

Cray User Group 2011 Proceedings 1 of 6

Evolution of the Cray Performance Measurement and Analysis
Tools

Heidi Poxon, Cray Inc.

ABSTRACT: The goal of the Cray Performance Measurement and Analysis Tools is to
help the user identify important and meaningful information from potentially massive
data sets by providing hints around problem areas instead of just reporting raw data.
Analysis of data that addresses multiple dimensions of scalability including millions of
lines of code, lots of processes or threads and long running applications is needed. The
Cray toolset supports these dimensions by collecting information at process and thread
levels, and providing features such as load imbalance analysis, derived metrics based on
hardware events, and optimal MPI rank placement strategies. This paper focuses on
recent additions to the performance tools to enhance the analysis experience and support
new architectures such as hybrid X86 and GPU systems. Work presented includes
support for applications using PGAS programming models, loop work estimates that help
identify parallel or accelerator loop candidates, and statistics around accelerated loops.

KEYWORDS: Programming Environment, performance tools, GPUs

1. Introduction
The Cray Performance Measurement and Analysis

Tools are set on an evolutionary path to address the
application performance analysis challenges associated
with the next generation systems. Current performance
data collection techniques can produce excessive amounts
of information, making it extremely difficult for users to
correlate observations from data to understand
performance behavior. In addition, the vast amounts of
data generated for performance analysis degrades current
tool response time and usability. Enhancements to the
Cray performance tools have been evolving the software
to better manage data collection and presentation as well
as provide derived metrics and tips to help the user isolate
performance issues within an application. Over the next
several years it is projected that there will be a dramatic
increase in node concurrency; from approximately 24 per
node to between 1000 and 10,000. The first example of
this is the new hybrid X86 and GPU systems. Several
features are being added this year to the Cray
performance toolset to support better analysis of programs
that want to take advantage of hybrid systems. After an

overview of the tools, the following sections present
recent work and work under development that focuses on
performance analysis assistance for these next generation
systems.

1.1 Overview of the Cray performance tools

The Cray performance toolset provides an integrated

infrastructure for measurement and analysis of
computation, communication, I/O, and memory
utilization. It allows developers to perform trace
experiments on single-processor or multiple-processor
executables at the binary level with function and loop
granularity. It supports the MPI and OpenMP
programming models, as well as the PGAS and Chapel
parallel programming languages.

The Cray Performance Measurement and Analysis

Tools consist of components that prepare a program for
performance analysis experiments, capture performance
data during program execution, process and analyze the
data, and present performance results to the user in both a

Cray User Group 2011 Proceedings 2 of 6

text report and through an interactive graphical user
interface.

CrayPat is the data capture tool, which is used to

prepare user programs for performance analysis
experiments, to specify the kind of data to be captured
during program execution, and to prepare the captured
data for text reports or for use with other programs.

Performance data is captured during application

execution by sampling at intervals, or upon entry/return
from traced functions, and is recorded in the form of a
summarization of events over time (profile), or a
sequence of events of time (trace). Each process collects
its own performance data. Per process buffers in memory
are used to temporarily store local collected performance
data. The data in these buffers is later flushed to a
performance log file on a parallel file system.

The user can optionally control the behavior of the

instrumented program during execution through a set of
runtime environment variables that affect what and how
the performance data is collected. Examples of this
include the enabling of predefined hardware counter
groups that track chosen sets of hardware events, the
ability to choose the mechanism to use to sample the
application, and the ability to modify the number of data
files that are written in parallel by the processes. By
default, a runtime summarization of the data is provided,
which involves aggregation of the data.

Through higher-level derived metrics, the toolset

helps identify the “why” to unexpected performance, so
the application developer can more quickly identify the
source of intra-node performance bottlenecks.

The pat_report utility available in the toolset

performs two functions. It reads state and event data in
the performance file created by the runtime library, and
generates text reports according to the groups selected,
presented in table format. Reports display such detail as
hardware performance counters event values, call trees,
and special processing for the function groups. One of
the strengths of this utility is that it can be run several
times against the same collected performance data to
provide different combinations of data, so that the user
can choose the subset from the collected data that best
suits their needs.

Cray Apprentice2 displays data that was captured by

CrayPat. This visualization tool displays a variety of

different data panels, depending on the type of
performance experiment that was conducted. Its target is
to help identify conditions including load imbalance,
excessive serialization, excessive communication and
network contention.

2. Support for hybrid X86 and GPU systems

2.1 Loop statistics
To help application developers transition their

programs to take advantage of increased on-node
concurrency, the Cray performance measurement and
analysis tools have added loop statistics to help the user
find additional parallelism. In addition to collecting
sampling information to identify the top time consuming
functions within a program, the user can collect timing
and iteration counts for serial loops to get an estimate for
the amount of work performed in a loop or multi-level
loop nest. This can help determine whether or not a
particular loop would then benefit from being parallelized
for execution on the X86 in a multi-core environment
and/or benefit from being executed on a GPU.

This functionality is available for programs that are

built with the Cray Compiling Environment (CCE). If the
user specifies -h profile_generate when
compiling and linking their program, CCE will measure
timing and loop trip counts for all loops within the
compiled functions. The loop timing statistics provide a
rough estimate for the amount of work in the loop, and the
loop trip counts can be used to help carve up the loop on
the GPU. It should be noted that these measurements are
done for all loops (inner and outer) and even though
vectorization is still preserved within the inner loop,
additional optimizations that CCE would normally do
may not be present during this experiment. Additional
performance analysis should be done in separate
experiments with full CCE optimization.

Loops are identified by the function where they

reside, their nesting level and by their source line number.
Loop statistics presented in the default report provide
inclusive times shown as a percentage of the overall time,
the number of times a loop is called during program
execution, the average trip count, and optimization
feedback / hints from the compiler which are defined in
the table’s notes section. The following example shows
loop statistics provided by pat_report.

Cray User Group 2011 Proceedings 3 of 6

Notes for table 2:
 Table option:
 -O loops
 …
 The Function value for each data item is the avg of the PE values.
 (To specify different aggregations, see: pat_help report options s1)

 This table shows only lines with Loop Incl Time / Total > 0.0095.
 (To set thresholds to zero, specify: -T)

 Loop instrumentation can interfere with optimizations, so time
 reported here may not reflect time in a fully optimized program.

 Loop stats can safely be used in the compiler directives:
 !PGO$ loop_info est_trips(Avg) min_trips(Min) max_trips(Max)
 #pragma pgo loop_info est_trips(Avg) min_trips(Min) max_trips(Max)

 Explanation of Loop Notes (P=1 is highest priority, P=0 is lowest):
 novec (P=0.5): Loop not vectorized (see compiler messages for reason).
 sunwind (P=1): Loop could be vectorized and unwound.
 vector (P=0.1): Already a vector loop.

Table 2: Loop Stats from -hprofile_generate

 Loop |Loop Incl |Loop Incl | Loop | Loop | Loop |Function=/.LOOP\.
 Incl | Time | Time / | Hit | Trips | Notes | PE='HIDE'
 Time / | | Hit | | Avg | |
 Total | | | | | |

|---
| 24.6% | 0.057045 | 0.000570 | 100 | 64.1 | novec |calc2_.LOOP.0.li.614
| 24.0% | 0.055725 | 0.000009 | 6413 | 512.0 | vector |calc2_.LOOP.1.li.615
| 18.9% | 0.043875 | 0.000439 | 100 | 64.1 | novec |calc1_.LOOP.0.li.442
| 18.3% | 0.042549 | 0.000007 | 6413 | 512.0 | vector |calc1_.LOOP.1.li.443
| 17.1% | 0.039822 | 0.000406 | 98 | 64.1 | novec |calc3_.LOOP.0.li.787
| 16.7% | 0.038883 | 0.000006 | 6284 | 512.0 | vector |calc3_.LOOP.1.li.788
| 9.7% | 0.022493 | 0.000230 | 98 | 512.0 | vector |calc3_.LOOP.2.li.805
| 4.2% | 0.009837 | 0.000098 | 100 | 512.0 | vector |calc2_.LOOP.2.li.640
|===

2.2 GPU statistics
In addition to providing support to help identify serial

loops within a program that would be worth parallelizing,
the Cray performance toolset is adding statistics for
accelerated regions. These statistics give the user
feedback on how well an accelerated region performed
within their overall application, and how well it
performed on the GPU. Advantages that the Cray tools
offer over GPU-specific profilers include summarized
results that are consolidated in one place, statistics
mapped back to the user source by line number and
grouped by OpenMP accelerator directive, and statistics
tied to the program as a whole.

Current development work is focused on providing

performance statistics that include host time for kernel

launches, data copies and synchronization with the GPU,
GPU time for kernel execution and data copies, and the
number of times each accelerated region was called
during program execution. Events associated with an
accelerated region are identified by the function where
they reside, the type of event (async_copy, async_kernel,
etc), and by the source line number. Kernel level statistics
will also be provided which include information on
memory usage, grid size, block size, etc. And to better
understand how an accelerated region is performing on
the GPU, GPU hardware counter statistics will be
available.

When a program is built with the CCE compiler and

contains accelerated regions through OpenMP directives,
statistics are automatically collected for the user and
presented in the default report. When a program is built

Cray User Group 2011 Proceedings 4 of 6

with the PGI compiler and contains PGI acc directives,
or contains GPU kernels generated using the CUDA API,
the user can use the PAT_region API to bracket
accelerated regions within the source for data collection
and presentation by the Cray performance tools. The
following example shows accelerated region timing
statistics provided by pat_report.

Notes for table 3:

 Table option:
 -O accelerator

 The Group value for each data item is the avg of the PE values.
 The PE value for each data item is the max of the Thread values.
 The Thread value for each data item is the sum of the Calltree values.
 The Calltree value for each data item is the sum of the Function values.
 (To specify different aggregations, see: pat_help report options s1)

 Percentages at each level are of the Total for the program.
 (For percentages relative to next level up, specify:
 -s percent=r[elative])
 For synchronous accelerator events Acc Time is set equal to Host Time.

Table 3: Time and Bytes Transferred for Accelerator Regions

 Host | Host Time | Acc Time | Acc Copy | Acc Copy | Calls |Group='ACCELERATOR'
 Time % | | | In (MB) | Out (MB) | | PE=0
 | | | | | | Thread=0
 | | | | | | Calltree
 | | | | | | Function

 100.0% | 14.84495 | 13.615016 | 14550.536 | 10461.216 | 1777 |Total
|---
| 100.0% | 14.84495 | 13.615016 | 14550.536 | 10461.216 | 1777 |ACCELERATOR
||--
|| 93.7% | 13.909414 | 12.418942 | 13274.781 | 9675.075 | 1777 |mg_
|||---
3|| 51.8% | 7.692439 | 7.645484 | 7902.816 | 6399.489 | 1630 |mg3p_
||||--
4||| 21.7% | 3.229140 | 3.216513 | 3758.31 | 2254.986 | 420 |resid_
|||||---
5|||| 11.9% | 1.767674 | 1.763377 | 2254.986 | 751.662 | 140 |resid_(exclusive)
||||||--
6||||| 7.8% | 1.158744 | 1.158958 | 2254.986 | 0.000 | 35 |resid_.ASYNC_COPY@li.459
6||||| 4.1% | 0.604365 | 0.337742 | 0.000 | 751.662 | 35 |resid_.ASYNC_COPY@li.492
6||||| 0.0% | 0.003903 | 0.000000 | 0.000 | 0.000 | 35 |resid_.SYNC_WAIT@li.492
6||||| 0.0% | 0.000662 | 0.266677 | 0.000 | 0.000 | 35 |resid_.ASYNC_KERNEL@li.459
|||||===
5|||| 9.9% | 1.461466 | 1.453136 | 1503.324 | 1503.324 | 280 |comm3_
||||||--
6||||| 2.6% | 0.384892 | 0.387225 | 751.662 | 0.000 | 35 |comm3_.ASYNC_COPY@li.1093
6||||| 2.6% | 0.384830 | 0.387166 | 751.662 | 0.000 | 35 |comm3_.ASYNC_COPY@li.1063
6||||| 2.3% | 0.341989 | 0.337894 | 0.000 | 751.662 | 35 |comm3_.ASYNC_COPY@li.1092
6||||| 2.3% | 0.340363 | 0.337982 | 0.000 | 751.662 | 35 |comm3_.ASYNC_COPY@li.1106
6||||| 0.0% | 0.003913 | 0.000000 | 0.000 | 0.000 | 35 |comm3_.SYNC_WAIT@li.1092
6||||| 0.0% | 0.003888 | 0.000000 | 0.000 | 0.000 | 35 |comm3_.SYNC_WAIT@li.1106
6||||| 0.0% | 0.000805 | 0.000584 | 0.000 | 0.000 | 35 |comm3_.ASYNC_KERNEL@li.1093
6||||| 0.0% | 0.000786 | 0.002285 | 0.000 | 0.000 | 35 |comm3_.ASYNC_KERNEL@li.1063
||||||==
...

Cray User Group 2011 Proceedings 5 of 6

3. Recent additions to the performance tools

In addition to enhancements for hybrid GPU systems, the
following recent additions to the Cray performance tools
have been made to improve usability, scalability, and new
architecture support.

3.1 New product license and access
Starting with the 5.1.0 release of the Cray

performance tools, the CrayPat and Cray Apprentic2
products have been combined into a single product called
the Cray Performance Measurement and Analysis Tools
(CPMAT). This change was made to simplify licenses,
packaging, and to address software dependencies that
exist between the products. In addition, license check
support has been added to the product using the FLEXlm
license manager.

Access to the software has been simplified so that
users no longer need to load two modulefiles to access the
performance tools. Loading the perftools modulefile will
set the user's environment for access to CrayPat
(pat_build, pat_report, etc.), PAPI and Cray Apprentice2
(app2).

3.2 Support for Gemini network counters
Access to Gemini network counters was added to the

CPMAT 5.1.0 release (available June 2010). Access to
these counters is only available through CrayPat. Users
can collect network counter event information to
understand how much traffic they are sending to and from
the network, or to isolate nodes where network traffic
results in delays within their application.

When an application is instrumented to collect
network counter events, values are recorded at runtime
and presented to the user in the default report. The
CrayPat user interface for requesting instrumentation is
similar to that for CPU hardware counter events and is
specified through a set of environment variables. The
following example shows the presentation of counter
events averaged across the nodes for the job.

Table 2: NWPC Data by Function Group and

Function

Group / Function / Node Id='HIDE’
==
Total
--
 Time% 100.0%
 Time 1.848819s
 GM_ORB_PERF_VC1_STALLED 8175
 GM_ORB_PERF_VC1_BLOCKED 0
 GM_ORB_PERF_VC1_BLOCKED_PKT_GEN
 26206
 GM_ORB_PERF_VC1_PKTS 26628
 GM_ORB_PERF_VC1_FLITS 120606
 GM_ORB_PERF_VC0_STALLED 27549

 GM_ORB_PERF_VC0_PKTS 26319
 GM_ORB_PERF_VC0_FLITS 54780
 GM_AMO_PERF_COUNTER_EN 0
 GM_AMO_PERF_CQ_FLIT_CNTR 4796
 GM_AMO_PERF_CQ_PKT_CNTR 2396
 GM_AMO_PERF_CQ_STALLED_CNTR 0
 GM_AMO_PERF_CQ_BLOCKED_CNTR 0
==

Documentation on Gemini network counters and how

to access them through CrayPat is available in the “Using
the Cray Gemini Hardware Counters” technical note
available in the Knowledge Base on http://docs.cray.com/.

3.3 New format for processed performance data
To improve scalability and better support

performance measurement and analysis of larger jobs, a
new more scalable .ap2 file data format was recently
introduced. This functionality is mostly transparent to the
user. Users benefit from greatly reduced pat_report
processing and report generation times, as well as Cray
Apprentice2 data load times. The following table shows
example improvements of data processing and report
generation times.

Table 1: Data and report processing times

Perftools 5.1.3
(seconds)

Perftools 5.2.0
(seconds)

CPMD (960 cores)
.xf -> .ap2 88.5 22.9

.ap2 -> report 1512.3 49.6

VASP (768 cores)

.xf -> .ap2 45.3 15.9
.ap2 -> report 796.9 28.0

3.4 Client/server model
To further improve tool response time, a new

distributed Cray Apprentice2 client for Linux has been
introduced so that the graphical presentation is handled
locally and not passed through the ssh connection
between the user’s laptop and the Cray service node.
Prior to a client/server model, all of the performance data
collected from an experiment needed to be loaded into
memory before any results were displayed. This created
size limitations as well as long load times. The
combination of the new data format and this new
client/server model minimizes the amount of data loaded
into memory at any given time and thus creates a smaller
footprint on the Cray service node. Development of
clients targeted for Mac and Windows laptops are also in
the works.

Cray User Group 2011 Proceedings 6 of 6

3.5 PGAS support
The performance tools have been enhanced to

provide a simplified procedure for collecting performance
statistics for programs that use the UPC or Co-array
Fortran programming models. The procedure is now
similar to that for MPI programs. Users can use the
Automatic Profiling Analysis feature (-O apa) on
PGAS programs to get a profile that associates time back
to the original source lines in the program. The –g upc
or –g caf predefined wrappers are automatically added
with –O apa, and internal levels of pgas runtime
routines are pruned from reports, much like is done for
internal calls to Portals routines for MPI programs.

4. A look into the future
To support application performance tuning and

optimization on the next generation Cray systems, an
advanced performance analysis tool is currently being
developed. This new functionality will extend Cray's
existing performance measurement, analysis and
visualization technology by combing performance
statistics, program source code visualization with Cray
compiler optimization feedback, and the ability to easily
navigate through source to highlighted dependencies or
bottlenecks during the optimization phase of program
development or porting.

The user will be able to navigate through his or her
source code using the application information database
information provided by the Cray Compiling
Environment (CCE) and the performance data collected
by the Cray performance toolset, to understand which
high-level loops could benefit from multiple levels of
parallelism. The tool will provide dependency
information for those loops, as well as assist the user
when parallelizing a loop.

7. Conclusion
The Cray Performance, Measurement and Analysis

Tools are set on a path to handle larger jobs, provide a
better user experience, and to offer needed assistance to
users moving to the next generation many-core / hybrid
systems. As levels of on-node concurrency increase, the
performance tools will continue to look for intuitive ways
to direct the user to relevant bottlenecks that need
attention.

Acknowledgments
The author would like to thank her colleagues and

our users for the wealth of insight and feedback provided

over the years, which have helped us target needed
functionality and offer state of the art performance tools.

