

Cray User Group 2011 Proceedings 1 of 8

Memphis on an XT5:
Pinpointing Memory Performance

Problems on Cray Platforms

Collin McCurdy, Jeffrey Vetter, Patrick H. Worley and

Don Maxwell
Oak Ridge National Laboratory

ABSTRACT: Memphis is a tool that makes use of Instruction Based Sampling (IBS)
hardware counters, available in recent AMD processors, to help pinpoint the sources of
memory system performance problems. This paper describes our experiences porting
Memphis to a test XT5 system at ORNL, including modifications required by Compute
Node Linux to the kernel module that interfaces with IBS, and low impact modifications
to the batch queue that enable the module's use at runtime. We also include a case study
demonstrating the use of Memphis in an iterative process of finding problems and
evaluating fixes in the CICE component of the production CESM climate code

KEYWORDS: Memory system performance, Intra-node performance, NUMA

1. Introduction
Current forecasts call for each chip in an Exascale

system to consist of hundreds to thousands of processing
cores. Already, with only on the order of 10 cores per
chip, memory limitations and performance considerations
are forcing scientific application teams to exploit the
node-level single address-space offered by most current
large-scale systems through the use of multi-threading
programming models.

At the same time, however, trends in micro-processor
design are pushing performance problems associated with
Non-Uniform Memory Access (NUMA) to ever-smaller
scales. Typical performance problems associated with
NUMA include hot-spotting and computation/data-
partition mismatches. Additionally, NUMA can amplify
existing potential problems and turn them into significant
real problems. For example, in the presence of contention
for locks and other shared variables, NUMA can
significantly increase waiting-time, increasing the
probability of further contention.

Memphis [1] is a toolset that uses new sampling-
based hardware performance monitoring extensions to
pinpoint memory performance problems at their source.

The toolset takes a data-centric approach: while other
sampling-based tools associate information with
instructions, Memphis associates information with
program variables. A key insight behind Memphis is that
the source of memory performance problem may well not
be where the problem is evidenced. For example, while
the cause of a hot spot is likely variable initialization, the
problem is only evident at the variable’s use.

Until recently, a limitation of Memphis has been that,
because it requires installation of a kernel module, we
have only been able to run on very small scale systems.
This limitation restricted its use to small-scale runs,
potentially unrepresentative in terms of both number of
cores and data set size. We have now addressed that
problem by porting Memphis to Chester, a test Cray XT5
system at the Oak Ridge Leadership Computing Facility
(OLCF) centered at Oak Ridge National Laboratory.

After a brief description of the components of
Memphis, this paper details how we got the components
running on the XT5, and describes a policy that makes
them available to selected users. We then provide a case
study demonstrating the use of Memphis in an iterative
process of finding problems and evaluating fixes in the
CICE component of the production CESM climate code.

Cray User Group 2011 Proceedings 2 of 8

2. IBS and Memphis
2.1 Instruction Based Sampling

Available in AMD processor implementations since
Barcelona, Instruction Based Sampling (IBS) [2]
hardware provides performance monitoring extensions
similar in concept to those offered by ProfileMe hardware
in the DEC Alpha 21264 [3]. More recent Intel chips
have extended the performance monitoring unit with
roughly the same functionality (PEBS-LoadLatency) [4].

Like event-based sampling, IBS is interrupt-driven.
However, while event-based interrupts are caused by
counter overflows, IBS hardware instead periodically
interrupts execution, and then proceeds to follow the next
instruction through pipeline, keeping track of micro-
architectural events that occur due to the execution of that
instruction. Upon retirement of the followed instruction,
the hardware calls a software interrupt handler, providing
the following data useful for finding memory
performance problems:

• Precise instruction program counter.
• Virtual address of data referenced by instruction.
• The source of the data: i.e., DRAM, another

core’s cache.
• Whether the source was on the local node or a

remote node.
Data sourcing information indicates potential problems,
while instruction and data addresses enable precise
attribution to code and variables respectively.

2.2 Memphis Architecture
Memphis enables user-level interaction with IBS

hardware via three components, which together facilitate:
the specification of regions for sampling, the gathering of
sample data, and the aggregation of that sample data into
a form useful for finding performance problems. Figure 1
depicts the components, and their interactions:

• MEMPHISMOD, a kernel module that interacts
with IBS hardware, including: setting it up to
gather samples per-thread, turning sampling on
and off, and specifying the interrupt handler.
The module interfaces with user-level software
through a device file in /dev.

• Libmemphis, a user-level library whose API
enables users to set ‘calipers’ around interesting
regions of code (for instance, the time-step loop)
and gather samples into per-thread data files.

• Memphis-tool, a post-processing executable that
aids in searching for patterns in the sample data
files by aggregating: 1) samples originating from
the same data and instructions, and 2) samples
originating from threads on the same NUMA
node.

3. Memphis on Cray Platforms
Because Compute Node Linux (CNL), the operating

system running on the compute nodes of Cray XT
systems, is Linux-based, many components of Memphis
work on Cray platforms without modification. In

(a)

(b)

Figure 1: Memphis runtime components (a), and post-processing executable (b).

Cray User Group 2011 Proceedings 3 of 8

particular, the library and the post-processing executable
do not require changes.

The one component that required modification in our
initial port was the kernel module. The port of the kernel
module was complicated by the black-box nature of CNL.
Compilation of a Linux kernel module requires access to
kernel source code. While CNL is based on Linux, the
code is proprietary and is not available to non-Cray
system administrators at the OLCF. Therefore compiling
the Memphis kernel module required the help of a patient
Cray engineer to perform the first half of each iteration of
the compile-install-test-modify loop.

After the kernel module was compiled and running
on the system, we then required a mechanism for making
it available to jobs that want to use Memphis.

3.1 Porting the Kernel Module to CNL
The initial port required two changes to the module.

As it turns out, the first was simply the result of porting to
a kernel version on which Memphis had not run before.
While the user-level interface to the kernel is very stable
between kernel releases, intra-kernel interfaces tend to
fluctuate substantially. Therefore a new kernel version
often requires modifications to a kernel module.

In this instance, the kernel used by CNL was older
than the kernel for which the kernel module we had
borrowed the code that accesses IBS counters had been
created. In between the two kernel versions, the
mechanism for registering interrupt handlers had been
modified. By looking at other drivers with similar
functionality we determined that the kernel version used
by CNL required set_nmi_callback rather than
register_die_notifier.

The second change was due to an actual difference
between CNL and standard Linux and required some
understanding of the interface to IBS performance
monitoring hardware.

IBS hardware is located in the Northbridge portion of
AMD processors. Northbridge configuration registers are

accessed and set via PCI extended configuration space.
The original kernel module code thus uses pci_get_device
to determine the addresses of Northbridge devices in the
node, using predefined kernel constants to name the
devices. Because the files that defined this function and
constants were not contained in the CNL distribution, we
were left with no option but to determine the values we
required (using the lspci command) and then hard-code
these values into calls that set configuration registers.

3.1.1 Current Status
After a recent system software upgrade, we found

that the Memphis kernel module for the standard Linux
kernel version used by the new system, worked without
further modification.

3.2 Runtime Policy and Configuration
To maximize the availability of Memphis for selected

users, while minimizing impact of a bleeding-edge kernel
module on other users, we arrived at the following policy:
the kernel module is always available on a single,
dedicated node of the system. Users that want to access
Memphis have a ‘reservation’ on that node, such that it is
always the first node of their allocation. While this means
that only that first node provides sample data for
subsequent post-processing, we have found that this is
sufficient for our needs, since intra-node performance is
typically uniform across nodes.

The policy is implemented on Chester, a test XT5
system at OLCF, as follows. On system reboots the
kernel module is installed on the dedicated node and a
device entry – the library’s interface to the module – is
created in /dev. The reservation portion of the policy is
implemented through a standing reservation in Moab, the
workload manager/scheduler on OLCF systems [5].

Figure 2 describes the policy currently in place on
Chester. In this instance, user cmccurdy has a reservation
on 12 processors of Node 1. The node allocation of any
job run on this user’s behalf will start with Node 1 and
add nodes as required to fulfil the requested node count.

chester-login1# mdiag -r memphis.8
Diagnosing Reservations
RsvID Type Par StartTime EndTime Duration Node Task Proc
----- ---- --- --------- ------- -------- ---- ---- ----
memphis.8 User che -00:07:30 INFINITY INFINITY 1 1 12
 Flags: ISACTIVE
 ACL: RSV==memphis.8= USER==cmccurdy+
 CL: RSV==memphis.8
 Accounting Creds: User:root
 Task Resources: PROCS: [ALL]
 SubType: Other
 Attributes (HostExp='^20$')
 Active PH: 0.00/1.51 (0.00%)
 History: 1301595949:PROCS=12

Figure 2: Moab reservation on Chester, a test XT5 system at OLCF.

Cray User Group 2011 Proceedings 4 of 8

It is not difficult to imagine an alternative, queue-
based, policy in which a batch queue would be dedicated
to jobs wishing to use Memphis. Some number of
compute nodes would have the kernel module installed,
and one of those nodes would be required to be the initial
node in the allocation of any job submitted to the
Memphis queue.

4. Case Study: CICE
CICE [6] is the sea ice modeling component of the

Community Earth System Model (CESM) [7] climate
modeling code. In recent large-scale CESM runs on the
Jaguarpf system at ORNL, we noticed that the ice
component was not scaling as well as other components.
Though its runtime is not a large fraction of the overall
runtime, it is on the critical path of the large atmosphere
component and therefore its scalability is critical to
overall scalability. We therefore wished to use Memphis
to investigate improvements in the memory system
performance of the ice model that might improve
scalability. Having Memphis available on the Chester
system allowed us to measure performance in a realistic
setting, with all components active and running a
representative data set.

We did make one change to relative to the large-scale
configurations, which allowed us to focus on the memory
system performance of the ice model. In the large-scale
runs the atmosphere, land and ice components were
combined on a single processor set. Since CESM allows
flexible mapping of components to processor cores, our
first step was to isolate the ice model such that it was the

only thing running on the node with the Memphis kernel
module installed.

4.1 Initial Measurements
Figure 3 presents highlights from a file, output by the

Memphis post-processing tool, describing the remote
references to DRAM made during a 12-threaded (42-
process, 504 cores total) run on Chester.

The tool divides remote memory references by
NUMA node. Since an XT5 node consists of two sockets,
with six cores and one memory controller per socket, a
12-threaded run that pins one thread to one core runs
across two NUMA nodes. By default, the XT runtime
policy ensures that threads 0-5 run in NUMA Node 0,
while threads 6-11 run in NUMA Node 1.

At the highest level, the results in the figure indicate
that the threads in Node 0 suffered many more (some
13X) remote memory references than those in Node 1.
The next level of detail describes which variables were
referenced remotely. In this run, three heap-allocated
variables tx, ty, and tc, and a collection of heap-allocated
variables in the ice_state module account for nearly all
the remote references.

Finally, the lowest level of detail reveals which
instructions accessed each variable remotely. Note that
almost all remote references are due to the same loopnest
(debugging information tends to be accurate only to the
level of loopnest in optimized code) in a single source
file, ice_boundary.F90. This file implements the data
packing and communication required by boundary
exchanges between processors. In particular, it maintains
the halo of non-local data that each process/thread
requires around the data it owns.

NODE: 0 total: 6591
000) [heap]:tx [0x2a5b1588 - 0x2b017870] 1719
 ice_boundary.F90:4106:0x9d4834 [0x2a5c1468 - 0x2b017788] 1414
 ice_boundary.F90:4106:0x9d4830 [0x2a5b1588 - 0x2b017870] 279
 ...
001) [heap]:ty [0x2b022808 - 0x2ba83518] 1643
 ice_boundary.F90:4106:0x9d4834 [0x2b02d190 - 0x2ba83190] 1361
 ice_boundary.F90:4106:0x9d4830 [0x2b02d8b0 - 0x2ba83518] 251
 ...
002) [heap]:tc [0x29b4b158 - 0x2a5abee8] 1611
 ice_boundary.F90:4106:0x9d4834 [0x29b53d28 - 0x2a5abee8] 1377
 ice_boundary.F90:4106:0x9d4830 [0x29b4b158 - 0x2a5aae18] 205
 ...
003) [heap]:_ice_state_2_ [0x172a8dc0 - 0x180b0088] 1582
 ice_boundary.F90:4106:0x9d4834 [0x176bb2d8 - 0x17e35f48] 914
 ice_boundary.F90:2727:0x9cfa64 [0x174b1030 - 0x18044610] 482
 ice_boundary.F90:4106:0x9d4830 [0x176ba888 - 0x17e35930] 148
 ...

NODE: 1 total: 506
000) [heap]:<not-found> [0x24b94140 - 0x2c9cdb10] 69
 ice_history.F90:2564:0xa4585c [0x29192040 - 0x29b40048] 66
 ...

Figure 3: CICE initial results: remote DRAM references.

Cray User Group 2011 Proceedings 5 of 8

The function containing the loopnest responsible for
almost all non-local remote references is specialized for
exchanges of four-dimensional data halos. The loopnest
itself, shown in Figure 4(a), performs the 4D halo
exchange between threads, and is implemented as a
simple copy between two regions of the same data array.

As evidence that Memphis has pointed out a region of
code that would be useful to optimize, the following table
provides timing measurements:

Timer Count Value
TimeLoop 240 40.687691
Bound 32410 24.978573
ice_halo4dr8 1700 12.600817
ice_halo4dr8_lclcpy 1700 7.242013

The first built-in timer, TimeLoop, describes the time
spent in the CICE timestep loop (240 steps), a measure of
the total CICE runtime. Another built-in timer, Bound,
describes the total time spent in the boundary exchanges
implemented by ice_boundary.F90. We have added two
additional timers measuring the time spent in the four-
dimensional halo exchange (ice_halo4dr8), and that
spent in the loopnest pointed out by Memphis
(ice_halo4dr8_lclcpy).

The ice_halo4dr8_lclcpy loopnest, responsible
for fully 17% of the CICE runtime, is a clear target for
optimization.

4.2 Memphis-directed Modification 1
Upon inspection of the containing subroutine, and of

subroutines that call it, we found that the reason for the

large number of remote references by Node 0 in the
loopnest is that the boundary code is not threaded. Arrays
passed in to the halo exchange routines have been
initialized properly, in the NUMA context, so that data
usually accessed by a given thread is owned by that
thread, i.e., located in the same NUMA node. Therefore,
reads and writes by the master thread (typically thread 0,
located in Node 0) to data owned by any thread in Node
1, are non-local.

One obvious solution, likely the most non-invasive in
terms of code modifications, is to thread the code that
implements the ice_halo4dr8_lclcpy loopnest.
Figure 4(b) illustrates our approach.

In CICE, the unit of parallelism is a ‘block’. Parallel
loops are loops over blocks, and threads own the blocks
they operate on. Thus, in order to ensure locality of
reference, we cannot simply distribute iterations of the
nmsg do-loop, but instead must allow each thread to
iterate over all ‘messages’ to determine the ones that
apply to blocks it owns (via a new block_to_thr mapping
array). Since cache-coherence protocols tend to make
non-local writes more expensive than non-local reads, we
let the owner of a block read remote data and write the
data to its halo.

The following table describes the performance
improvements yielded by the new approach:

Timer Base Mod1
TimeLoop 40.69 36.29
Bound 24.98 20.22
ice_halo4dr8 12.60 8.75
ice_halo4dr8_lclcpy 7.24 2.38

do nmsg=1,halo%numLocalCopies
 iSrc = halo%srcLocalAddr(1,nmsg)
 jSrc = halo%srcLocalAddr(2,nmsg)
 srcBlock = halo%srcLocalAddr(3,nmsg)
 iDst = halo%dstLocalAddr(1,nmsg)
 jDst = halo%dstLocalAddr(2,nmsg)
 dstBlock = halo%dstLocalAddr(3,nmsg)

 if (srcBlock > 0) then
 if (dstBlock > 0) then
 do l=1,nt
 do k=1,nz
 array(iDst,jDst,k,l,dstBlock) = &
 array(iSrc,jSrc,k,l,srcBlock)
 end do
 end do
 ...
end do

(a)

$OMP PARALLEL PRIVATE(myid,...)
myid = omp_get_thread_num()
do nmsg=1,halo%numLocalCopies
 iSrc = halo%srcLocalAddr(1,nmsg)
 jSrc = halo%srcLocalAddr(2,nmsg)
 srcBlock = halo%srcLocalAddr(3,nmsg)
 iDst = halo%dstLocalAddr(1,nmsg)
 jDst = halo%dstLocalAddr(2,nmsg)
 dstBlock = halo%dstLocalAddr(3,nmsg)

 if (srcBlock > 0) then
 if (dstBlock > 0 .and. &
 block_to_thr(dstBlock).eq.myid) then
 do l=1,nt
 do k=1,nz
 array(iDst,jDst,k,l,dstBlock) = &
 array(iSrc,jSrc,k,l,srcBlock)
 end do
 end do
 ...
end do

(b)

Figure 4: Original single-threaded code that implements 4D halo exchanges between threads (ice_halo4dr8_lclcpy) (a),

and additions that realize multi-threaded copies (b).

Cray User Group 2011 Proceedings 6 of 8

Threading improves the performance of the
ice_halo4dr8_lclcpy loopnest by 3X. The resulting
savings in time improves CICE performance by 10%.
While substantial, 3X is not the perfect speedup one
might hope for from 12 threads; is more available?

Figure 5 presents Memphis results for the new
executable. Note that source code modifications to
ice_boundary.F90 have shifted line numbers such that
new line 4245 corresponds to the old line 4106. While
the remote references due to the ice_halo4dr8_lclcpy
loopnest are now more evenly distributed between nodes,
the counts are still very high.

4.3 Memphis-Directed Modification 2
Upon further inspection of the code we observe that

the high counts are likely due to poor cache behaviour:
note that in the loopnest, the k and l induction variables
change faster than all the i and j induction variables (iSrc,
iDst, jSrc, jDst), though k and l index higher, less
contiguous, dimensions of the copied array. The result is
little reuse from cache lines and therefore significant
traffic between caches and memory. Since the code
actually copies entire columns or rows of data to effect
the copy of a halo, we would like to collect consecutive i

and j references. However, implementing the approach
would require substantial modification to both the code
that identifies i and j values, and the many other loopnests
that use the identified values.

A more localized approach recognizes that remote
cache misses are substantially more expensive than local
misses, and therefore collects data requiring
communication between threads into a contiguous buffer.
The thread that owns the data to be read writes it into a
local buffer, so that the thread that owns the halo to be
written can read consecutive, though remote, elements
from the buffer and writes them to its halo. Since more
data per cache-line is used, fewer remote cache lines are
communicated and expensive communication is reduced.

Figure 6 demonstrates the new approach. The
loopnest is essentially replicated. In the first half, the
owner of the source data writes into bufLocal. In the
second half, after a synchronizing barrier, the owner of
the destination halo copies data from bufLocal into the
halo.

Figure 7 indicates a substantial reduction in the
number of non-local reference samples. Notably, there
are now no samples due to the ice_halo4dr8_lclcpy
loopnest. The following table indicates the performance
improvement due to this second source-code
modification:

NODE: 0 total: 1156
000) [heap]:_ice_state_2_ [0x172d0e80 - 0x180b9018] 625
 ice_boundary.F90:2779:0x9cfae4 [0x174cfae0 - 0x17fe41e0] 465
 ice_boundary.F90:4245:0x9d48e0 [0x176ba7f0 - 0x17e35ef0] 105
 ...
001) [heap]:tc [0x29b45cf0 - 0x2a5abe08] 231
 ice_boundary.F90:4245:0x9d48e0 [0x29b54848 - 0x2a5ab6a0] 216
 ...
002) [heap]:tx [0x2a5b14c0 - 0x2b017ad8] 135
 ice_boundary.F90:4245:0x9d48e0 [0x2a5b1c50 - 0x2b017ad8] 93
 ice_boundary.F90:4164:0x9d4460 [0x2a5b14c0 - 0x2b004730] 33
 ...
003) [heap]:ty [0x2b01d348 - 0x2ba83890] 110
 ice_boundary.F90:4245:0x9d48e0 [0x2b02be70 - 0x2ba837f0] 68
 ice_boundary.F90:4164:0x9d4460 [0x2b023480 - 0x2ba83490] 37
 ...

NODE: 1 total: 3305
000) [heap]:ty [0x2b01d348 - 0x2ba83890] 708
 ice_boundary.F90:4245:0x9d48e0 [0x2b02be70 - 0x2ba837f0] 706
 ...
001) [heap]:tx [0x2a5b14c0 - 0x2b017ad8] 678
 ice_boundary.F90:4245:0x9d48e0 [0x2a5b1c50 - 0x2b017ad8] 675
 ...
002) [heap]:_ice_state_2_ [0x172d0e80 - 0x180b9018] 562
 ice_boundary.F90:4245:0x9d48e0 [0x176ba7f0 - 0x17e35ef0] 494
 ice_boundary.F90:4245:0x9d48e4 [0x176c1b08 - 0x17e35fc8] 60
 ...
003) [heap]:tc [0x29b45cf0 - 0x2a5abe08] 159
 ice_boundary.F90:4245:0x9d48e0 [0x29b54848 - 0x2a5ab6a0] 158
 ...

Figure 5: Remote DRAM reference results after applying the modification depicted in Figure 4(b).

Cray User Group 2011 Proceedings 7 of 8

Timer Base Mod1 Mod2
TimeLoop 40.69 36.29 35.90
Bound 24.98 20.22 19.86
ice_halo4dr8 12.60 8.75 8.61
ice_halo4dr8_lclcpy 7.24 2.38 1.95

Although we have doubled the number of instructions
executed, the local copy looopnest now executes nearly
4X faster than the base version.

However, not all of the improvement is visible to
ice_halo4dr8, or to functions higher in the call-tree.
The local copy loopnest occurs while a node is in the
middle of an asynchronous inter-node communication
event. It may be that the inter-node communication now
takes longer to complete than the new local copy.

In any event, further improvements to the
ice_halo4dr8_lclcpy loopnest are unlikely to be
fruitful in terms of reducing the overall time to
completion. Figure 7 indicates several new sources of
remote DRAM references, all from the same

ice_boundary.F90 source file, and originating from
loopnests exhibiting similar poor cache behaviour. We
are currently investigating a more comprehensive
approach that would achieve the goals of the halo-copying
routines while better preserving locality of reference.

4.4 Memphis Overhead

The following table presents a measure of Memphis
overhead, comparing execution time – based on the
TimeLoop time-step timer – of runs 1) with IBS and
instrumentation of allocation statements, and 2) without
either IBS or instrumentation:

 IBS Off,
No Instrumentation

IBS On,
Instrumented

Base 40.69 41.18
Mod1 36.29 36.63
Mod2 35.90 36.31

These measurements indicate that the overhead is

!$OMP PARALLEL PRIVATE(myid,...)
myid = omp_get_thread_num()
do nmsg=1,halo%numLocalCopies
 dstBlock = halo%dstLocalAddr(3,nmsg)
 srcBlock = halo%srcLocalAddr(3,nmsg)
 if (dstBlock > 0 .and. srcBlock > 0) then
 if (block_to_thr(srcBlock).eq.myid) then
 iSrc = halo%srcLocalAddr(1,nmsg)
 jSrc = halo%srcLocalAddr(2,nmsg)
 i = 0
 do l=1,nt
 do k=1,nz
 i = i + 1
 bufLocal(i,nmsg) = &
 array(iSrc,jSrc,k,l,srcBlock)
 end do
 end do
 endif
 ...
end do

!$OMP BARRIER
do nmsg=1,halo%numLocalCopies
 dstBlock = halo%dstLocalAddr(3,nmsg)
 srcBlock = halo%srcLocalAddr(3,nmsg)
 if (dstBlock > 0 .and. srcBlock > 0) then
 if (block_to_thr(dstBlock).eq.myid) then
 iDst = halo%dstLocalAddr(1,nmsg)
 jDst = halo%dstLocalAddr(2,nmsg)
 i = 0
 do l=1,nt
 do k=1,nz
 i = i + 1
 array(iDst,jDst,k,l,dstBlock) = &
 bufLocal(i,nmsg)
 end do
 end do
 endif
 endif
enddo

Figure 6: The ice_halo4dr8_lclcpy loopnest after replication of the loopnest to reduce communication.

NODE: 0 total: 638
000) [heap]:_ice_state_2_ [0x172a8000 - 0x180b8090] 493
 ice_boundary.F90:2779:0x9cfae4 [0x174b10b0 - 0x1804ba10] 435
 ice_boundary.F90:4164:0x9d44f0 [0x176c0f80 - 0x17e33f58] 31
 ...
001) [map-anon-23]:tx [0x2aac10a6e5c0 - 0x2aac114d4250] 35
 ice_boundary.F90:4164:0x9d44f0 [0x2aac10a74768 - 0x2aac114d0958] 35
002) [map-anon-23]:ty [0x2aac114da788 - 0x2aac11f406c8] 34
 ice_boundary.F90:4164:0x9d44f0 [0x2aac114dee80 - 0x2aac11f404a8] 33
 ...

NODE: 1 total: 598
000) [heap]:<not-found> [0x24b94140 - 0x2b033088] 138
 ice_history.F90:2564:0xa45d9c [0x2918bcc0 - 0x29b3b310] 136

Figure 7: Remote DRAM reference after applying modification 2, depicted in Figure 6.

Cray User Group 2011 Proceedings 8 of 8

consistently only about 1% of runtime, even with
instrumentation. Note, however, that we have removed
instrumentation from several “single-use” communication
buffer allocations, which had been filling instrumentation
files with largely useless information.

5. Conclusion
We have described Memphis and how we have

deployed and used it on Chester, a test XT5 system at the
OLCF at ORNL. It is our hope that this demonstration of
usefulness combined with ease-of-deployment will
convince other Cray installation sites that they should
consider creating a Memphis queue.

6. Acknowledgments
The authors would like to thank John Lewis of Cray,

without whose help Memphis would never have gotten on
an XT5.

7. About the Authors
Collin McCurdy is an R&D associate staff member

in the Future Technologies Group at Oak Ridge National
Laboratory. His research focuses on memory system
designs in current and future processor architectures and
their implications for scientific applications. He has a
PhD in Computer Science from the University of
Wisconsin–Madison and is a member of the Association
for Computing Machinery. He can be reached at
cmccurdy@ornl.gov.

Jeffrey Vetter is group leader of the Future
Technologies Group at Oak Ridge National Laboratory.
He can be reached at vetter@ornl.gov.

Patrick H. Worley is a senior R&D staff member in
the Computer Science and Mathematics Division of Oak
Ridge National Laboratory. His research interests include
parallel algorithm design and implementation (especially
as applied to simulation models used in climate and
fusion energy research) and the performance evaluation of
parallel applications and computer systems. He is
currently a co-chair of the Community Earth System
Model (CESM) Software Engineering Working Group,
the principal investigator for the Performance Engineering
and Analysis Consortium End Station DOE INCITE
project, and is an Associate Editor of the journal Parallel
Computing. Worley has a PhD in computer science from
Stanford University. He is a member of the Association
for Computing Machinery and the Society for Industrial
and Applied Mathematics. He can be reached at
worleyph@ornl.gov.

Don Maxwell is a Senior System Administrator at
Oak Ridge National Laboratory primarily focused on the
Cray XT series. He has been a key member of past teams

in bringing up new supercomputers for the NCCS. He can
be reached at maxwellde@ornl.gov.

8. References
[1] C. McCurdy and J. Vetter, "Memphis: Finding

and fixing NUMA-related performance problems
on multi-core platforms," in 2010 IEEE
International Symposium on Performance
Analysis of Systems & Software (ISPASS), White
Plains, NY, 2010.

[2] P. J. Drongowski, "Instruction-Based Sampling:
A New Performance Analysis Technique for
AMD Family 10h Processors," Advanced Micro
Devices, Inc.2007.

[3] J. Dean, J. E. Hicks, C. A. Waldspurger, W. E.
Weihl, and G. Chrysos, "ProfileMe: hardware
support for instruction-level profiling on out-of-
order processors," presented at the Proceedings
of the 30th annual ACM/IEEE international
symposium on Microarchitecture, Research
Triangle Park, North Carolina, United States,
1997.

[4] "Intel 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3B: System
Programming Guide, Part 2," Intel Corporation,
2009.

[5] M. Jackson, S. Jackson, and D. Maxwell, "Moab
Workload Manager on Cray XT3," in Cray User
Group (CUG), Lugano, Italy, 2006.

[6] LANL. (2011, May). CICE: The Los Alamos Sea
Ice Model. Available: http://climate.lanl.gov/
Models/CICE/

[7] UCAR. (2011, May). Community Earth System
Model. Available:

