

Cray User Group 2011 Proceedings 1 of 8

User Application Monitoring through Assessment of Abnormal
Behaviours Recorded in RAS Logs

Byung H. Park, Thomas J. Naughton, Al Geist, CSMD,
Oak Ridge National Laboratory
Raghul Gunasekaran, David Dillow, Galen Shipman,
NCCS, Oak Ridge National Laboratory

ABSTRACT: Abnormal status of an application is typically detected by "hard"
evidence, e.g., out of memory, segmentation fault. However, such information only
provides clues for the notification of abnormal termination of the application; lost are
any implications as to the application's termination with respect to the particular context
of the platform. Restated, the generic exception the application reports is devoid of the
overall system context that is captured elsewhere in the system, e.g., RAS logs. In this
paper we present an "activity entropy" based application monitoring framework that
extracts both facts (events) and context with regard to applications from RAS logs, and
maps them into entropy scores that represent degrees of "unusualness" for applications.
The paper describes our results from applying the framework to the Cray "Jaguar"
system at Oak Ridge National Laboratory, and discusses how it identified applications
running abnormally and implications based on the type of abnormality.

KEYWORDS: application monitoring, log data analysis

1. Introduction
 The event logs for a system capture many important
details about the platform. However, fuelled by the ever-
growing scale of high-end computer systems, the volume
and complexity of event logs has reached the point where
the manual analysis by a human operator is no longer
feasible. This challenge will continue to grow as large-
scale systems increase in size. In addition, the highly
irregular nature of event logs adds another dimension of
difficulty in extracting meanings hidden in the data. For
this reason, although equipped with meticulously
designed logging systems, mining necessary information
from supercomputer event logs is often conducted in
rather primitive ways. In its best usage, a log entry is
compared against existing databases of message patterns
for faults or profiles associated with anomalies learned
through extensive effort and accumulated over time.
Thus, regular expression matching is the de facto tool to
extract only the known facts from data that are generated
by a sophisticated logging system. For this reason,

although embedding rich sources of information regarding
system health, resource availability, and behaviour of
software at various levels (including user applications),
event log data of supercomputers are strikingly
underutilized. Except for some primitive fault monitoring
efforts, most logs are simply archived and never reopened
for analysis thereby leaving invaluable information
hidden in the data.

 Obtaining information regarding an abnormal
application behaviour or failure is not a trivial task. Even
hard evidences such as segmentation violations (segfault)
or out of memory are not readily available to users except
through a debugging process. Unlike a personal computer,
a supercomputer is often regarded as an unpredictable
environment for an end user. Since the resources of a
supercomputer such as the high speed interconnect
network and the file system are shared by many
applications (see Figure 1), depending on the allocation or
characteristics of applications running concurrently, end
users may experience unusual behaviour or an
embarrassingly degraded performance for their

Cray User Group 2011 Proceedings 2 of 8

application. However, very few end users follow detailed
traces of their applications to identify clues for suspicious
behaviours. In most cases, no details regarding such
suspicious behaviours are presented to users.

 Processed and viewed through a specific context, log
events have been proven to disclose a clear picture of the
system. For example, most Lustre log messages report
failed I/O attempts between object storage servers (OSS)
and object storage clients (OSC). Likewise Basic End to
End Reliability (BEER) log messages from the Portals
layer include failed communication attempts between
compute nodes. If unusually large amounts of these
messages are concentrated on very few nodes, it is almost
certain that those nodes are in an abnormal state. Lustre
messages viewed closely from pair wise contexts may
disclose problematic object storage targets. If data is
further examined by additional context, more descriptive
clues can be drawn. For example, if the set of nodes
addressed by BEER messages are allocated to a single
application, the fault is likely caused by the application
rather than other components in the system. User
applications that are not properly tuned for the intended
scale tend to impose unforeseeable malignant impacts.
This typically involves excessive communication patterns
between the nodes occupied by the application or ill
coordinated checkpoint attempts. Such an abnormality is

difficult to detect unless log event data is analyzed by a
context-driven analysis.

 This paper introduces a real time application
monitoring framework that detects unusual behavior of
applications in terms of event activities recorded in logs.
For this end, the framework monitors entropies of various
events not only with respect to compute nodes but also
with respect to user applications. More specifically,
entropies are measured by mapping each compute node
where the event occurs into the application occupying the
node. Roughly speaking, an entropy value denotes how
evenly the occurrences of the events observed within the
current time window are scattered across all user
applications. For continuous monitoring, entropies are
measured by aggregating all events that occurred within a
time window, i.e. a time interval of fixed length that spans
from the present time to a certain time in the past.

2. Background
 RAS logs, especially those generated through printk()
are in free form text. Many attempts have been made to
capture semantics from these logs by defining regular
expressions for the anticipated events. Often these regular
expressions are the results of laborious effort by experts,
and thus considered to be highly credible to detect mere
occurrences of critical events. Systems such as Nagios [1]
and SEC [2,3] are real time monitoring utilities based on
such hard descriptions of faulty events. These tools are
particularly useful for immediate discovery of faults.

Others have used entropy in conjunction with
anomaly detection and log data analysis. In [4], the log
analysis toolkit, Kerf, was extended to support a Jensen-
Shannon algorithm to aid in the ``browsing for anomalies''
in network traffic and security logs. They employ entropy
as a means to identify the features (ranking) in their
anomaly analysis and visualizer utility. They use these
techniques to search and browse data from network log
and intrusion detection systems. They use information
theory (entropy) to aid in the visualization of network
interactions, e.g., source IP address and destination port,
etc.

In [5], event logs of an IBM BlueGene/L dataset,

which are available from the USENIX Computer Failure
Data Repository, were analysed using an algorithm that
was enhanced to use entropy. Their tool, Nodeinfo, uses
entropy to help automatically identify "significant" events
in the log(s). The authors state that the Nodeinfo
algorithm is used at Sandia National Laboratory. In [6],
Makanzu et al. further discuss the cost, accuracy and
false positives rate for the entropy enhanced algorithm.

Figure 1 Histogram of number of applications
observed within one-minute intervals. Data is obtained
from one Jaguar uptime session that spans from Dec.
31, 2010 to Jan.2, 2011.

Cray User Group 2011 Proceedings 3 of 8

 Their work identifies alerts or entries of interest in the
logs from large HPC systems.

 Entropy has also been used in other aspects of data

mining and search. Mei and Church [7] were primarily
concerned with web page mining and web
searching. They used entropy to determine the degree of
encoding necessary for anticipating successive URLs in
web searches. This work explored Microsoft’s Live.com
data regarding web queries and user access traffic.

3. Technical Details
3.1 Log Entries (Examples)

Listing 1 shows two example segments of BEER
(Basic End to End Reliability) messages taken from the
console log of Jaguar at NCCS. The log spans from
October 2, 2010. Two excerpts, separated by roughly 10
hours, illustrate different exemplary cases. The first
excerpt shows 13 CPUs from three compute nodes
reporting failed communication trials with the same
compute node (nid 11178). The second excerpt shows
failed communication attempts from three router nodes
(to an external file system) to seven compute nodes.

While the second case illustrates a system wide faulty

situation when router nodes cannot communicate with
compute nodes, the first case clearly shows unusual status

of a single node (nid 11178). A further investigation
revealed that the same application was running on all of
the reporting and reported nodes. This particular case
clearly shows an example of abnormal communication
behaviour of a single application. Figure 2 includes graph
representations of Listing 1, where the original
representations (left column, Figure 2-(a),(c)) and their
interpreted representations (right columns, Figure 2-(b),
(d)) are presented.

3.2 Entropy
In information theory, entropy denotes the amount of

information that is lost during transmission and often
referred to as Shannon entropy [8]. Shannon entropy was
originally proposed to measure the amount of information
in a transmitted message and thus also understood as the
number of bits required to encode the given information.
The definition of information is a somewhat vague term
and it is in fact the most important step to assign a
quantitative meaning to it.

In this paper, we use the notion of entropy to

represent the degree of “unusualness.” Specifically, for a
set A={a1,a2,a3,…,an}, we define the degree of its
“unusual” state with respect to a certain event e to be
amount of information required to denote the distribution
of e over A. In particular, if an unexpectedly small

[2010-10-02 10:04:33][c16-7c0s5n2]beer: cpu_id 5: nid 11178, cpu 11 has been unresponsive for 240 seconds
[2010-10-02 10:04:33][c16-7c0s4n2]beer: cpu_id 9: nid 11178, cpu 3 has been unresponsive for 240 seconds
[2010-10-02 10:04:33][c16-7c0s4n2]beer: cpu_id 10: nid 11178, cpu 4 has been unresponsive for 240 seconds
[2010-10-02 10:04:33][c16-7c0s4n2]beer: cpu_id 8: nid 11178, cpu 2 has been unresponsive for 240 seconds
[2010-10-02 10:04:33][c16-7c0s5n2]beer: cpu_id 1: nid 11178, cpu 7 has been unresponsive for 240 seconds
[2010-10-02 10:04:34][c16-7c0s3n2]beer: cpu_id 0: nid 11178, cpu 11 has been unresponsive for 240 seconds
[2010-10-02 10:04:35][c16-7c0s5n2]beer: cpu_id 0: nid 11178, cpu 6 has been unresponsive for 240 seconds
[2010-10-02 10:04:35][c16-7c0s4n2]beer: cpu_id 6: nid 11178, cpu 0 has been unresponsive for 240 seconds
[2010-10-02 10:04:35][c16-7c0s4n2]beer: cpu_id 7: nid 11178, cpu 1 has been unresponsive for 240 seconds
[2010-10-02 10:04:35][c16-7c0s5n2]beer: cpu_id 4: nid 11178, cpu 10 has been unresponsive for 240 seconds
[2010-10-02 10:04:35][c16-7c0s5n2]beer: cpu_id 3: nid 11178, cpu 9 has been unresponsive for 240 seconds
[2010-10-02 10:04:35][c16-7c0s4n2]beer: cpu_id 11: nid 11178, cpu 5 has been unresponsive for 240 seconds
[2010-10-02 10:04:35][c16-7c0s5n2]beer: cpu_id 2: nid 11178, cpu 8 has been unresponsive for 240 seconds
 …………….
[2010-10-02 20:19:39][c21-7c0s4n3]beer: cpu_id 9: nid 5656, cpu 0 has been unresponsive for 240 seconds
[2010-10-02 20:19:39][c24-0c2s5n3]beer: cpu_id 0: nid 825, cpu 9 has been unresponsive for 240 seconds
[2010-10-02 20:19:39][c24-0c2s5n3]beer: cpu_id 0: nid 2033, cpu 9 has been unresponsive for 240 seconds
[2010-10-02 20:19:39][c24-0c2s5n3]beer: cpu_id 0: nid 5765, cpu 9 has been unresponsive for 240 seconds
[2010-10-02 20:19:39][c24-0c2s5n3]beer: cpu_id 0: nid 5839, cpu 9 has been unresponsive for 240 seconds
[2010-10-02 20:19:39][c24-0c2s5n3]beer: cpu_id 0: nid 12571, cpu 9 has been unresponsive for 240 seconds
[2010-10-02 20:19:39][c16-2c1s3n2]beer: cpu_id 3: nid 10778, cpu 11 has been unresponsive for 240 seconds

Listing 1. Two example segments of BEER (basic end to end reliability) log messages.

Cray User Group 2011 Proceedings 4 of 8

quantity is required to denote the distribution, we decide
to call A is in an unusual state.

In general information entropy is expressed in terms

of a discrete set of probabilities Pi, i.e., the relative
fraction of the total occurrences of event e that occurs to
element

€

ai ∈ A . Formerly Pi is represented as

€

Pi =
ai
a j

j
∑

 (1)

where

€

ai denotes the number of occurrences of event e
on element ai.

Then information entropy is defined as

€

E = − Pi log2 Pi
i
∑ (2)

where log2 is the logarithmic function of base two.

Technically speaking, information entropy represents

the expected number of bits required to encode the
distribution of the occurrences of the event over set A.
Intuitively, entropy is at its maximum if the occurrences
of the event are equally distributed over all elements of A,
and at its minimum if concentrated on a single element.
We therefore define a distribution to be usual or unusual
if entropy is high or low, respectively.

3.3 Entropy measured with contexts

Using equation (2) defined in the previous section,
system status can be monitored measuring entropies for

various events. A typical approach involves computing
probability over each compute node, i.e.,

€

ai ∈ A in
equation (1) denotes the i-th compute node. In such cases,
entropy will indicate whether occurrences of a certain
event type occur evenly to a large number of compute
nodes or mainly to a small number of compute nodes.

Depending on a context applied, a different view of

the system can be captured. We note that entropy
measured only over compute nodes may imply a
misleading notion under some circumstances. For
example, although seemingly scattered across a large
number of nodes, if counted from the applications’ view,
outburst of the event may be mostly due to very few
applications. To compute entropy over application, each
element ai in needs to be mapped into the application
occupying the node. Formally, equation (1) is slightly
modified as,

€

Pk =

ai
ai ∈Appk

∑

a j
j
∑

 (3)

where Appk denotes the k-th application running in the
system.

As aforementioned, certain types of events inherently
embed pair wise relations. With such mutual relational
context being considered, events can disclose cases when
the source of the problem is not the reporting node but the
node that is mentioned in the event. Likewise there are
cases when we need to capture applications running on
the reported nodes.

In summary, applying equation (1) and (2) to capture

entropy not over the reporting nodes but over the reported
node will also identify whether some few nodes are
responsible for the event or not. Likewise mapping the
reported nodes into the occupying application and
computing entropy using (3) and (2) may reveal the
application accountable for the situation.

We therefore propose to monitor the following four

types of entropies for an event type.

The distribution of event occurrences over the:

1. reporting compute nodes (NodeSRC)
2. reported compute nodes (NodeDST)
3. reporting applications (AppSRC)
4. reported applications (AppDST)

Figure 2 Graph representation of Listing 1. (a) and (c)
are graphs of the first and second segments, and (b)
and (d) are graphs drawn after mapping nodes into
their logical group.

Cray User Group 2011 Proceedings 5 of 8

3.4 Continuous measure of entropy values
Since related events can be logged with some latency

in between, to compute correct and informative entropy at
a given moment may produce a misleading outcome.
Instead we measure entropies based on accumulated
events within a certain window of time. Thus all event
counts in equation (1) represents aggregated counts
observed within the window. Formally at time t, new
occurrences of the event are added and all occurrences
added at time t-w are subtracted, where w denotes the size
of the window.

4. Empirical Study and Discussion
This section introduces several exemplary cases that

were detected by the proposed framework. All examples
were produced from two types of logs, console and
netwatch, from the Jaguar XT5 at the National Center for
Computational Science (NCCS), Oak Ridge National
Laboratory (ORNL). For the sake of brevity, we will use
NodeSRC, NodeDST, AppSRC, and AppDST to denote
the four types of entropy as defined in section 3.3.

Figure 3 Entropy values of Deadlock timeout
measured over 100 second interval (normal case)

Figure 4 Entropy values of Deadlock timeout
measured over 100 second interval (unusual case)

4.1 Deadlock Timeout Events

Deadlock timeout messages logged in a netwatch log
implicitly denote routing problems between SeaStar
chips. For this event type, we consider two types of
entropy, NodeSRC and AppSRC, i.e. how evenly the
events are distributed over reporting nodes and
applications running on them. Figure 3 and 4 are entropy
plots that span a continuous 100-second interval each, but
illustrating different cases. First Figure 3 shows a typical
pattern of an entropy plot during a normal period. Both
entropy measures are high throughout the period (mostly
greater than one) indicating a system wide problem, i.e. a
large number of nodes and applications are affected. On
the other hand, Figure 4 shows another set of entropy plot
that illustrates an unusual period. As in Figure 3,
NodeSRC entropy is constantly high indicating a large
number of nodes are involved. However, except for
several spots, AppSRC stays close to zero most of the
time indicating very few (possibly one) applications are
affected by the event storm. Furthermore a periodic
pattern of the graph suggests that I/O attempts of the same
application have been hampered due to the same cause.

4.2 Lustre Events
Lustre messages are largely about failed I/O attempts

between Object Storage Clients (OSCs) and Object
Storage Targets (OSTs) through Object Storage Servers
(OSSes). A close examination of the four entropy plots
reveals a clear picture regarding the system status. For

Cray User Group 2011 Proceedings 6 of 8

Figure 5 Entropy plots of Lustre events during a
period when communications between all OSSes and
all applications are blocked.

Figure 6 Entropy plots of Lustre events during a
period when communications between applications
and an OST is blocked.

Figure 7 Entropy plots of BEER events during a
period when a single router stops responding.

Figure 8 Entropy plots of BEER events during a
period when communication attempts between the
same application fail.

Cray User Group 2011 Proceedings 7 of 8

example, large values of both NodeSRC and NodeDST
indicate system wide communication problems between
OSCs (or nodes) and OSTs. Figure 5 shows a 50 second
interval of such a case. Low AppSRC but high AppDST
values in Figure 5 denote that very few applications are
involved in generating the events but a large number of
applications are associated with the nodes that are
reported. A thorough investigation disclosed that the
sources of the events are OSSes. In other words, all
OSSes report failed communications with virtually every
application in the system.

When very few OSTs are the source of I/O problems,

both NodeDST and AppDST are measured low.
Additionally, AppSRC indicates whether a small or large
number of applications are affected by the problem OSTs.
Figure 6 shows entropy plots measured over a 50 second
interval when a single OST is the problem source of the
failed I/O attempts. As shown, AppSRC is around 1
throughout the interval, which suggests that multiple
applications suffer from one problematic OST.

4.3 BEER Events
Basic End to End Reliability (BEER) errors are

reported when communication attempts at the Portals
layer face difficulties. As introduced in Listing 1, a BEER
message reports a failed communication between two
nodes. Therefore a close inspection on the four entropy
measures will disclose the status of the system when
communication failures of non-negligible scale seem to
be prevalent. For example, a small NodeDST value
indicates that most failed communication attempts have
the same destination. Depending on the AppSRC value, a
more detailed picture can be obtained. A large AppSRC
value when NodeDST is small indicates that multiple
applications suffer from the same cause, i.e. the problem
node is common. This scenario is shown in Figure 7
where multiple nodes and applications are experiencing
failed communication with the same router node.

Inspection of the four entropy measures of BEER

events is particularly important in sifting applications that
involve unusually intense communication activities. In
such a case, AppSRC and AppDST are expected to be
close to zero while NodeSRC and NodeDST are high.
Figure 8 illustrates one such case.

Conclusion
RAS logs embed clues for not only system wide

anomaly but also unexpected behaviours of user
applications. However, due to the unstructured nature and
extraordinary volume of logs, detecting an abnormal

status of the system or applications and mining its
plausible cause has been severely restricted. For this
reason, in particular, virtually no information is provided
to end users regarding unusual behaviours of their
applications.

In this paper we introduced a real-time system-

monitoring framework that highlights both the unusual
status of the system and that of user applications. The
framework, which is based on measuring Shannon’s
entropies in different contexts, has been applied to capture
salient signatures of event distributions over compute
nodes and user applications. Although preliminary, the
results of the initial analysis on the RAS logs from Jaguar
at NCCS illustrate that the framework is able to detect
suspicious periods and simultaneously suggest possible
reasons.

The current prototype is still in a preliminary stage

and needs to be further refined in several directions. In
particular, incorporation of not only predefined “hard”
event types but also inferred event types is highly desired.
We are currently investigating various log data clustering
algorithms for this end.

Acknowledgments
The authors would like to thank Don Maxwell

(NCCS) and Jeff Becklehimer (Cray Inc.) for their help.
ORNL’s work was supported by the U.S. Department of
Energy, under Contract DE-AC05-00OR22725.

References
[1] Wolfgan Barth, “Nagios: System and Network
 Monitoring”, No Starch Press; 2 edition, 2008

[2] Risto Vaarandi. “SEC - a lightweight event correlation

tool”, In Proceedings of the IEEE Workshop on IP
Operations and Management, pages 111–115, October
2002.

[3] Jeff Becklehimer, Cathy Willis, Josh Lothian, Don

Maxwell, and David Vasil. Real Time Health
Monitoring of the Cray XT Series Using the Simple
Event Correlator (SEC). In 2007 Cray User Group
Conference, May 2007. Seattle, Washington, USA.

[4] Javed Aslam and Sergey Bratus, "Semi-supervised

Data Organization for Interactive Anomaly Analysis",
In Proceedings of the Fifth International Conference
on Machine Learning and Applications (ICMLA) ,
December 2006.

Cray User Group 2011 Proceedings 8 of 8

[5] Adetokunbo A.O. Makanju and A. Nur Zincir-
Heywood, and Evangelos E. Milios, "Fast Entropy
Based Alert Detection in Supercomputer Logs", In
Proceedings of the 2nd DSN Workshop on Proactive
Failure Avoidance, Recovery and Maintenance
(PFARM), IEEE, 2010.

[6] Adetokunbo Makanju, A. Nur Zincir-Heywood, and
Evangelos E. Milios, "An Evaluation of Entropy
Based Approaches to Alert Detection in High
Performance Cluster Logs", In Proceedings of the 7th
International Conference on Quantitative Evaluation
of SysTems (QEST), IEEE, 2010.

[7] Qiaozhu Mei and Kenneth Church "Entropy of search
logs: how hard is search? with personalization? with
backoff?", In Proceedings of the International
Conference on Web search and Web data mining
(WSDM), ACM, 2008.

[8] C.E. Shannon, "A Mathematical Theory of
Communication", Bell System Technical Journal, vol.
27, pp. 379–423, 623-656, July, October, 1948

