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ABSTRACT: Abnormal status of an application is typically detected by "hard" 
evidence, e.g., out of memory, segmentation fault. However, such information only 
provides clues for the notification of abnormal termination of the application; lost are 
any implications as to the application's termination with respect to the particular context 
of the platform.  Restated, the generic exception the application reports is devoid of the 
overall system context that is captured elsewhere in the system, e.g., RAS logs. In this 
paper we present an "activity entropy" based application monitoring framework that 
extracts both facts (events) and context with regard to applications from RAS logs, and 
maps them into entropy scores that represent degrees of "unusualness" for applications. 
The paper describes our results from applying the framework to the Cray "Jaguar" 
system at Oak Ridge National Laboratory, and discusses how it identified applications 
running abnormally and implications based on the type of abnormality. 
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1. Introduction 
     The event logs for a system capture many important 
details about the platform. However, fuelled by the ever-
growing scale of high-end computer systems, the volume 
and complexity of event logs has reached the point where 
the manual analysis by a human operator is no longer 
feasible. This challenge will continue to grow as large-
scale systems increase in size. In addition, the highly 
irregular nature of event logs adds another dimension of 
difficulty in extracting meanings hidden in the data. For 
this reason, although equipped with meticulously 
designed logging systems, mining necessary information 
from supercomputer event logs is often conducted in 
rather primitive ways. In its best usage, a log entry is 
compared against existing databases of message patterns 
for faults or profiles associated with anomalies learned 
through extensive effort and accumulated over time. 
Thus, regular expression matching is the de facto tool to 
extract only the known facts from data that are generated 
by a sophisticated logging system. For this reason, 

although embedding rich sources of information regarding 
system health, resource availability, and behaviour of 
software at various levels (including user applications), 
event log data of supercomputers are strikingly 
underutilized. Except for some primitive fault monitoring 
efforts, most logs are simply archived and never reopened 
for analysis thereby leaving invaluable information 
hidden in the data.  
 
     Obtaining information regarding an abnormal 
application behaviour or failure is not a trivial task. Even 
hard evidences such as segmentation violations (segfault) 
or out of memory are not readily available to users except 
through a debugging process. Unlike a personal computer, 
a supercomputer is often regarded as an unpredictable 
environment for an end user. Since the resources of a 
supercomputer such as the high speed interconnect 
network and the file system are shared by many 
applications (see Figure 1), depending on the allocation or 
characteristics of applications running concurrently, end 
users may experience unusual behaviour or an 
embarrassingly degraded performance for their 
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application. However, very few end users follow detailed 
traces of their applications to identify clues for suspicious 
behaviours. In most cases, no details regarding such 
suspicious behaviours are presented to users. 
 
     Processed and viewed through a specific context, log 
events have been proven to disclose a clear picture of the 
system. For example, most Lustre log messages report 
failed I/O attempts between object storage servers (OSS) 
and object storage clients (OSC). Likewise Basic End to 
End Reliability (BEER) log messages from the Portals 
layer include failed communication attempts between 
compute nodes. If unusually large amounts of these 
messages are concentrated on very few nodes, it is almost 
certain that those nodes are in an abnormal state. Lustre 
messages viewed closely from pair wise contexts may 
disclose problematic object storage targets. If data is 
further examined by additional context, more descriptive 
clues can be drawn. For example, if the set of nodes 
addressed by BEER messages are allocated to a single 
application, the fault is likely caused by the application 
rather than other components in the system. User 
applications that are not properly tuned for the intended 
scale tend to impose unforeseeable malignant impacts. 
This typically involves excessive communication patterns 
between the nodes occupied by the application or ill 
coordinated checkpoint attempts. Such an abnormality is 

difficult to detect unless log event data is analyzed by a 
context-driven analysis.  
 
    This paper introduces a real time application 
monitoring framework that detects unusual behavior of 
applications in terms of event activities recorded in logs. 
For this end, the framework monitors entropies of various 
events not only with respect to compute nodes but also 
with respect to user applications. More specifically, 
entropies are measured by mapping each compute node 
where the event occurs into the application occupying the 
node. Roughly speaking, an entropy value denotes how 
evenly the occurrences of the events observed within the 
current time window are scattered across all user 
applications. For continuous monitoring, entropies are 
measured by aggregating all events that occurred within a 
time window, i.e. a time interval of fixed length that spans 
from the present time to a certain time in the past.  

2.  Background 
     RAS logs, especially those generated through printk() 
are in free form text. Many attempts have been made to 
capture semantics from these logs by defining regular 
expressions for the anticipated events. Often these regular 
expressions are the results of laborious effort by experts, 
and thus considered to be highly credible to detect mere 
occurrences of critical events. Systems such as Nagios [1] 
and SEC [2,3] are real time monitoring utilities based on 
such hard descriptions of faulty events. These tools are 
particularly useful for immediate discovery of faults.  

Others have used entropy in conjunction with 
anomaly detection and log data analysis.  In [4], the log 
analysis toolkit, Kerf, was extended to support a Jensen-
Shannon algorithm to aid in the ``browsing for anomalies'' 
in network traffic and security logs.  They employ entropy 
as a means to identify the features (ranking) in their 
anomaly analysis and visualizer utility.  They use these 
techniques to search and browse data from network log 
and intrusion detection systems. They use information 
theory (entropy) to aid in the visualization of network 
interactions, e.g., source IP address and destination port, 
etc. 

 
In [5], event logs of an IBM BlueGene/L dataset, 

which are available from the USENIX Computer Failure 
Data Repository, were analysed using an algorithm that 
was enhanced to use entropy.  Their tool, Nodeinfo, uses 
entropy to help automatically identify "significant" events 
in the log(s). The authors state that the Nodeinfo 
algorithm is used at Sandia National Laboratory.  In [6], 
Makanzu et al.  further discuss the cost, accuracy and 
false positives rate for the entropy enhanced algorithm. 

Figure 1 Histogram of number of applications 
observed within one-minute intervals. Data is obtained 
from one Jaguar uptime session that spans from Dec. 
31, 2010 to Jan.2, 2011. 
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 Their work identifies alerts or entries of interest in the 
logs from large HPC systems. 

 
 Entropy has also been used in other aspects of data 

mining and search.  Mei and Church [7] were primarily 
concerned with web page mining and web 
searching.  They used entropy to determine the degree of 
encoding necessary for anticipating successive URLs in 
web searches.  This work explored Microsoft’s Live.com 
data regarding web queries and user access traffic.  

3. Technical Details 
3.1 Log Entries (Examples) 

Listing 1 shows two example segments of BEER 
(Basic End to End Reliability) messages taken from the 
console log of Jaguar at NCCS. The log spans from 
October 2, 2010. Two excerpts, separated by roughly 10 
hours, illustrate different exemplary cases. The first 
excerpt shows 13 CPUs from three compute nodes 
reporting failed communication trials with the same 
compute node (nid 11178). The second excerpt shows 
failed communication attempts from three router nodes 
(to an external file system) to seven compute nodes.  

 
While the second case illustrates a system wide faulty 

situation when router nodes cannot communicate with 
compute nodes, the first case clearly shows unusual status 

of a single node (nid 11178). A further investigation 
revealed that the same application was running on all of 
the reporting and reported nodes. This particular case 
clearly shows an example of abnormal communication 
behaviour of a single application. Figure 2 includes graph 
representations of Listing 1, where the original 
representations (left column, Figure 2-(a),(c)) and their 
interpreted representations (right columns, Figure 2-(b), 
(d)) are presented. 

  

3.2 Entropy 
In information theory, entropy denotes the amount of 

information that is lost during transmission and often 
referred to as Shannon entropy [8]. Shannon entropy was 
originally proposed to measure the amount of information 
in a transmitted message and thus also understood as the 
number of bits required to encode the given information. 
The definition of information is a somewhat vague term 
and it is in fact the most important step to assign a 
quantitative meaning to it.  

 
In this paper, we use the notion of entropy to 

represent the degree of “unusualness.” Specifically, for a 
set A={a1,a2,a3,…,an}, we define the degree of its 
“unusual” state with respect to a certain event e to be 
amount of information required to denote the distribution 
of e over A. In particular, if an unexpectedly small 

[2010-10-02 10:04:33][c16-7c0s5n2]beer: cpu_id 5: nid 11178, cpu 11 has been unresponsive for 240 seconds 
[2010-10-02 10:04:33][c16-7c0s4n2]beer: cpu_id 9: nid 11178, cpu 3 has been unresponsive for 240 seconds 
[2010-10-02 10:04:33][c16-7c0s4n2]beer: cpu_id 10: nid 11178, cpu 4 has been unresponsive for 240 seconds 
[2010-10-02 10:04:33][c16-7c0s4n2]beer: cpu_id 8: nid 11178, cpu 2 has been unresponsive for 240 seconds 
[2010-10-02 10:04:33][c16-7c0s5n2]beer: cpu_id 1: nid 11178, cpu 7 has been unresponsive for 240 seconds 
[2010-10-02 10:04:34][c16-7c0s3n2]beer: cpu_id 0: nid 11178, cpu 11 has been unresponsive for 240 seconds 
[2010-10-02 10:04:35][c16-7c0s5n2]beer: cpu_id 0: nid 11178, cpu 6 has been unresponsive for 240 seconds 
[2010-10-02 10:04:35][c16-7c0s4n2]beer: cpu_id 6: nid 11178, cpu 0 has been unresponsive for 240 seconds 
[2010-10-02 10:04:35][c16-7c0s4n2]beer: cpu_id 7: nid 11178, cpu 1 has been unresponsive for 240 seconds 
[2010-10-02 10:04:35][c16-7c0s5n2]beer: cpu_id 4: nid 11178, cpu 10 has been unresponsive for 240 seconds 
[2010-10-02 10:04:35][c16-7c0s5n2]beer: cpu_id 3: nid 11178, cpu 9 has been unresponsive for 240 seconds 
[2010-10-02 10:04:35][c16-7c0s4n2]beer: cpu_id 11: nid 11178, cpu 5 has been unresponsive for 240 seconds 
[2010-10-02 10:04:35][c16-7c0s5n2]beer: cpu_id 2: nid 11178, cpu 8 has been unresponsive for 240 seconds 
                                                                       ……………. 
[2010-10-02 20:19:39][c21-7c0s4n3]beer: cpu_id 9: nid 5656, cpu 0 has been unresponsive for 240 seconds 
[2010-10-02 20:19:39][c24-0c2s5n3]beer: cpu_id 0: nid 825, cpu 9 has been unresponsive for 240 seconds 
[2010-10-02 20:19:39][c24-0c2s5n3]beer: cpu_id 0: nid 2033, cpu 9 has been unresponsive for 240 seconds 
[2010-10-02 20:19:39][c24-0c2s5n3]beer: cpu_id 0: nid 5765, cpu 9 has been unresponsive for 240 seconds 
[2010-10-02 20:19:39][c24-0c2s5n3]beer: cpu_id 0: nid 5839, cpu 9 has been unresponsive for 240 seconds 
[2010-10-02 20:19:39][c24-0c2s5n3]beer: cpu_id 0: nid 12571, cpu 9 has been unresponsive for 240 seconds 
[2010-10-02 20:19:39][c16-2c1s3n2]beer: cpu_id 3: nid 10778, cpu 11 has been unresponsive for 240 seconds 

Listing 1. Two example segments of BEER (basic end to end reliability) log messages. 
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quantity is required to denote the distribution, we decide 
to call A is in an unusual state.  

 
In general information entropy is expressed in terms 

of a discrete set of probabilities Pi, i.e., the relative 
fraction of the total occurrences of event e that occurs to 
element 

€ 

ai ∈ A . Formerly Pi is represented as 

€ 

Pi =
ai
a j

j
∑

                                                         (1) 

where 

€ 

ai  denotes the number of occurrences of event e 
on element ai. 

 
Then information entropy is defined as 

€ 

E = − Pi log2 Pi
i
∑                                               (2) 

where log2 is the logarithmic function of base two.  
 
Technically speaking, information entropy represents 

the expected number of bits required to encode the 
distribution of the occurrences of the event over set A. 
Intuitively, entropy is at its maximum if the occurrences 
of the event are equally distributed over all elements of A, 
and at its minimum if concentrated on a single element. 
We therefore define a distribution to be usual or unusual 
if entropy is high or low, respectively. 
 
3.3 Entropy measured with contexts 

Using equation (2) defined in the previous section, 
system status can be monitored measuring entropies for 

various events. A typical approach involves computing 
probability over each compute node, i.e., 

€ 

ai ∈ A in 
equation (1) denotes the i-th compute node. In such cases, 
entropy will indicate whether occurrences of a certain 
event type occur evenly to a large number of compute 
nodes or mainly to a small number of compute nodes. 

 
Depending on a context applied, a different view of 

the system can be captured. We note that entropy 
measured only over compute nodes may imply a 
misleading notion under some circumstances. For 
example, although seemingly scattered across a large 
number of nodes, if counted from the applications’ view, 
outburst of the event may be mostly due to very few 
applications. To compute entropy over application, each 
element ai in needs to be mapped into the application 
occupying the node. Formally, equation (1) is slightly 
modified as, 

 

€ 

Pk =

ai
ai ∈Appk

∑

a j
j
∑

                                                         (3) 

where Appk denotes the k-th application running in the 
system. 
 

As aforementioned, certain types of events inherently 
embed pair wise relations. With such mutual relational 
context being considered, events can disclose cases when 
the source of the problem is not the reporting node but the 
node that is mentioned in the event. Likewise there are 
cases when we need to capture applications running on 
the reported nodes.  

 
In summary, applying equation (1) and (2) to capture 

entropy not over the reporting nodes but over the reported 
node will also identify whether some few nodes are 
responsible for the event or not. Likewise mapping the 
reported nodes into the occupying application and 
computing entropy using (3) and (2) may reveal the 
application accountable for the situation.  

 
We therefore propose to monitor the following four 

types of entropies for an event type.  
 
The distribution of event occurrences over the: 
 

1. reporting compute nodes (NodeSRC) 
2. reported compute nodes (NodeDST) 
3. reporting applications (AppSRC) 
4. reported applications (AppDST) 

 

Figure 2 Graph representation of Listing 1. (a) and (c) 
are graphs of the first and second segments, and (b) 
and (d) are graphs drawn after mapping nodes into 
their logical group. 
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3.4 Continuous measure of entropy values 
Since related events can be logged with some latency 

in between, to compute correct and informative entropy at 
a given moment may produce a misleading outcome. 
Instead we measure entropies based on accumulated 
events within a certain window of time. Thus all event 
counts in equation (1) represents aggregated counts 
observed within the window. Formally at time t, new 
occurrences of the event are added and all occurrences 
added at time t-w are subtracted, where w denotes the size 
of the window. 

4. Empirical Study and Discussion 
This section introduces several exemplary cases that 

were detected by the proposed framework. All examples 
were produced from two types of logs, console and 
netwatch, from the Jaguar XT5 at the National Center for 
Computational Science (NCCS), Oak Ridge National 
Laboratory (ORNL). For the sake of brevity, we will use 
NodeSRC, NodeDST, AppSRC, and AppDST to denote 
the four types of entropy as defined in section 3.3. 

 
Figure 3 Entropy values of Deadlock timeout 
measured over 100 second interval (normal case) 

 
Figure 4 Entropy values of Deadlock timeout 
measured over 100 second interval (unusual case) 
 
4.1 Deadlock Timeout Events 

Deadlock timeout messages logged in a netwatch log 
implicitly denote routing problems between SeaStar 
chips. For this event type, we consider two types of 
entropy, NodeSRC and AppSRC, i.e. how evenly the 
events are distributed over reporting nodes and 
applications running on them. Figure 3 and 4 are entropy 
plots that span a continuous 100-second interval each, but 
illustrating different cases. First Figure 3 shows a typical 
pattern of an entropy plot during a normal period. Both 
entropy measures are high throughout the period (mostly 
greater than one) indicating a system wide problem, i.e. a 
large number of nodes and applications are affected. On 
the other hand, Figure 4 shows another set of entropy plot 
that illustrates an unusual period. As in Figure 3, 
NodeSRC entropy is constantly high indicating a large 
number of nodes are involved. However, except for 
several spots, AppSRC stays close to zero most of the 
time indicating very few (possibly one) applications are 
affected by the event storm. Furthermore a periodic 
pattern of the graph suggests that I/O attempts of the same 
application have been hampered due to the same cause. 

 

4.2 Lustre Events  
Lustre messages are largely about failed I/O attempts 

between Object Storage Clients (OSCs) and Object 
Storage Targets (OSTs) through Object Storage Servers 
(OSSes). A close examination of the four entropy plots 
reveals a clear picture regarding the system status. For  



 
 

Cray User Group 2011 Proceedings 6 of 8 
 

 
Figure 5 Entropy plots of Lustre events during a 
period when communications between all OSSes and 
all applications are blocked. 

 
Figure 6 Entropy plots of Lustre events during a 
period when communications between applications 
and an OST is blocked. 

 
Figure 7 Entropy plots of BEER events during a 
period when a single router stops responding. 
 

 
Figure 8 Entropy plots of BEER events during a 
period when communication attempts between the 
same application fail. 
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example, large values of both NodeSRC and NodeDST 
indicate system wide communication problems between 
OSCs (or nodes) and OSTs. Figure 5 shows a 50 second 
interval of such a case. Low AppSRC but high AppDST 
values in Figure 5 denote that very few applications are 
involved in generating the events but a large number of 
applications are associated with the nodes that are 
reported. A thorough investigation disclosed that the 
sources of the events are OSSes. In other words, all 
OSSes report failed communications with virtually every 
application in the system.  

 
When very few OSTs are the source of I/O problems, 

both NodeDST and AppDST are measured low. 
Additionally, AppSRC indicates whether a small or large 
number of applications are affected by the problem OSTs. 
Figure 6 shows entropy plots measured over a 50 second 
interval when a single OST is the problem source of the 
failed I/O attempts. As shown, AppSRC is around 1 
throughout the interval, which suggests that multiple 
applications suffer from one problematic OST.  

 

4.3 BEER Events  
Basic End to End Reliability (BEER) errors are 

reported when communication attempts at the Portals 
layer face difficulties. As introduced in Listing 1, a BEER 
message reports a failed communication between two 
nodes.  Therefore a close inspection on the four entropy 
measures will disclose the status of the system when 
communication failures of non-negligible scale seem to 
be prevalent.  For example, a small NodeDST value 
indicates that most failed communication attempts have 
the same destination.  Depending on the AppSRC value, a 
more detailed picture can be obtained. A large AppSRC 
value when NodeDST is small indicates that multiple 
applications suffer from the same cause, i.e. the problem 
node is common. This scenario is shown in Figure 7 
where multiple nodes and applications are experiencing 
failed communication with the same router node. 

 
Inspection of the four entropy measures of BEER 

events is particularly important in sifting applications that 
involve unusually intense communication activities. In 
such a case, AppSRC and AppDST are expected to be 
close to zero while NodeSRC and NodeDST are high. 
Figure 8 illustrates one such case. 

 

Conclusion  
RAS logs embed clues for not only system wide 

anomaly but also unexpected behaviours of user 
applications. However, due to the unstructured nature and 
extraordinary volume of logs, detecting an abnormal 

status of the system or applications and mining its 
plausible cause has been severely restricted. For this 
reason, in particular, virtually no information is provided 
to end users regarding unusual behaviours of their 
applications.  

 
In this paper we introduced a real-time system-

monitoring framework that highlights both the unusual 
status of the system and that of user applications. The 
framework, which is based on measuring Shannon’s 
entropies in different contexts, has been applied to capture 
salient signatures of event distributions over compute 
nodes and user applications. Although preliminary, the 
results of the initial analysis on the RAS logs from Jaguar 
at NCCS illustrate that the framework is able to detect 
suspicious periods and simultaneously suggest possible 
reasons. 

 
The current prototype is still in a preliminary stage 

and needs to be further refined in several directions. In 
particular, incorporation of not only predefined “hard” 
event types but also inferred event types is highly desired. 
We are currently investigating various log data clustering 
algorithms for this end. 
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