
Discovering the Petascale User Experience in

Scheduling Diverse Scientific Applications:

Initial Efforts towards Resource Simulation

Lonnie D. Crosby, Troy Baer, R. Glenn Brook, Matt Ezell, and Tabitha K. Samuel
National Institute for Computational Sciences, University of Tennessee at Knoxville

ABSTRACT: Newly emerging petascale computational resources are popular for both capacity and capability
computing. However, these varied job classes have widely different resource requirements that make scheduling
challenging. Beyond machine utilization, the scheduling of computational resources should provide reasonable
throughput for all classes of jobs. This work examines initial efforts to identify the impact of various scheduling
policies on different classes of user jobs running on a shared, petascale computing resource with a diverse workload.

KEYWORDS: petascale, scheduling, utilitization, policies, simulation, Moab

1 Introduction

Scheduling the use of a large, shared computational
resource is a complex task involving the interaction of
multiple factors such as job mix, resource availability,
and the operational requirements of both the user com-
munity and the resource provider. This is especially
true of petascale resources such as Kraken, the Cray
XT5 located at Oak Ridge National Lab (ORNL) that
is operated by the National Institute for Computational
Sciences (NICS) of the University of Tennessee. As
a resource provider for the National Science Founda-
tion (NSF), NICS seeks to maintain high levels of re-
source utilization on Kraken while providing reasonable
throughput to both capacity jobs that require 50% or
less of the resource and capability jobs that require more
than 50% of the resource. To effectively meet this goal,
NICS employs a delicate balance of scheduling policies
that have evolved over the lifetime of the resource to pro-
duce a very unique scheduling environment capable of
supporting annual mean resource utilization in excess of
90% of the machine while ensuring mean effective queue
durations of less than six hours for most classes of user
jobs [1, 2, 3].

In a complex scheduling environment such as that
employed on Kraken at NICS, it is extremely impor-
tant that the scheduling staff understand the effects of
scheduling policies on both resource utilization and job
throughput. While the composite performance of de-
ployed scheduling policies is easily monitored through
the collection and analysis of scheduling statistics, the
interaction between scheduling policies is often difficult
to accurately predict. As such, the deployment of new or
modified scheduling policies is often an extended process

fraught with trepidation and risk that is undertaken with
great care and constant monitoring. To ease this burden
and to improve overall understanding of scheduling com-
plexities, NICS seeks to develop and deploy a scheduling
simulation environment that can provide accurate quan-
titative estimates of the impact of proposed changes to
scheduling policies on Kraken. This work presents the
initial efforts to establish such a simulation environment
at NICS.

2 Objective and Implementation

The purpose of this work is to investigate the ef-
fect of scheduling policies on resource utilization and job
throughput via appropriate models for job mix, resource
availability, and job queues. With these models in place,
simulations are performed to determine the impact of
scheduling policy changes. Appropriate data collection
and analysis methods are employed to obtain quantita-
tive results.

2.1 Resource Scheduler

Like many large XT systems, Kraken uses the Moab
scheduler on top of the open source TORQUE batch
environment [4, 5]. Moab is an extremely powerful
and flexible commercial scheduling software package that
supports a wide variety of batch environments, including
all PBS variants (such as TORQUE), LSF, LoadLeveler,
and SLURM. Moab also supports a number of ad-
vanced scheduling capabilities such as advance reserva-
tions, quality of service (QoS) levels, consumable re-
source management, and a highly configurable priority

1



and policy engine. On Cray XT/XE systems, Moab com-
municates with ALPS as well as TORQUE by interfacing
to a native resource manager, a set of glue layer scripts
that communicate with both ALPS and TORQUE ser-
vices.

One of Moab’s many features is a simulation mode
that can be used to make projections or evaluate “what
if?” scenarios [6]. This requires two inputs, a resource
trace describing the simulated system and a workload
trace describing the simulated workflow on the system.
One of the workload trace formats usable by Moab simu-
lation is Moab’s own event log, so constructing a histor-
ical workload trace from a system running Moab simply
requires concatenating and sorting the Moab event logs
from the period of interest [7]. Similarly, a resource trace
for a system running Moab can be created by dumping
the output of “mnodectl -q wiki ALL” to a file [8].

2.2 Scheduling Policies

The scheduling policies on Kraken have been refined
over time to optimize utilization while supporting both
capability and capacity jobs. The scheduler is config-
ured to use job size as the predominant factor in prior-
ity calculation. Under normal operating procedures, the
eligible job with the highest priority automatically re-
ceives a reservation to hold nodes. Backfill is configured
in a mode called firstfit that evaluates jobs in descend-
ing priority order to determine which jobs are eligible to
be started, allowing large jobs to be scheduled first and
smaller jobs to fit in the cracks that are left over. The
scheduler only considers five jobs per user and ten jobs
per project account as “eligible” to run at any given time;
any jobs in excess of these limits are marked as blocked.

A debug reservation exists for eight hours each weekday
to support quick turnaround for jobs that request two
hours or less of wallclock time. Data staging and archiv-
ing jobs are supported via “sizezero” jobs that request
no compute cores and run on service nodes with a prior-
ity boost that allows them to start immediately. Finally,
jobs charged against project accounts with negative al-
location balances are allowed to run under the “negbal”
quality of service, but the Moab scheduler heavily penal-
izes the priority of such jobs, making them the last jobs
considered for backfill.

Capability jobs are subject to additional policies and
restrictions due to the high utilization cost to drain
the machine for them to run. To minimize the impact
of drain time on utilization, NICS employs a bimodal
scheduling scheme that accommodates both capability
and capacity jobs while improving system utilization [3].
Under this scheme, capability jobs are prevented from
running outside specific periods of time, referred to as
capability periods, that typically occur immediately af-
ter system maintenance periods or during the latter part
of weeks in which there are enough hours of queued ca-
pability jobs to justify the system drain. During a ca-
pability period, capability jobs run within a capability
reservation that typically dedicates around 86% of the
compute cores to capability jobs for a duration of around
72 hours. Capability jobs are typically scheduled in de-
scending order based on the number of requested cores,
and the size of the capability reservation is periodically
reduced when possible to free idle nodes for use by non-
capability jobs. If the scheduled capability jobs end ear-
lier than expected, the capability reservation is released,
and the machine reverts entirely to capacity computing.

Figure 1: The utilization of Kraken over the lifetime of the Cray XT5 at NICS.

2



The scheduling polcies presented here allow NICS to
achieve very high utilization while maintaining good ser-
vice for all job sizes. Figure 1 shows the historic utiliza-
tion over the life of the XT5.

2.3 Scheduling Statistics

2.3.1 Database

The database used to hold job data is based on the
Moab Workload Event Record Format (v 5.0.0) [7]. The
database table has the structure indicated in Figure 2,
with each job having exactly one entry in the table.
Fields completion code, job events and date of file are
computed based on the data from the Moab log files.
Each job in the log files can have a combination of JOB-
START, JOBEND and JOBCANCEL events. The com-
pletion code field is an integer field based on the job
events that occurred for a given job, and the job events
field is a comma-separated string of those job events.
The date of file field contains the date of the log file
where the first job event for a job occurred.

2.3.2 Reports

Six reports are typically generated to give a clear pic-
ture of the performance of jobs in the simulation. Jobs
that run from allocations with negative balance and jobs
that run from the speciality queues are ignored except
during utilization reporting. The first report plots the
effective queue duration (the amount of time, in sec-
onds, that the job was eligible for scheduling) against
core count. The core count is done in logarithmic bins
of 12. It is ensured that bin boundaries do not cross
queue boundaries so that specific queue behavior can be
noticed. The mean, median, minimum, maximum and
standard deviation of the effective queue duration are
calculated, as is the total number of jobs for each bin.
Figure 3 presents a sample graph of the Mean of Effective
Queue Duration by the number of Cores for a simulation
run.

The second report plots the Effective Queue Duration
against the Wallclock limit requested by jobs. Wallclock
limits are binned in spans of 2 hours up to 24 hours,
which is the maximum wallclock limit on Kraken for
regular jobs. For capability and dedicated jobs, the lim-
its are up to 60 hours. Binning is done in bins of 12
hours for jobs having wallclock limit of greater than 24
hours. Again, the mean, median, minimum, maximum
and standard deviation of the effective queue duration
are calculated for each bin. Figure 4 is a sample graph
of the Median of Effective Queue Duration by the Wall-
clock limit requested for a simulation run.

Figure 2: The structure of the database table contain-
ing the collection of job statistics.

Figure 3: An example report comparing the mean effec-
tive queue duration against requested number of cores.

The third report plots the effective queue duration
against both Wallclock limit and Core count. Wallclock
limits are binned in spans of 2 hours up to 24 hours and
12 hours beyond that. Core counts are binned in loga-
rithmic bins of 12. Jobs are first binned by core count,

3



and each bin is then subdivided by wallclock limit re-
quested. The mean, median and total numbers of jobs
in each bin are then calculated. A sample graph of the
median of Effective Queue duration by wallclock limit
requested and core count is shown in Figure 5.

Figure 4: An example report comparing the median ef-
fective queue duration against requested wall clock limit.

Figure 5: An example report comparing the median ef-
fective queue duration against both requested wall clock
limit and requested number of cores.

The fourth report plots the bypass count against
wallclock limit requested and core count. Bypass count
is the number of times a job was bypassed by lower pri-
ority jobs via backfill. Jobs are binned by core count
first and then by wallclock limit requested. The mean
and median of the bypass count are calculated for each
bin. A sample graph of the median of bypass count by
wallclock limit requested and core count is shown in Fig-
ure 6.

The fifth report is the fraction of wallclock limit not
used by jobs plotted against wallclock limit requested
and core count. The mean of the values are used to cal-
culate the percentage in each bin. A sample report is
presented in Figure 7.

The sixth report is a utilization report for the ma-
chine. Utilization is calculated for the time period be-
tween specified dates in steps of a specfied time delta

value. The report takes into account down time, such as
time taken for preventative and emergency maintenance.
Utilization is calculated based on the start and end times
of jobs. A sample graph of utilization is shown Figure 8.

Figure 6: An example report comparing the median
bypass count against requested wall clock limit and re-
quest number of cores.

Figure 7: An example report showing the unused frac-
tion of wall clock time by requested wall clock limit and
requested number of cores.

Figure 8: An example report showing the fractional
utilization of the resource for a given period of time.

4



2.4 Simulation Experiment

The workload and resources traces used in the sim-
ulations presented here are taken from historical data
for Kraken from May to December 2010. Both traces
have been filtered to some degree to simplify the simula-
tion. In the resource trace, service nodes were removed,
as only jobs using compute nodes were of interest. Simi-
larly, size=0 jobs were removed from the workload trace,
as these do not use compute nodes. Also, since the
simulations were intended to model the effects of policy
changes on Kraken’s capacity workload and since capa-
bility runs on the system involve a significant degree of
manual intervention that would be difficult to simulate,
all capability and dedicated jobs were removed from the
workload trace. The configuration of the Moab simu-
lation instance used to generate the baseline simulation
was as close as possible to the production Moab configu-
ration on Kraken, aside from changes needed specifically
for simulation mode. The simulation was configured to
have a constant queue depth of 1,000 jobs, as this is
roughly what is seen in normal operation on Kraken.

However, configuring a simulation instance of Moab
is more difficult that it appears at first blush. The
documentation for Moab simulation mode is vague and
poorly maintained, and there are a number of less-than-
obvious behaviors that were discovered in the course of
this project [6]. For instance, the Moab documentation
does not mention that the POLLINTERVAL parameter,
which controls how often Moab runs its scheduling iter-
ation in normal operation, controls the simulation time
step in simulation mode. While one would typically con-
figure POLLINTERVAL to 30 to 60 seconds in normal
operation, in simulation mode it must be set to values
more on the order of 5 to 10 minutes in order to run a
simulation at significantly faster than real time. A simu-
lation POLLINTERVAL setting of 5 minutes will result
in a simulation that runs at about 40 times real time.

The constant queue depth configuration of the simu-
lation also causes problems due to bugs in Moab simula-
tion mode. Jobs that are canceled through Moab (as op-
posed to TORQUE) will have JOBCANCEL records in
the event logs; however, these canceled jobs are never ac-
tually purged in the simulation. Thus, large numbers of
canceled jobs can fill up available slots in the fixed-length
queue indefinitely. Also, in some cases jobs that become
ineligible to run due to policy reasons (for instance, due
to a limit on the number of idle jobs allowed per user)
never return to eligibility. The combination of these re-
sulted in simulations that had no eligible jobs past the
middle of the fourth month of the simulation. Both of
these bugs have been reported to Adaptive Computing
and are being investigated at the time of this writing.

This experiment involves two simulations denoted
“baseline” and “no negbal” that are differentiated only
by whether jobs with a “negbal” quality-of-service utilize
backfill. The goal of this experiment is to determine the
impact that allowing “negbal” jobs to backfill has on re-
source utilization. A uniform range of dates is chosen for
comparison between these simulations due to previously
mentioned bugs which starve the simulation of available
jobs at long times. As seen in Figure 9, the daily average
resource utilization during the month of August 2010 ex-
hibits a sharp decline in utilization due to available job
starvation; thus, only the three month period between
May 1, 2010 and July 31, 2010 is considered as viable
for the purposes of this experiment.

Figure 9: A plot showing the daily average resource
utilization for the baseline simulation during the month
of August 2010.

3 Results

Figure 10 shows the weekly average resource utiliza-
tion between May 1 and July 30, 2010. The utilization
for the baseline remains above 90% through the entire
period. However, the utilization for the no negbal case
is between 90% and 74%. Over the period between May
1 and July 31, 2010 the average utilization for the base-
line and no negbal simulations are 95% and 84%, respec-
tively. This 15% decrease in overall utilization suggests
that allowing these jobs to run in backfill has a substan-
tial positive effect on resource utilization.

To further investigate the cause of this decreased uti-
lization, the resource utilization leading up to scheduled
preventative maintenance (PM) periods is analyzed. In
both the baseline and no negbal simulations, about 55%
of non-negbal jobs require less than 2 hours and about
68% of non-negbal jobs require less than 512 compute
cores, suggesting that sufficient jobs exist in both simula-
tions to effectively utilize backfill. Despite the similarity
between the simulations in the availability of non-negbal

5



jobs capable of backfilling, the observed utilizations dur-
ing the drains associated with the PM periods clearly in-
dicate significantly different scheduling behavior for the
two simulations.

Figure 10: The weekly average resource utilization for
the baseline and no negbal simulations.

Figure 11 shows the daily average resource utilization for
two weeks between May 23 and June 5, 2010. A marked
decrease in utilization is seen on Wednesdays during the
period for the baseline simulation. This corresponds to
the weekly PM scheduled between 8:00 AM and 8:10 AM
each Wednesday. However, the utilization depression is
more pronounced for the no negbal simulation extending
to the previous day.

Figure 11: The daily average resource utilization for
the baseline and no negbal simulations over two weeks.

Figure 12 shows the hourly average resource utilization
for Tuesday May 25 at 6:00 AM to Wednesday May 26,
2010 at 11:00 AM. The baseline simulation starts drain-
ing, as defined by a sustained utilization less than 90%,
11 hours before the scheduled PM; but, the no negbal
simulation begins draining 24 hours before the scheduled

PM. This drastically different draining profile suggests
that the execution of backfillable non-negbal jobs might
be inhibited by disabling backfill for negbal jobs. Per-
haps the most plausible explanation for the unexpected
magnitude of this behavior is that ineligible negbal jobs
are filling up the simulation queue and artificially in-
hibiting the injection of eligible jobs.

Figure 12: The hourly average resource utilization for
the baseline and no negbal simulations over two days.

Figure 13 shows the mean effective queue duration, the
cumulative time a job was eligible in the queue, for non-
negbal jobs as a function of requested wallclock time for
the period May 1 to July 31,2010. The no negbal simu-
lation shows a significant decrease in the mean effective
queue duration as compared to the baseline simulation.
This result is consistent with the lower resource utiliza-
tion of the no negbal simulation. However, this result is
not consistent with a situation in which backfill efficiency
is depressed as seen in previous examples.

Figure 13: The mean effective queue duration as a
function of wallclock time requested for the baseline and
no negbal simulations.

6



4 Conclusion

Although this work shows progress towards model-
ing the drains associated with scheduled PMs, achieving
appropriate performance toward high throughput simu-
lation, and collecting and analyzing appropriate queue
data, appropriate simulation of job interactions within
the queue remains a challenge. The experiment pre-
sented in this work illustrates two problems with the
handling of the simulation queue. First, the use of a
fixed queue depth artificially limits the maximum num-
ber of jobs considered for scheduling due to bugs within
the Moab simulator. Specifically, some jobs (such as can-
celed jobs) are allowed to fill a slot within the queue inde-
finately, causing such jobs to accumulate over long sim-
ulation periods. This accumulation effectively reduces
the depth of the queue as simulations progress, resulting
in eligible job starvation that adversely affects resource
utilization. Secondly, the fixed queue depth adversely
affects the results for the no negbal simulation by block-
ing higher priority jobs that would normally be injected
into the job mix. This allows negbal jobs to run ahead
of other higher priority jobs when the fixed-depth queue
fills entirely with negbal jobs. Since the total number
of negbal jobs in each studied simulation is roughly ten
times the queue depth, it is likely that the queue can be-
come dominated by these low priority jobs which could
not be backfilled in the no negbal simulation. This situ-
ation explains the apparent lack of backfilling in system
drains, the high number of negbal jobs run within the
simulation, and the shorter effective queue duration.

5 Future Work

The path forward for this research focuses on exam-
ining alternate approaches for managing the injection of
jobs into the simulator. Specifically, the use of job sub-
mission times included in the workload trace to control
the injection of jobs merits investigation. This approach
is expected to better model policy interactions, but eli-
gible job starvation is expected to impact utilization due
to the increase in efficiency of the simulated system as
compared to the actual resource reflected in the work-
load trace. Future investigations are also expected to
examnine the combined use of minimum queue depths
and submission times as a possible means to more real-
istically model real-world queue behavior.

6 About the Authors

All of the authors are employed by the University
of Tennessee at the National Institute for Computa-
tional Sciences (NICS) at Oak Ridge National Labora-

tory (ORNL). They can be contacted by mail at National
Institute for Computational Sciences, Oak Ridge Na-
tional Laboratory, P.O. Box 2008 MS6173, Oak Ridge,
TN 37831-6173.

Lonnie D. Crosby is a computational scientist with
a Ph.D. in Chemistry from The University of Memphis
located in Memphis, TN. He can be contacted by email
at lcrosby1@utk.edu.

Troy Baer is a HPC systems administrator with
a M.S. in Aerospace Engineering and a B.S. in
Aerospace Engineering. He can be reached by emailing
tbaer@utk.edu.

R. Glenn Brook is a computational scientist with a
Ph.D. in Computational Engineering from the Univer-
sity of Tennessee at Chattanooga. He can contacted by
email at glenn-brook@tennessee.edu.

Matt Ezell is a HPC systems administrator with a
B.S. in Electrical Engineering. He can be reached via
email at ezell@nics.utk.edu.

Tabitha K. Samuel is a HPC systems programmer
with a M.S. in Computer Science and a B.E. in Com-
puter Science and Engineering. She can be reached via
email at tsamuel@utk.edu.

References

[1] Troy Baer and Don Maxwell. Comparison of schedul-
ing policies and workloads on the nccs and nics xt4
systems at oak ridge national laboratory. In Proceed-
ings of Cray User Group Meeting 2009, Atlanta, GA,
May 2009.

[2] Troy Baer. Using quality of service for scheduling on
cray xt systems. In Proceedings of Cray User Group
Meeting 2010, Edinburgh, Scotland, May 2010.

[3] P. Andrews, P. Kovatch, V. Hazlewood, and T. Baer.
Scheduling a 100,000 core supercomputer for maxi-
mum utilization and capability. In Parallel Process-
ing Workshops (ICPPW), 2010 39th International
Conference on, page 421. IEEE, September 2010.

[4] Moab workload manager [online]. 2011. Avail-
able from: http://www.clusterresources.

com/pages/products/moab-cluster-suite/

workload-manager.php [cited 05/10/2011].

[5] Torque resource manager [online]. 2011. Available
from: http://www.clusterresources.com/pages/

products/torque-resource-manager.php [cited
05/10/2011].

[6] Simulations [online]. 2011. Available from:
http://www.adaptivecomputing.com/resources/

docs/mwm/16.3.0simulations.php [cited
05/10/2011].

7



[7] Workload accounting records [online]. 2011. Avail-
able from: http://www.adaptivecomputing.com/

resources/docs/mwm/16.3.3workloadtrace.php

[cited 05/10/2011].

[8] Resource traces [online]. 2011. Available from:
http://www.adaptivecomputing.com/resources/

docs/mwm/16.3.2resourcetrace.php [cited
05/10/2011].

8


