
Memphis on an XT5
Pinpointing Memory
Performance Problems on
Cray Platforms

Collin McCurdy, Jeffrey Vetter,

Patrick Worley and Don Maxwell

Overview

• Current projections: each chip in an Exascale system will
contain 100s to 1000s of processing cores
– Already (~10 cores/chip) memory limitations and performance

considerations are forcing scientific application teams to consider
multi-threading

– At the same time, trends in micro-processor design are pushing
memory performance problems associated with Non-Uniform
Memory Access (NUMA) to ever-smaller scales

• This talk:
– Describes Memphis, a toolset that uses sampling-based hardware

performance monitoring extensions to pinpoint the sources of
memory performance problems

– Describes how we ported Memphis to an XT5, and runtime
policies that make it available

– Demonstrates the use of Memphis in an iterative process of
finding problems and evaluating fixes in CICE

Case for Multi-threading

• Claim: As cores proliferate, scientific applications may
require multi-threading support due to
– Memory constraints (processes vs threads)

– Performance considerations

• Support: Two large-scale, production codes that scale
better with 6 threads per process than with 1
– XGC1

• Fusion code, models aspects of Tokamak reactor

• Scales to 200,000+ cores

– CAM-HOMME
• CAM is the atmospheric model from CESM climate code

• HOMME performs ‘dynamics’ computations, relatively new addition,
better scaling properties than previous dynamics models

• OpenMP pragmas only recently re-instated

6 Threads Good, 12 Threads Better?

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1536 196608

N
o

rm
al

iz
e

d
 E

xe
cu

ti
o

n
 T

im
e

0

0.2

0.4

0.6

0.8

1

1.2

1.4

384 1536

12-threads

6-threads

CAM-HOMME (n16np4)

Not necessarily...on Jaguar, 12 threads means two
sockets/NUMA-nodes. NUMA effects can dominate.

XGC1

Two trends in
microprocessor design are
bringing NUMA to SMPs

Trend 1: On-chip Memory Controller

Chip0 Chip1

MC Mem

Bus

Chip0 Chip1

MC MC

N
I

N
I

MemMem

Multi-chip SMP systems used to be
bus-based, limiting scalability.

On-chip memory controllers improve
performance for local data, but non-
local data requires communication.

Trend 2: Ever-Increasing Core Counts

M
C

M
C

M
C

N
I

N
I

MemMem

Core0

Core1

Core0

Core1

More and more pressure on shared
resources until eventually...

M
C

MC

N
I

Mem

Core6

Core7

Core9

C10

Core8 C11

MC

N
I

Mem

Core0

Core1

Core3

Core4

Core2 Core5

Chip0

NUMA within socket.
M
C

M
C

M
C

N
I

N
I

MemMem

C0

C1

C3

C4

C2 C5

C0

C1

C3

C4

C2 C5

Memory System Performance Problems

• Typical NUMA problems:

– Hot-spotting

– Computation/Data-partition mismatch

• NUMA can also amplify potential problems and turn
them into significant real problems.

– Example: contention for locks and other shared variables

• NUMA can significantly increase latency (and thus waiting time),
increasing possibility of further contention.

So, more for programmers to worry
about, but there is Good News…

1. Mature infrastructure already exists for handling
NUMA from software level

– NUMA-aware operating systems, compilers and runtime

– Based on years of experience with distributed shared
memory platforms like SGI Origin/Altix

2. New access to performance counters that help
identify problems and their sources

– NUMA performance problems caused by references to
remote data

– Counters naturally located in Network Interface
• On chip => easy access, accurate correlation

Instruction-Based Sampling

• AMD’s hardware-based performance monitoring extensions

• Similar to ProfileMe hardware introduced in DEC Alpha 21264

• Like event-based sampling, interrupt driven; but not due to cntr overflow
– HW periodically interrupts, follows the next instruction through pipeline

– Keeps track of what happens to and because of the instruction

– Calls handler upon instruction retirement

• Intel’s PEBS-LoadLatency extensions are similar, but limited to memory (lds)

• Both provide the following data useful for finding NUMA problems:
– Precise program counter of instruction

– Virtual address of data referenced by instruction

– Where the data came from: i.e., DRAM, another core’s cache

– Whether the agent was local or remote

• Post-pass looks for patterns in resulting data

• Instruction and data address enables precise attribution to code and
variables

9

Memphis Introduction

• Toolset using IBS to pinpoint NUMA problems at source

• Data-centric approach
– Other sampling-based tools associate info w/ instructions
– Memphis associates info with variables

Key insight: The source of NUMA problem is not necessarily
where it’s evidenced

– Example: Hot spot cause is variable init, problems evident at use
– Programmers want to know

• 1st what variable is causing problems

• 2nd where (likely multiple sites)

• Consists of three components
– Kernel module interface with IBS hardware
– Library API to set ‘calipers’ and gather samples
– Post-processing executable

10

Key Insight: The source of a NUMA problem is not necessarily where it’s evidenced

CPU

Memphis Runtime Components

11

Kernel

do
call memphis_mark

…
call memphis_print

enddo

libmemphis

MEMPHISMOD

IBS
HW

samples

Memphis Post-processing Executable

Node0 Node1

Map instructions & data addresses to src-lines and variables

Combine data for threads on a node

Per core raw data

Per core cooked data

Node0: total 3
(1) colidx 3

./cg.c: 556 3

Node1: total 232
(1) colidx 139

./cg.c: 556 135

./cg.c: 709 4
(2) a 93

./cg.c: 556 90

./cg.c: 709 3

Challenges:
1) Instructions -> src-line mapping depends on quality of debug info; more likely

to find loop-nest than line
2) Address -> variable mapping for dynamic data (local vars in Fortran, global heap

vars)

Memphis on Cray Platforms

• Compute Node Linux (CNL) is Linux-based
– many components of Memphis work on Cray platforms

without modification

• One exception: the kernel module

• Kernel module port complicated by the black-box
nature of CNL (not open-source)

• Required the help of a patient Cray engineer (John
Lewis) to perform first half of each iteration of the
compile-install-test-modify loop

• Also required a mechanism for making Memphis
available to jobs that want to use it

Kernel Module Modifications

• Initial port required two changes to the module
1. Kernel used by CNL was older than the kernel for which

we had originally developed the module; setting of
interrupt-handler had changed between versions

• Looking at other drivers we determined that kernel used by CNL
required set_nmi_callback rather than register_die_notifier

2. Several files defining functions and constants used to
configure IBS registers were not contained in the CNL
distribution

• Hard-coded the values we required (found via lspci command) into
calls that set configuration registers

• Current status:
– After a recent system software upgrade

• Memphis kernel module for the standard Linux kernel version used
by the new system, worked without further modification

Runtime Policy and Configuration

• Goal:
– Maximize the availability of Memphis for selected users, while

minimizing impact of a bleeding-edge kernel module on others

• Policy:
– Kernel module is always available on a single, dedicated node of

the system
• On system reboots the kernel module is installed on the dedicated node

and a device entry created in /dev

– Users that want to access Memphis have a ‘reservation’ on that
node
• Realized as a Moab standing reservation

• Only one node provides sample data
– We have found that this is sufficient for our needs
– Intra-node performance is typically uniform across nodes

A Memphis Queue?

• Can easily imagine an alternative, queue-based policy

– Batch queue dedicated to jobs wishing to use Memphis

– Some number of compute nodes would have the kernel
module installed

– One of those nodes required to be the initial node in
allocation of any job submitted to the Memphis queue

Case Study: CICE

• CICE is sea ice modeling component of the Community
Earth System Model (CESM) climate modeling code

• Recent large-scale CESM runs on the Jaguarpf system at
ORNL, CICE was not scaling as well as other components

• While not a large fraction of overall runtime, CICE is on
critical path, scalability is crucial to overall scalability

• Wished to use Memphis to investigate improvements in
the memory system performance of the ice model that
might improve scalability

• Having Memphis available on an XT5 allowed measure
performance in a realistic setting, with all components
active and running a representative data set

CICE initial results

NODE: 0 total: 6591
000) [heap]:tx [0x2a5b1588 - 0x2b017870] 1719
ice_boundary.F90:4106:0x9d4834 [0x2a5c1468 - 0x2b017788] 1414
ice_boundary.F90:4106:0x9d4830 [0x2a5b1588 - 0x2b017870] 279
...

001) [heap]:ty [0x2b022808 - 0x2ba83518] 1643
ice_boundary.F90:4106:0x9d4834 [0x2b02d190 - 0x2ba83190] 1361
ice_boundary.F90:4106:0x9d4830 [0x2b02d8b0 - 0x2ba83518] 251
...

002) [heap]:tc [0x29b4b158 - 0x2a5abee8] 1611
ice_boundary.F90:4106:0x9d4834 [0x29b53d28 - 0x2a5abee8] 1377
ice_boundary.F90:4106:0x9d4830 [0x29b4b158 - 0x2a5aae18] 205
...

003) [heap]:_ice_state_2_ [0x172a8dc0 - 0x180b0088] 1582
ice_boundary.F90:4106:0x9d4834 [0x176bb2d8 - 0x17e35f48] 914
ice_boundary.F90:2727:0x9cfa64 [0x174b1030 - 0x18044610] 482
ice_boundary.F90:4106:0x9d4830 [0x176ba888 - 0x17e35930] 148
...

NODE: 1 total: 506
000) [heap]:<not-found> [0x24b94140 - 0x2c9cdb10] 69
ice_history.F90:2564:0xa4585c [0x29192040 - 0x29b40048] 66
... ...

REMOTE DRAM References

13X more remote refs from Node 0, all from 4 arrays in 1 loopnest...

ice_boundary.F90:4106

do nmsg=1,halo%numLocalCopies

iSrc = halo%srcLocalAddr(1,nmsg)

jSrc = halo%srcLocalAddr(2,nmsg)

srcBlock = halo%srcLocalAddr(3,nmsg)

iDst = halo%dstLocalAddr(1,nmsg)

jDst = halo%dstLocalAddr(2,nmsg)

dstBlock = halo%dstLocalAddr(3,nmsg)

if (srcBlock > 0) then

if (dstBlock > 0) then

do l=1,nt

do k=1,nz

array(iDst,jDst,k,l,dstBlock) = &

array(iSrc,jSrc,k,l,srcBlock)

end do

end do

...

end do

Timer Count Value

TimeLoop 240 40.687691

Bound 32410 24.978573

ice_halo4dr8 1700 12.600817

ice_halo4dr8_lclcpy 1700 7.242013

Responsible for fully 17% of CICE runtime, clear target for optimization.

$OMP PARALLEL PRIVATE(myid,...)

myid = omp_get_thread_num()

do nmsg=1,halo%numLocalCopies

iSrc = halo%srcLocalAddr(1,nmsg)

jSrc = halo%srcLocalAddr(2,nmsg)

srcBlock = halo%srcLocalAddr(3,nmsg)

iDst = halo%dstLocalAddr(1,nmsg)

jDst = halo%dstLocalAddr(2,nmsg)

dstBlock = halo%dstLocalAddr(3,nmsg)

if (srcBlock > 0) then

if (dstBlock > 0 .and. &

block_to_thr(dstBlock).eq.myid) then

do l=1,nt

do k=1,nz

array(iDst,jDst,k,l,dstBlock) = &

array(iSrc,jSrc,k,l,srcBlock)

end do

end do

...

end do

Memphis-directed Modification 1

Timer Base Mod1

TimeLoop 40.69 36.29

Bound 24.98 20.22

ice_halo4dr8 12.60 8.75

ice_halo4dr8_lclcpy 7.24 2.38

Improves loopnest performance by 3X, overall performance by 10%.

Memphis Results After Modification 1

NODE: 0 total: 1156
000) [heap]:_ice_state_2_ [0x172d0e80 - 0x180b9018] 625
ice_boundary.F90:2779:0x9cfae4 [0x174cfae0 - 0x17fe41e0] 465
ice_boundary.F90:4245:0x9d48e0 [0x176ba7f0 - 0x17e35ef0] 105
...

001) [heap]:tc [0x29b45cf0 - 0x2a5abe08] 231
ice_boundary.F90:4245:0x9d48e0 [0x29b54848 - 0x2a5ab6a0] 216
...

002) [heap]:tx [0x2a5b14c0 - 0x2b017ad8] 135
ice_boundary.F90:4245:0x9d48e0 [0x2a5b1c50 - 0x2b017ad8] 93
ice_boundary.F90:4164:0x9d4460 [0x2a5b14c0 - 0x2b004730] 33
...

NODE: 1 total: 3305
000) [heap]:ty [0x2b01d348 - 0x2ba83890] 708
ice_boundary.F90:4245:0x9d48e0 [0x2b02be70 - 0x2ba837f0] 706
...

001) [heap]:tx [0x2a5b14c0 - 0x2b017ad8] 678
ice_boundary.F90:4245:0x9d48e0 [0x2a5b1c50 - 0x2b017ad8] 675
...

002) [heap]:_ice_state_2_ [0x172d0e80 - 0x180b9018] 562
ice_boundary.F90:4245:0x9d48e0 [0x176ba7f0 - 0x17e35ef0] 494
ice_boundary.F90:4245:0x9d48e4 [0x176c1b08 - 0x17e35fc8] 60
...

REMOTE DRAM References

Remote misses more evenly distributed, but counts still high...see text!

Conclusion

• NUMA is already a problem, and it will only get
worse...but there is hope.

– Memphis is a toolset that uses sampling-based hardware
performance monitoring extensions to pinpoint the sources
of memory performance problems

– Memphis is now available on Cray platforms

– We have used Memphis to find and fix significant problems
in several large-scale production applications

• Want us to look at your application? Let us know!

• Want Memphis on your system? Let us know!

22

Bonus Slides...

App 1: XGC1

• Analysis (and shown results) on toy single-node input set

• Fix0 expands several F90 array statements, i.e.: a(:) = b(:)

– Compiler was unable to analyze dependences; required locks

– Memphis reported a large number of remote lock accesses

• Fix1 replicates fields of a table in multiple nodes
24

0.00

5.00

10.00

15.00

20.00

25.00

6 12

Se
co

n
d

s
base

fix0

fix1

App 1: XGC1

25

0.00

5.00

10.00

15.00

20.00

25.00

6 12

Se
co

n
d

s
base

fix0

fix1

• Fix0 is in XGC1 development tree.
• Results in 23% performance improvement for full-scale,

dual-socket multi-threaded runs across ~200,000 cores.
• 12-thread performance almost equal to 6-thread...

App 2: CAM-HOMME (ne16np4)

• Again, analysis done on toy input, but results here from real input.

• Fix0 again expands several F90 array statements.

• Fix1 replaces variable-sized arrays passed as arguments to several heavily
used routines with (equivalent) constant-sized
– Compiler repeatedly allocs/deallocs data, requiring fresh first-touches

– Memphis pointed out a high-percentage of OS references

26

0

0.5

1

1.5

2

2.5

3

3.5

Ex
e

cu
ti

o
n

 T
im

e
 (

Se
co

n
d

s)

homme

coupler

physics

0

1

2

3

4

5

6

7

Ex
e

cu
ti

o
n

 T
im

e
 (

Se
co

n
d

s)

4 elts/core 1 elt/core

App 2: CAM-HOMME (ne16np4)

27

• Improves overall 12-thread CAM performance by 23% for 4 elts/core,
18% for 1.

• Also improves 6-thread performance.
• 12-thread HOMME performance roughly equals 6-thread performance.
• Still investigating larger inputs (BUG...)

0

0.5

1

1.5

2

2.5

3

3.5

Ex
e

cu
ti

o
n

 T
im

e
 (

Se
co

n
d

s)

homme

coupler

physics

0

1

2

3

4

5

6

7

Ex
e

cu
ti

o
n

 T
im

e
 (

Se
co

n
d

s)

4 elts/core 1 elt/core

