactive manner. Also, we are extend-
ing our work by building a profiling tool to model
the runtime characteristics of an individual appli-
cation, which can help in anomaly detection, iden-
tify inter-job interference, and lead to the design of
context-aware schedulers. Profiling an application
gives us the expected or acceptable behavior of an
application that providing the capability to identify
anomalous behavior, which is a deviation from the
expected behavior. Also, such deviations can help
us identify applications that tend to get impacted
or have poor performance because of other appli-
cations running on the shared compute platform.
Identifying such inter-job interference can help us
make well-informed scheduling decisions increasing
the overall throughput of the system.

References

[1] Totalview. http://www.roguewave.com/support/
product-documentation/index.html.aspx.

8

[2] Using cray performance analysis tools. Doc-
ument S-2474-51, Cray User Documents
(http://docs.cray.com), 2009.

[3] A. Makanju, A.N. Zincir-Heywood, E. E. Mil-
ios. Clustering event logs using iterative parti-
tioning. In ACM SIGKDD International con-
ference on Knowledge discovery and data min-
ing, 2009.

[4] J. Oliner, A. Aiken, and J. Stearley . Alert
Detection in System Logs. In Proceedings of
the International Conference on Data Mining
(ICDM), 2008.

[5] Y. Liang, Y. Zhang, H. Xiong, Hui, R. Sahoo.
Failure Prediction in IBM BlueGene/L Event
Logs. In Proceedings of the International Con-
ference on Data Mining (ICDM), 2007.

[6] L. Adhianto, S. Banerjee, M. Fagan,
M. Krentel, G. Marini, J. Mellor-Crummey,
and N. R. Tallent. Hpctoolkit: Tools for
performance analysis of optimized parallel
programs. Concurrency and Computation:
Practice and Experience, 22(6):685–701, 2010.

[7] Hwa-Chun Wendy Lin. Understanding aprun
use patterns. In Cray User Group Conference,
2009.

[8] J. Oliner, A. Aiken. A query language for
understanding component interactions in pro-
duction systems. In Proceedings of the Inter-
national Conference on Supercomputing(ICS),
2010.

[9] J. Oliner, A. Aiken. Online detection of multi-
component interactions in production systems.
In Proceedings of the International Conference
on Dependable Systems and Networks(DSN),
2011.

[10] R. Gunasekaran, D. Dillow, B. Park, G. Ship-
man, D. Maxwell, J. Hill, A. Geist. Corelating
log mesages for system diagnostics. In Cray
User Group Conference, 2010.

[11] R. Miller, J. Hill, D. Dillow, R. Gunasekaran,
D. Maxwell. Monitoring tools for large scale
systems. In Cray User Group Conference, 2010.

[12] Risto Vaarandi. A data clustering algorithm
for mining patterns from event logs. In IEEE
IPOM’03 Proceedings, 2003.

[13] G. M. Shipman, D. A. Dillow, S. Oral, and
F. Wang. The spider center wide file systems;
from concept to reality. In Cray User Group
Conference, 2009.

[14] D. Terpstra, H. Jagode, H. You, and J. Don-
garra. Collecting performance data with papi-
c. In 3rd Parallel Tools Workshop, 2009.

[15] W. Xu, L. Huang, A. Fox, D. Patterson, M.
Jordan. Mining Console Logs for Large-Scale
System Problem Detection. In 3rd Workshop
on Tackling System Problems with Machine
Learning Techniques(SysML), 2008.

9

