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ABSTRACT: Memphis is a tool that makes use of Instruction Based Sampling (IBS) 
hardware counters, available in recent AMD processors, to help pinpoint the sources of 
memory system performance problems.  This paper describes our experiences porting 
Memphis to a test XT5 system at ORNL, including modifications required by Compute 
Node Linux to the kernel module that interfaces with IBS, and low impact modifications 
to the batch queue that enable the module's use at runtime.  We also include a case study 
demonstrating the use of Memphis in an iterative process of finding problems and 
evaluating fixes in the CICE component of the production CESM climate code 
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1.  Introduction 
Current forecasts call for each chip in an Exascale 

system to consist of hundreds to thousands of processing 
cores.  Already, with only on the order of 10 cores per 
chip, memory limitations and performance considerations 
are forcing scientific application teams to exploit the 
node-level single address-space offered by most current 
large-scale systems through the use of multi-threading 
programming models. 

At the same time, however, trends in micro-processor 
design are pushing performance problems associated with 
Non-Uniform Memory Access (NUMA) to ever-smaller 
scales.  Typical performance problems associated with 
NUMA include hot-spotting and computation/data-
partition mismatches.  Additionally, NUMA can amplify 
existing potential problems and turn them into significant 
real problems.  For example, in the presence of contention 
for locks and other shared variables, NUMA can 
significantly increase waiting-time, increasing the 
probability of further contention. 

Memphis [1] is a toolset that uses new sampling-
based hardware performance monitoring extensions to 
pinpoint memory performance problems at their source.  

The toolset takes a data-centric approach: while other 
sampling-based tools associate information with 
instructions, Memphis associates information with 
program variables.  A key insight behind Memphis is that 
the source of memory performance problem may well not 
be where the problem is evidenced.  For example, while 
the cause of a hot spot is likely variable initialization, the 
problem is only evident at the variable’s use. 

Until recently, a limitation of Memphis has been that, 
because it requires installation of a kernel module, we 
have only been able to run on very small scale systems.  
This limitation restricted its use to small-scale runs, 
potentially unrepresentative in terms of both number of 
cores and data set size.  We have now addressed that 
problem by porting Memphis to Chester, a test Cray XT5 
system at the Oak Ridge Leadership Computing Facility 
(OLCF) centered at Oak Ridge National Laboratory. 

After a brief description of the components of 
Memphis, this paper details how we got the components 
running on the XT5, and describes a policy that makes 
them available to selected users.  We then provide a case 
study demonstrating the use of Memphis in an iterative 
process of finding problems and evaluating fixes in the 
CICE component of the production CESM climate code. 
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2.  IBS and Memphis 
2.1  Instruction Based Sampling 

Available in AMD processor implementations since 
Barcelona, Instruction Based Sampling (IBS) [2] 
hardware provides performance monitoring extensions 
similar in concept to those offered by ProfileMe hardware 
in the DEC Alpha 21264 [3].  More recent Intel chips 
have extended the performance monitoring unit with 
roughly the same functionality (PEBS-LoadLatency) [4]. 

Like event-based sampling, IBS is interrupt-driven.  
However, while event-based interrupts are caused by 
counter overflows, IBS hardware instead periodically 
interrupts execution, and then proceeds to follow the next 
instruction through pipeline, keeping track of micro-
architectural events that occur due to the execution of that 
instruction.  Upon retirement of the followed instruction, 
the hardware calls a software interrupt handler, providing 
the following data useful for finding memory 
performance problems: 

• Precise instruction program counter. 
• Virtual address of data referenced by instruction. 
• The source of the data: i.e., DRAM, another 

core’s cache. 
• Whether the source was on the local node or a 

remote node. 
Data sourcing information indicates potential problems, 
while instruction and data addresses enable precise 
attribution to code and variables respectively. 

2.2  Memphis Architecture 
Memphis enables user-level interaction with IBS 

hardware via three components, which together facilitate: 
the specification of regions for sampling, the gathering of 
sample data, and the aggregation of that sample data into 
a form useful for finding performance problems.  Figure 1 
depicts the components, and their interactions: 

• MEMPHISMOD, a kernel module that interacts 
with IBS hardware, including: setting it up to 
gather samples per-thread, turning sampling on 
and off, and specifying the interrupt handler.  
The module interfaces with user-level software 
through a device file in /dev. 

• Libmemphis, a user-level library whose API 
enables users to set ‘calipers’ around interesting 
regions of code (for instance, the time-step loop) 
and gather samples into per-thread data files. 

• Memphis-tool, a post-processing executable that 
aids in searching for patterns in the sample data 
files by aggregating: 1) samples originating from 
the same data and instructions, and 2) samples 
originating from threads on the same NUMA 
node. 

3.  Memphis on Cray Platforms 
Because Compute Node Linux (CNL), the operating 

system running on the compute nodes of Cray XT 
systems, is Linux-based, many components of Memphis 
work on Cray platforms without modification.  In 

 
(a) 

 
(b) 

Figure 1:  Memphis runtime components (a), and post-processing executable (b). 
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particular, the library and the post-processing executable 
do not require changes.   

The one component that required modification in our 
initial port was the kernel module.  The port of the kernel 
module was complicated by the black-box nature of CNL.  
Compilation of a Linux kernel module requires access to 
kernel source code.  While CNL is based on Linux, the 
code is proprietary and is not available to non-Cray 
system administrators at the OLCF.  Therefore compiling 
the Memphis kernel module required the help of a patient 
Cray engineer to perform the first half of each iteration of 
the compile-install-test-modify loop. 

After the kernel module was compiled and running 
on the system, we then required a mechanism for making 
it available to jobs that want to use Memphis. 

3.1  Porting the Kernel Module to CNL 
The initial port required two changes to the module.  

As it turns out, the first was simply the result of porting to 
a kernel version on which Memphis had not run before.  
While the user-level interface to the kernel is very stable 
between kernel releases, intra-kernel interfaces tend to 
fluctuate substantially.  Therefore a new kernel version 
often requires modifications to a kernel module. 

In this instance, the kernel used by CNL was older 
than the kernel for which the kernel module we had 
borrowed the code that accesses IBS counters had been 
created.  In between the two kernel versions, the 
mechanism for registering interrupt handlers had been 
modified.  By looking at other drivers with similar 
functionality we determined that the kernel version used 
by CNL required set_nmi_callback rather than 
register_die_notifier.  

The second change was due to an actual difference 
between CNL and standard Linux and required some 
understanding of the interface to IBS performance 
monitoring hardware. 

IBS hardware is located in the Northbridge portion of 
AMD processors.  Northbridge configuration registers are 

accessed and set via PCI extended configuration space.  
The original kernel module code thus uses pci_get_device 
to determine the addresses of Northbridge devices in the 
node, using predefined kernel constants to name the 
devices.  Because the files that defined this function and 
constants were not contained in the CNL distribution, we 
were left with no option but to determine the values we 
required (using the lspci command) and then hard-code 
these values into calls that set configuration registers. 

3.1.1  Current Status 
After a recent system software upgrade, we found 

that the Memphis kernel module for the standard Linux 
kernel version used by the new system, worked without 
further modification. 

3.2  Runtime Policy and Configuration 
To maximize the availability of Memphis for selected 

users, while minimizing impact of a bleeding-edge kernel 
module on other users, we arrived at the following policy: 
the kernel module is always available on a single, 
dedicated node of the system.  Users that want to access 
Memphis have a ‘reservation’ on that node, such that it is 
always the first node of their allocation.  While this means 
that only that first node provides sample data for 
subsequent post-processing, we have found that this is 
sufficient for our needs, since intra-node performance is 
typically uniform across nodes. 

The policy is implemented on Chester, a test XT5 
system at OLCF, as follows.  On system reboots the 
kernel module is installed on the dedicated node and a 
device entry – the library’s interface to the module – is 
created in /dev.  The reservation portion of the policy is 
implemented through a standing reservation in Moab, the 
workload manager/scheduler on OLCF systems [5]. 

Figure 2 describes the policy currently in place on 
Chester.  In this instance, user cmccurdy has a reservation 
on 12 processors of Node 1.  The node allocation of any 
job run on this user’s behalf will start with Node 1 and 
add nodes as required to fulfil the requested node count. 

chester-login1# mdiag -r memphis.8 
Diagnosing Reservations 
RsvID                      Type Par   StartTime     EndTime     Duration Node Task Proc 
-----                      ---- ---   ---------     -------     -------- ---- ---- ---- 
memphis.8                  User che   -00:07:30    INFINITY     INFINITY    1    1   12 
    Flags: ISACTIVE 
    ACL:   RSV==memphis.8= USER==cmccurdy+  
    CL:    RSV==memphis.8  
    Accounting Creds:  User:root 
    Task Resources: PROCS: [ALL] 
    SubType: Other 
    Attributes (HostExp='^20$') 
    Active PH: 0.00/1.51 (0.00%) 
    History: 1301595949:PROCS=12 
 

 
Figure 2: Moab reservation on Chester, a test XT5 system at OLCF. 
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It is not difficult to imagine an alternative, queue-
based, policy in which a batch queue would be dedicated 
to jobs wishing to use Memphis.  Some number of 
compute nodes would have the kernel module installed, 
and one of those nodes would be required to be the initial 
node in the allocation of any job submitted to the 
Memphis queue. 

4.  Case Study: CICE 
CICE [6] is the sea ice modeling component of the 

Community Earth System Model (CESM) [7] climate 
modeling code.  In recent large-scale CESM runs on the 
Jaguarpf system at ORNL, we noticed that the ice 
component was not scaling as well as other components.  
Though its runtime is not a large fraction of the overall 
runtime, it is on the critical path of the large atmosphere 
component and therefore its scalability is critical to 
overall scalability.  We therefore wished to use Memphis 
to investigate improvements in the memory system 
performance of the ice model that might improve 
scalability.  Having Memphis available on the Chester 
system allowed us to measure performance in a realistic 
setting, with all components active and running a 
representative data set. 

We did make one change to relative to the large-scale 
configurations, which allowed us to focus on the memory 
system performance of the ice model.  In the large-scale 
runs the atmosphere, land and ice components were 
combined on a single processor set. Since CESM allows 
flexible mapping of components to processor cores, our 
first step was to isolate the ice model such that it was the 

only thing running on the node with the Memphis kernel 
module installed. 

4.1  Initial Measurements 
Figure 3 presents highlights from a file, output by the 

Memphis post-processing tool, describing the remote 
references to DRAM made during a 12-threaded (42- 
process, 504 cores total) run on Chester. 

The tool divides remote memory references by 
NUMA node.  Since an XT5 node consists of two sockets, 
with six cores and one memory controller per socket, a 
12-threaded run that pins one thread to one core runs 
across two NUMA nodes.  By default, the XT runtime 
policy ensures that threads 0-5 run in NUMA Node 0, 
while threads 6-11 run in NUMA Node 1.   

At the highest level, the results in the figure indicate 
that the threads in Node 0 suffered many more (some 
13X) remote memory references than those in Node 1.  
The next level of detail describes which variables were 
referenced remotely.  In this run, three heap-allocated 
variables tx, ty, and tc, and a collection of heap-allocated 
variables in the ice_state module account for nearly all 
the remote references. 

Finally, the lowest level of detail reveals which 
instructions accessed each variable remotely.  Note that 
almost all remote references are due to the same loopnest 
(debugging information tends to be accurate only to the 
level of loopnest in optimized code) in a single source 
file, ice_boundary.F90.  This file implements the data 
packing and communication required by boundary 
exchanges between processors.   In particular, it maintains 
the halo of non-local data that each process/thread 
requires around the data it owns. 

NODE: 0  total: 6591 
000) [heap]:tx  [ 0x2a5b1588 - 0x2b017870 ]  1719 
  ice_boundary.F90:4106:0x9d4834    [ 0x2a5c1468 - 0x2b017788 ]  1414 
  ice_boundary.F90:4106:0x9d4830    [ 0x2a5b1588 - 0x2b017870 ]  279 
  ... 
001) [heap]:ty  [ 0x2b022808 - 0x2ba83518 ]  1643 
  ice_boundary.F90:4106:0x9d4834    [ 0x2b02d190 - 0x2ba83190 ]  1361 
  ice_boundary.F90:4106:0x9d4830    [ 0x2b02d8b0 - 0x2ba83518 ]  251 
  ... 
002) [heap]:tc  [ 0x29b4b158 - 0x2a5abee8 ]  1611 
  ice_boundary.F90:4106:0x9d4834    [ 0x29b53d28 - 0x2a5abee8 ]  1377 
  ice_boundary.F90:4106:0x9d4830    [ 0x29b4b158 - 0x2a5aae18 ]  205 
  ... 
003) [heap]:_ice_state_2_  [ 0x172a8dc0 - 0x180b0088 ]  1582 
  ice_boundary.F90:4106:0x9d4834    [ 0x176bb2d8 - 0x17e35f48 ]  914 
  ice_boundary.F90:2727:0x9cfa64    [ 0x174b1030 - 0x18044610 ]  482 
  ice_boundary.F90:4106:0x9d4830    [ 0x176ba888 - 0x17e35930 ]  148 
  ... 
 
NODE: 1  total: 506 
000) [heap]:<not-found>  [ 0x24b94140 - 0x2c9cdb10 ]  69 
  ice_history.F90:2564:0xa4585c    [ 0x29192040 - 0x29b40048 ]  66 
  ... 

 
Figure 3: CICE initial results: remote DRAM references. 
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The function containing the loopnest responsible for 
almost all non-local remote references is specialized for 
exchanges of four-dimensional data halos.   The loopnest 
itself, shown in Figure 4(a), performs the 4D halo 
exchange between threads, and is implemented as a 
simple copy between two regions of the same data array. 

As evidence that Memphis has pointed out a region of 
code that would be useful to optimize, the following table 
provides timing measurements:   

 
Timer Count Value 
TimeLoop 240 40.687691 
Bound 32410 24.978573 
ice_halo4dr8 1700 12.600817 
ice_halo4dr8_lclcpy 1700  7.242013 
 

The first built-in timer, TimeLoop, describes the time 
spent in the CICE timestep loop (240 steps), a measure of 
the total CICE runtime.  Another built-in timer, Bound, 
describes the total time spent in the boundary exchanges 
implemented by ice_boundary.F90.  We have added two 
additional timers measuring the time spent in the four-
dimensional halo exchange (ice_halo4dr8), and that 
spent in the loopnest pointed out by Memphis 
(ice_halo4dr8_lclcpy).   

The ice_halo4dr8_lclcpy loopnest, responsible 
for fully 17% of the CICE runtime, is a clear target for 
optimization. 
 

4.2  Memphis-directed Modification 1 
Upon inspection of the containing subroutine, and of 

subroutines that call it, we found that the reason for the 

large number of remote references by Node 0 in the 
loopnest is that the boundary code is not threaded.  Arrays 
passed in to the halo exchange routines have been 
initialized properly, in the NUMA context, so that data 
usually accessed by a given thread is owned by that 
thread, i.e., located in the same NUMA node.  Therefore, 
reads and writes by the master thread (typically thread 0, 
located in Node 0) to data owned by any thread in Node 
1, are non-local. 

One obvious solution, likely the most non-invasive in 
terms of code modifications, is to thread the code that 
implements the ice_halo4dr8_lclcpy loopnest.  
Figure 4(b) illustrates our approach.   

In CICE, the unit of parallelism is a ‘block’.  Parallel 
loops are loops over blocks, and threads own the blocks 
they operate on. Thus, in order to ensure locality of 
reference, we cannot simply distribute iterations of the 
nmsg do-loop, but instead must allow each thread to 
iterate over all ‘messages’ to determine the ones that 
apply to blocks it owns (via a new block_to_thr mapping 
array).  Since cache-coherence protocols tend to make 
non-local writes more expensive than non-local reads, we 
let the owner of a block read remote data and write the 
data to its halo. 

The following table describes the performance 
improvements yielded by the new approach: 

 
Timer Base Mod1 
TimeLoop 40.69 36.29 
Bound 24.98 20.22 
ice_halo4dr8 12.60  8.75 
ice_halo4dr8_lclcpy  7.24  2.38 

do nmsg=1,halo%numLocalCopies 
   iSrc     = halo%srcLocalAddr(1,nmsg) 
   jSrc     = halo%srcLocalAddr(2,nmsg) 
   srcBlock = halo%srcLocalAddr(3,nmsg) 
   iDst     = halo%dstLocalAddr(1,nmsg) 
   jDst     = halo%dstLocalAddr(2,nmsg) 
   dstBlock = halo%dstLocalAddr(3,nmsg) 
 
   if (srcBlock > 0) then 
      if (dstBlock > 0) then 
         do l=1,nt 
            do k=1,nz 
               array(iDst,jDst,k,l,dstBlock) = & 
                   array(iSrc,jSrc,k,l,srcBlock) 
            end do 
         end do 
   ... 
end do 
 
 
 

(a) 
 

$OMP PARALLEL PRIVATE(myid,...) 
myid = omp_get_thread_num() 
do nmsg=1,halo%numLocalCopies 
   iSrc     = halo%srcLocalAddr(1,nmsg) 
   jSrc     = halo%srcLocalAddr(2,nmsg) 
   srcBlock = halo%srcLocalAddr(3,nmsg) 
   iDst     = halo%dstLocalAddr(1,nmsg) 
   jDst     = halo%dstLocalAddr(2,nmsg) 
   dstBlock = halo%dstLocalAddr(3,nmsg) 
 
   if (srcBlock > 0) then 
      if (dstBlock > 0 .and. & 
          block_to_thr(dstBlock).eq.myid) then 
         do l=1,nt 
            do k=1,nz 
               array(iDst,jDst,k,l,dstBlock) = & 
                   array(iSrc,jSrc,k,l,srcBlock) 
            end do 
         end do 
   ... 
end do 

(b) 

 
Figure 4: Original single-threaded code that implements 4D halo exchanges between threads (ice_halo4dr8_lclcpy) (a), 

and additions that realize multi-threaded copies (b). 
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Threading improves the performance of the 
ice_halo4dr8_lclcpy loopnest by 3X.  The resulting 
savings in time improves CICE performance by 10%.  
While substantial, 3X is not the perfect speedup one 
might hope for from 12 threads; is more available?   

Figure 5 presents Memphis results for the new 
executable.  Note that source code modifications to 
ice_boundary.F90 have shifted line numbers such that 
new line 4245 corresponds to the old line 4106.  While 
the remote references due to the ice_halo4dr8_lclcpy 
loopnest are now more evenly distributed between nodes, 
the counts are still very high.   
 

4.3  Memphis-Directed Modification 2 
Upon further inspection of the code we observe that 

the high counts are likely due to poor cache behaviour: 
note that in the loopnest, the k and l induction variables 
change faster than all the i and j induction variables (iSrc, 
iDst, jSrc, jDst), though k and l index higher, less 
contiguous, dimensions of the copied array.  The result is 
little reuse from cache lines and therefore significant 
traffic between caches and memory. Since the code 
actually copies entire columns or rows of data to effect 
the copy of a halo, we would like to collect consecutive i 

and j references.  However, implementing the approach 
would require substantial modification to both the code 
that identifies i and j values, and the many other loopnests 
that use the identified values. 

A more localized approach recognizes that remote 
cache misses are substantially more expensive than local 
misses, and therefore collects data requiring 
communication between threads into a contiguous buffer.  
The thread that owns the data to be read writes it into a 
local buffer, so that the thread that owns the halo to be 
written can read consecutive, though remote, elements 
from the buffer and writes them to its halo.  Since more 
data per cache-line is used, fewer remote cache lines are 
communicated and expensive communication is reduced. 

Figure 6 demonstrates the new approach.  The 
loopnest is essentially replicated.  In the first half, the 
owner of the source data writes into bufLocal.  In the 
second half, after a synchronizing barrier, the owner of 
the destination halo copies data from bufLocal into the 
halo. 

Figure 7 indicates a substantial reduction in the 
number of non-local reference samples.  Notably, there 
are now no samples due to the ice_halo4dr8_lclcpy 
loopnest.  The following table indicates the performance 
improvement due to this second source-code 
modification:  

NODE: 0  total: 1156 
000) [heap]:_ice_state_2_  [ 0x172d0e80 - 0x180b9018 ]  625 
  ice_boundary.F90:2779:0x9cfae4    [ 0x174cfae0 - 0x17fe41e0 ]  465 
  ice_boundary.F90:4245:0x9d48e0    [ 0x176ba7f0 - 0x17e35ef0 ]  105 
  ... 
001) [heap]:tc  [ 0x29b45cf0 - 0x2a5abe08 ]  231 
  ice_boundary.F90:4245:0x9d48e0    [ 0x29b54848 - 0x2a5ab6a0 ]  216 
  ... 
002) [heap]:tx  [ 0x2a5b14c0 - 0x2b017ad8 ]  135 
  ice_boundary.F90:4245:0x9d48e0    [ 0x2a5b1c50 - 0x2b017ad8 ]  93 
  ice_boundary.F90:4164:0x9d4460    [ 0x2a5b14c0 - 0x2b004730 ]  33 
  ... 
003) [heap]:ty  [ 0x2b01d348 - 0x2ba83890 ]  110 
  ice_boundary.F90:4245:0x9d48e0    [ 0x2b02be70 - 0x2ba837f0 ]  68 
  ice_boundary.F90:4164:0x9d4460    [ 0x2b023480 - 0x2ba83490 ]  37 
  ... 
 
NODE: 1  total: 3305 
000) [heap]:ty  [ 0x2b01d348 - 0x2ba83890 ]  708 
  ice_boundary.F90:4245:0x9d48e0    [ 0x2b02be70 - 0x2ba837f0 ]  706 
  ... 
001) [heap]:tx  [ 0x2a5b14c0 - 0x2b017ad8 ]  678 
  ice_boundary.F90:4245:0x9d48e0    [ 0x2a5b1c50 - 0x2b017ad8 ]  675 
  ... 
002) [heap]:_ice_state_2_  [ 0x172d0e80 - 0x180b9018 ]  562 
  ice_boundary.F90:4245:0x9d48e0    [ 0x176ba7f0 - 0x17e35ef0 ]  494 
  ice_boundary.F90:4245:0x9d48e4    [ 0x176c1b08 - 0x17e35fc8 ]  60 
  ... 
003) [heap]:tc  [ 0x29b45cf0 - 0x2a5abe08 ]  159 
  ice_boundary.F90:4245:0x9d48e0    [ 0x29b54848 - 0x2a5ab6a0 ]  158 
  ... 
 

 
Figure 5: Remote DRAM reference results after applying the modification depicted in Figure 4(b). 

 
 



 
 

Cray User Group 2011 Proceedings 7 of 8 
 

 
Timer Base Mod1 Mod2 
TimeLoop 40.69 36.29 35.90 
Bound 24.98 20.22 19.86 
ice_halo4dr8 12.60  8.75  8.61 
ice_halo4dr8_lclcpy  7.24  2.38  1.95 

 
Although we have doubled the number of instructions 
executed, the local copy looopnest now executes nearly 
4X faster than the base version. 

However, not all of the improvement is visible to 
ice_halo4dr8, or to functions higher in the call-tree.  
The local copy loopnest occurs while a node is in the 
middle of an asynchronous inter-node communication 
event.  It may be that the inter-node communication now 
takes longer to complete than the new local copy. 

In any event, further improvements to the 
ice_halo4dr8_lclcpy loopnest are unlikely to be 
fruitful in terms of reducing the overall time to 
completion.  Figure 7 indicates several new sources of 
remote DRAM references, all from the same 

ice_boundary.F90 source file, and originating from 
loopnests exhibiting similar poor cache behaviour.  We 
are currently investigating a more comprehensive 
approach that would achieve the goals of the halo-copying 
routines while better preserving locality of reference. 
 
4.4  Memphis Overhead 

The following table presents a measure of Memphis 
overhead, comparing execution time – based on the  
TimeLoop time-step timer – of runs 1) with IBS and 
instrumentation of allocation statements, and 2) without 
either IBS or instrumentation: 
 

 IBS Off, 
No Instrumentation 

IBS On,  
Instrumented 

Base 40.69 41.18 
Mod1 36.29 36.63 
Mod2 35.90 36.31 
 

These measurements indicate that the overhead is 

!$OMP PARALLEL PRIVATE(myid,...) 
myid = omp_get_thread_num() 
do nmsg=1,halo%numLocalCopies 
   dstBlock = halo%dstLocalAddr(3,nmsg) 
   srcBlock = halo%srcLocalAddr(3,nmsg) 
   if (dstBlock > 0 .and. srcBlock > 0) then 
      if (block_to_thr(srcBlock).eq.myid) then 
         iSrc     = halo%srcLocalAddr(1,nmsg) 
         jSrc     = halo%srcLocalAddr(2,nmsg) 
         i = 0 
         do l=1,nt 
            do k=1,nz 
               i = i + 1 
               bufLocal(i,nmsg) = & 
                   array(iSrc,jSrc,k,l,srcBlock) 
            end do 
         end do 
      endif 
   ... 
end do 

!$OMP BARRIER 
do nmsg=1,halo%numLocalCopies 
   dstBlock = halo%dstLocalAddr(3,nmsg) 
   srcBlock = halo%srcLocalAddr(3,nmsg) 
   if (dstBlock > 0 .and. srcBlock > 0) then 
      if (block_to_thr(dstBlock).eq.myid) then 
         iDst     = halo%dstLocalAddr(1,nmsg) 
         jDst     = halo%dstLocalAddr(2,nmsg) 
         i = 0 
         do l=1,nt 
            do k=1,nz 
               i = i + 1 
               array(iDst,jDst,k,l,dstBlock) = & 
                  bufLocal(i,nmsg) 
            end do 
         end do 
      endif 
   endif 
enddo 

 
Figure 6: The ice_halo4dr8_lclcpy loopnest after replication of the loopnest to reduce communication. 

 

 
NODE: 0  total: 638 
000) [heap]:_ice_state_2_  [ 0x172a8000 - 0x180b8090 ]  493 
  ice_boundary.F90:2779:0x9cfae4    [ 0x174b10b0 - 0x1804ba10 ]  435 
  ice_boundary.F90:4164:0x9d44f0    [ 0x176c0f80 - 0x17e33f58 ]  31 
  ... 
001) [map-anon-23]:tx  [ 0x2aac10a6e5c0 - 0x2aac114d4250 ]  35 
  ice_boundary.F90:4164:0x9d44f0    [ 0x2aac10a74768 - 0x2aac114d0958 ]  35 
002) [map-anon-23]:ty  [ 0x2aac114da788 - 0x2aac11f406c8 ]  34 
  ice_boundary.F90:4164:0x9d44f0    [ 0x2aac114dee80 - 0x2aac11f404a8 ]  33 
  ... 
 
NODE: 1  total: 598 
000) [heap]:<not-found>  [ 0x24b94140 - 0x2b033088 ]  138 
  ice_history.F90:2564:0xa45d9c    [ 0x2918bcc0 - 0x29b3b310 ]  136 
 

 
Figure 7: Remote DRAM reference after applying modification 2, depicted in Figure 6. 
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consistently only about 1% of runtime, even with 
instrumentation.  Note, however, that we have removed 
instrumentation from several “single-use” communication 
buffer allocations, which had been filling instrumentation 
files with largely useless information. 

 

5.  Conclusion 
We have described Memphis and how we have 

deployed and used it on Chester, a test XT5 system at the 
OLCF at ORNL.  It is our hope that this demonstration of 
usefulness combined with ease-of-deployment will 
convince other Cray installation sites that they should 
consider creating a Memphis queue.  
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