
Large-scale performance analysis of PFLOTRAN with Scalasca
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ABSTRACT: The PFLOTRAN code for multiphase subsurface flow and reactive transport has featured prominently in US De-
partment of Energy SciDAC and INCITE programmes, where is has been used to simulate migration of radionucleide contaminants
in groundwater. As part of its ongoing development, execution performance with up to 128k processor cores on Cray XT and IBM
BG/P systems has been investigated, and a variety of aspects have been identified to inhibit PFLOTRAN performance at larger
scales using the open-source Scalasca toolset. Scalability of Scalasca measurements and analyses themselves, previously demon-
strated with a range of applications and benchmarks, required re-engineering in key areas to handle the complexities of PFLOTRAN
executions employing MPI within PETSc, LAPACK, BLAS and HDF5 libraries at large scale.

KEYWORDS: MPI, performance measurement and analysis,
scalability

1 Introduction
Scalasca is an open-source toolset for analysing the execution
behaviour of applications based on the MPI and/or OpenMP
parallel programming interfaces supporting a wide range of cur-
rent HPC platforms [1, 7]. It combines compact runtime sum-
maries, that are particularly suited to obtaining an overview
of execution performance, with in-depth analyses of concur-
rency inefficiencies via event tracing and parallel replay. With
its highly scalable design, Scalasca has facilitated performance
analysis and tuning of a range of applications on Cray XT and
XE systems [22] and consisting of unprecedented numbers of
processes, namely 294,912 on IBM Blue Gene/P and 196,608
on Cray XT5 [23].

In the context of a 2010 workshop on “Program development
for extreme-scale computing” [12], developers of debugging
and performance tools were challenged to analyse two MPI-
based applications executing with at least 10,000 processes
on the two dominant HPC architectures, IBM Blue Gene/P
(jugene.fz-juelich.de) and Cray XT5 (jaguar.nccs.ornl.gov).
The Virtual Institute – High-Productivity Supercomputing and
Performance Evaluation and Analysis Consortium generously
provided accounts and sizable resource allocations on the lead-
ership systems at Jülich Supercomputing Centre and Oak Ridge
National Laboratory to research groups and vendors (including
Cray and IBM) for this challenge, and support staff at each facil-
ity assisted as necessary to get system software and the subject
applications installed and running.

After reviewing the challenge applications, performance
measurement and analysis of PFLOTRAN with Scalasca is pre-
sented. While the version of Scalasca available at the time
proved able to master the set challenge, important lessons were
learnt in the process that drove research and development of
improved measurement and analysis for complex applications
at large scales.

2 Challenge applications
One of the subject applications was the PEPC three-
dimensional parallel tree code used for various plasma and as-
trophysics simulations available as part of DEISA and PRACE
benchmark suites [11]. It could be built and run without diffi-
culty on both systems, however, with the available datasets its
scalability was limited to a maximum of 16,384 processes. This
was therefore not particularly challenging, and many tools suc-
cessfully demonstrated debugging and analysis of its execution
performance. Scalasca was able to compare analyses of PEPC
executions on Jugene IBM BG/P and Jaguar Cray XT5 and the
relative efficiency of collective communication for the tree walk
used updating fields [22].

The other subject application, and focus of this paper, was the
PFLOTRAN three-dimensional reservoir simulator [4] that has
featured prominently in US Department of Energy SciDAC [18]
and INCITE [10] programmes, where it has been used to sim-
ulate migration of radionucleide contaminants in groundwater
and geologic CO2 sequestration [13, 9, 14, 15, 8]. The chal-
lenge test case [19] consisted of the version of the code from
January 2010, with already improved performance and scalabil-
ity as a result of PERI [17] “Tiger Team” active liaison, and 10
simulation time-steps of a “2B” radionucleide transport prob-
lem dataset for the DOE Hanford 300 area next to the Columbia
River in southeastern Washington state as shown in Figure 1.

This coupled flow and transport simulation consists of al-
ternating groundwater flow (PFLOW ) and reactive, multi-
component contaminant transport (PTRAN ) in each time-step,
where fluid fluxes and phase saturation states are used to com-
pute solute transport. The problem consists of 850×1000×160
cells and includes 15 chemical components, resulting in 136E6
and 2.04E9 total degrees of freedom in the flow and transport
solves, respectively. Simulations use a structured grid contain-
ing inactive cells along the river boundary and the associated
domain decomposition results in idling about 5% of processes.
Some 80,000 lines of Fortran9X are organised in 97 source files,
and the code uses the PETSc, LAPACK, BLAS and HDF5 I/O
libraries which encapsulate MPI usage. An outer, inexact New-
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Figure 1: Geology of DOE Hanford 300 Area (WA, USA) in
PFLOTRAN “2B” test case, showing 6–7% of grid cells in-
active within channel of Columbia River, and isosurfaces of
acqueous radionucleide concentration in October timeframe
(used with authors’ permission [8]).

ton method with an inner, exact stabilised bi-conjugate gradient
solver (BiCGstab) from PETSc is employed. For the PFLO-
TRAN test case a developer version (petsc-dev) of PETSc [5]
was required, which itself proved to be rather challenging to
build and install on the test systems and led to the majority of
support requests from the tools teams. (Converting PFLOTRAN
input data files from DOS to Unix format so that they were read
correctly was a relatively minor inconvenience by comparison.)

On both HPC platforms the recommended compilers and
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Figure 2: Average timestep durations of PFLOTRAN “2B”
test case on Jaguar Cray XT5 and Jugene IBM BG/P at a range
of scales, with separation of ‘flow’ and ‘tran’(sport) phases.
Ideal scaling shown by yellow lines.

MPI libraries were employed, namely PGI 10.3 compilers and
Cray XT-MPT on Jaguar and IBM XL 9.0/11.1 compilers and
BG-MPI on Jugene, to build both PETSc and PFLOTRAN
(while linking other system-installed libraries). Jaguar has com-
pute nodes comprising dual hex-core 2.6 GHz Opteron proces-
sors whereas Jugene has quad-core 850 MHz PowerPC proces-
sors, with Jaguar also having 1333MB memory per core com-
pared to 512MB on Jugene. Where available compute node
memory allowed it, executions with the test data set were done
in “virtual node” mode with an MPI process running on each
processor core in a dedicated system partition.

PFLOTRAN execution times for strong scaling on Jaguar
and Jugene, as reported by the application itself for 10 simula-
tion timesteps, are shown in Figure 2. (Initialization where the
input dataset is read and distributed, and final writing of simula-
tion results, were part of an on-going I/O optimisation activity,
and excluded here as they are subject to considerable variation
on the shared parallel filesystems.) Note that rather than using
full 12-core nodes on Jaguar, the process counts used there were
also powers of two, as this was found to result in better perfor-
mance due to preferred three-dimensional decompositions.

For this test case, solver scalability (‘flow+tran’) is seen to
be very good up to 32k processes on Jugene IBM BG/P, and
although it is more than four times faster with 4k processes on
Jaguar Cray XT5 (and indeed fastest overall with 32k processes
on Jaguar) inferior scalability is evident. Larger executions with
up to 128k processes on both systems have diminished perfor-
mance. Considering the two solver phases separately, reactive
transport (‘tran’) scales much better than groundwater ‘flow’ on
both platforms, and while ‘flow’ is faster at smaller scales there
is a crossover with more than 16k processes on Jaguar Cray
XT5.

As the PFLOTRAN developers note [14], although the “2B”
test case is considered ‘petascale’ it is still a very small prob-
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lem to be running on so many processors. They also re-
port substantial performance benefits achieved via both algo-
rithmic improvements and adjustment of a number of MPI
communication-related environment variables. Neither of these
aspects were pertinent to the Dagstuhl challenge of analysing
the execution performance and scalability of the specified con-
figuration, diagnosis of its inefficiencies and proposing potential
remedies.

3 Performance analysis with Scalasca
PFLOTRAN presented a variety of challenges for its perfor-
mance analysis with Scalasca, ranging from instrumentation,
measurement collection and analysis, to analysis report ex-
ploration. Some of these challenges were mastered with the
Scalasca 1.3.1 release that was current for the challenge in May
2010, others were improved in subsequent releases, and some
are work in progress.

3.1 Scalasca instrumentation
Configuring and building PETSc is a complex and lengthy un-
dertaking on IBM BG/P and Cray XT5, partially due to their
architecture with separate compute-nodes running Linux micro-
kernels. Initial trials using the default (uninstrumented) version
of PETSc and only using Scalasca to instrument PFLOTRAN
presented no undue difficulty, however, since most of the MPI
activity is delegated to PETSc it is desirable in this case to in-
strument PETSc sources to be able to relate measurements to
operations within the library.

Repeating the process to build a fully-instrumented version
was a straightforward matter of configuring PETSc using the
Scalasca instrumenter as a preposition to the compilers, e.g.,

--with-cc="scalasca -instrument cc"
--with-fc="scalasca -instrument ftn"

and with SKIN_MODE=none set to disable instrumentation
during configuration. SKIN_MODE was then unset before build-
ing PETSc and PFLOTRAN itself so that all of their sources
were automatically instrumented by the compilers and the
Scalasca measurement libraries included when linking (thereby
interposing on calls to MPI library routines). No compiler opti-
mizations are (explicitly) disabled by instrumentation with PGI
or IBM compilers, and Scalasca instrumented builds don’t take
notably longer than regular optimized builds (and the resulting
executable is only somewhat larger).

3.2 Scalasca measurement & analysis
The Scalasca measurement collection and analysis nexus fa-
cilitates both runtime summarization (summary) and automatic
trace analysis (trace) experiments from a single instrumented
executable and stores each experiment in a unique measure-
ment archive directory. Environment variables can be set ad-
just the runtime configuration, e.g., to increase measurement
buffer sizes. A runtime filter specifying instrumented routines
to ignore during measurement was generated from an initial

Table 1: Comparison of PFLOTRAN measurements using
PMPI interposition and instrumentation of user source routines
by compilers (and after applying runtime filtering of USR rou-
tines on non-MPI callpaths).

System Jugene Jaguar
Architecture IBM BG/P Cray XT5
Compilers IBM XL PGI
USR routines 1148 (292) 1137 (254)
Unique callpaths 12728 (1733) 10972 (1377)
Max. frame depth 63 (22) 63 (21)
MPI routines 29 28
MPI callpaths 633 452
Trace buffer content [MB] 3832.4 (26.1) 3819.7 (18.1)

USR routines 3807.5 (0.0) 3802.8 (0.0)
COM routines 11.1 7.6
MPI routines 14.9 10.5

summary experiment on each system: this approach both re-
duces the size of callpath profiles and the amount of measure-
ment overhead (particularly for frequently executed routines)
and thereby significantly improves the quality of subsequent
measurements. Table 1 summarizes the measured routines and
associated execution callpaths for default, unfiltered measure-
ments and when employing a runtime filter (in parenthesis).

With PFLOTRAN and PETSc routines instrumented by the
compilers, plus almost 30 routines used from the MPI library,
over 1100 instrumented routines were executed. Measurement
filters generated listing all routines not on a callpath to MPI
(i.e., purely local calculation) removed almost 900 of the in-
strumented (USR) user source routines for each compiler and
reduce the estimated per-process trace buffer content from al-
most 4 GB to much more reasonable sizes around 20 MB. This
still left over one thousand unique callpaths up to 22 frames
deep, of which approximately one third were callpaths to MPI
routines. Of the set of 399 ‘flow’ callpaths, only 40 were
missing from the ‘tran’ set, 14 had similarly named callpaths
(e.g., richardsjacobian vs rtjacobian and _MPIAIJ vs
_MPIBAIJ) and an additional 20 only were found in ‘tran,’
showing the considerable structural similarity between the two
operations (also apparent in Figure 7).

Times reported by PFLOTRAN for summary and trace col-
lections employing runtime filters on Jugene and Jaguar com-
pared with reference times from the uninstrumented executions
in Figure 3 show that measurement dilation is generally accept-
ably small, apart from trace collection with larger configurations
of processes. Whereas on Jaguar Cray XT5 the dilation is 100%
only for ‘flow’ at 128k processes, it is much more pronounced
in measurements on Jugene IBM BG/P for even 16k processes
and grows for 128k processes to 7x! This difference can be at-
tributed to translations of process ranks (from the local rank in
the MPI communicator to the global rank in MPI_COMM_WORLD)
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Figure 3: Average simulation timestep durations reported by
PFLOTRAN for Scalasca 1.3.2 summary and trace experi-
ments, with breakdown into ‘flow’ and ‘tran’(sport) phases,
compared to reference uninstrumented executions.

in every communication operation event recorded, and the rel-
ative speeds of computation and communication on both sys-
tems. Although it requires changing the trace file format, work
has been initiated to eliminate this unnecessary translation over-
head during measurement.

These filtered Scalasca summary measurements introduce
minimal overhead (even with hardware counter metrics in-
cluded) and require only a short amount of additional time to
collate the analysis report at completion, making them conve-
nient for acquiring an overview of execution performance. On
the other hand, tracing experiments need to be approached with
care. When submitting tracing experiments, it is important to
increase the job timelimit of the normal (uninstrumented) ap-
plication execution with the extra time for trace collection and
analysis (plus a reasonable cushion to allow for I/O variability).
Figure 4 shows the time for complete PFLOTRAN executions,
including initialization and finalization, and the associated ad-
ditional trace collection and analysis times.

2,048 4,096 8,192 16,384 32,768 65,536 131,072
Processes

10

100

1000

jugene: PFLOTRAN [s]
jugene: trace collection [s]
jugene: trace analysis [s]
jaguar: trace size [GB]
jaguar: PFLOTRAN [s]
jaguar: trace collection [s]
jaguar: trace analysis [s]
jaguar: report size [MB]

Figure 4: Additional time to collect and analyse Scalasca
traces (which increase linearly in size with the number of pro-
cesses) with complete time of uninstrumented PFLOTRAN
executions on Jugene IBM BG/P and Jaguar Cray XT5.

Also shown in Figure 4 are the amounts of event trace data,
which grow linearly with the number of MPI processes and need
to be stored temporarily on an efficient parallel filesystem with
sufficient capacity. Traces on Jugene were 47% larger than on
Jaguar, due to different IBM and PGI compiler instrumentation
approaches, reaching over 4.0 TB compared to 2.7 TB.1

After trace collection, Scalasca automatically initiates trace
analysis in parallel using the same computational resources to
produce analysis reports, which also grow linearly with the
number of processes.2 Performance naturally depends on the
filesystem, both I/O bandwidth and the cost of metadata oper-
ations, as well as the number of corrections that are required
to restore event timestamp consistency on systems which don’t
provide a globally synchronized clock. Figure 4 shows the best
trace collection and analysis times achieved with PFLOTRAN
on Jugene and Jaguar: since timing was done on service systems
with other applications running at the same time, I/O perfor-
mance can be highly variable. Trace collection times typically
scale better than linearly since they can exploit additional I/O
resources, with over 92 GB/s achieved on Jaguar (with its Lus-
tre filesystem) and over 40 GB/s on Jugene (with GPFS). Trace
analysis time is almost linear on BG/P, however, much less than
linear on XT5 where an additional replay of the trace is required
to correct timestamps.

Callpath profiles for complete executions of complex applica-
tions such as PFLOTRAN are large and unwieldy, and with sep-
arate profiles contained for each process they grow with scale.
Initialization and finalization phases, which contain highly vari-

1These traces didn’t include hardware counter metrics, which would further
increase trace size significantly.

2Intermediate reports are post-processed offline to derive additional metrics
and also compressed, such that the final reports are almost the same size.
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able application file I/O, can be eliminated or report extracts
can be generated only for the subtree corresponding to the
simulation timesteps, i.e., stepperrun. Furthermore, prun-
ing can be employed to remove uninteresting callpaths such
as MPI Comm rank and MPI Comm size, which constitute over
200 of the 1500 callpaths within stepperrun. During post-
processing of analysis reports, the three-dimensional grid topol-
ogy used by PFLOTRAN was also incorporated.

3.3 Scalasca analysis report examination
The Scalasca analysis report explorer presents calculated met-
rics in a hierarchical tree display equivalent to that representing
the tree of the application’s executed callpaths, shown in the
left and middle panels in Figure 5 for a PFLOTRAN experi-
ment with 8,192 processes on Jaguar Cray XT5. Showing all
of the MPI processes in a similar system tree is possible, how-
ever, it is generally preferable to show them graphically using
the application’s logical topology, in this case a 32×32×8 three-
dimensional grid, as in the right panel.

The upper view shows metrics that can be calculated during
measurement with runtime summarization (plus derived met-
rics such as Computational imbalance determined during report
post-processing). Values shown in the metric tree are aggre-
gated from the values for each application callpath, which are
themselves aggregated over all processes. PAPI FP OPS is the
selected metric, which is a PAPI [20] predefined metric based
on hardware counters available on the processor for the number
of floating-point operations executed.3 Since this metric relates
to the computational work done by PFLOTRAN, it is expected
that most of this is to be found in the callpaths of the simulation
stepperrun, with indeed considerably more in the demanding
‘transport’ phase than the simpler ‘flow’ phase. (Following the
colour coding in the boxes next to each node, corresponding to
the node’s metric value on the scale below each panel, the tree
of callpaths can be expanded as desired to reveal a next level of
callpaths, with the value shown for a node changing from the
inclusive to exclusive value when the node is expanded.) A pro-
nounced imbalance is immediately evident in the distribution of
PAPI FP OPS for each process: the metric value of the process
with the largest value defines the scale, and its peers have their
metric values shown as a percentage of this maximum.

In the lower view, metrics relating to MPI inefficiencies
which are calculated by Scalasca automatic trace analysis are
selected. They are seen to amount to over 7% of the total ex-
ecution time for the SNES solves in the ‘flow’ and ‘transport’
phases at this scale, where the distribution of metric values com-
plements that of the computation. This imbalance directly re-
lates to the inactive grid cells within the river channel as ex-
pected from Figure 1.

3PAPI FP OPS is a single native counter on Cray XT5 Opteron processors,
however, on IBM BG/P PowerPC processors it is derived from 13 native coun-
ters. Due to system hardware and software limitations, PAPI counters on BG/P
can only be used meaningfully in SMP mode (i.e., with a single MPI process
per quad-core processor).

Figure 6: Distribution of individual process computation
times in PFLOTRAN stepperrun (‘flow’+‘transport’) with
65,536 processes on Jaguar Cray XT5 presented by Scalasca
using the application’s 64×64×16 process topology. Pro-
cesses assigned gridpoints in the river channel are underloaded
(blue) compared to the others, whereas processes with coordi-
nates (x < 18,y < 40) in each z-plane are overloaded (red) with
extra gridpoints due to the grid decomposition employed.
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Figure 5: Scalasca analysis report explorer presentations of PFLOTRAN experiment with 8,192 processes on Jaguar Cray XT5, combin-
ing runtime summarization and automatic event trace analysis, showing that imbalance in computation (as defined by the PAPI FP OPS
hardware counter metric in upper view) complements MPI waiting times (the selected metrics calculated from the trace in lower view).
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Computational load imbalance becomes more significant at
larger scales, as seen in Figure 6 showing the distribution of
stepperrun execution times for 65,536 processes arranged in
a 64×64×16 grid. The processes assigned inactive grid points
within the river channel clearly have much less computation,
however, there are relatively few of them. Also evident is over-
loading of processes with grid coordinates (x < 18,y < 40)
resulting from the excess grid-points in the x and y dimen-
sions: while the 160 grid-points in z are assigned equally to
the 16 planes, there are (850/64=)18 extra grid-points in x and
(1000/64=)40 extra grid-points in y.

While it would be relatively simple to reverse the assignment
of grid-points to processes in the x-dimension, such that extra
grid-points were more likely to be assigned to processes with
inactive grid-points, the expected benefit would be small since
some z-planes have no inactive grid-points. On the other hand, a
perfect distribution would assign 2075.2 grid-points to each pro-
cess, whereas the current distribution assigns 2240 grid-points
to 20% of the processes, for an 8% computation overload that
manifests as waiting times in subsequent collective communi-
cation, e.g., MPI Allreduce. Using a balanced regular distri-
bution would therefore be a significant benefit (particularly at
larger scales), without taking into account the (dataset-specific)
inactive grid-points.

3.4 Complementary analyses and visualizations

Scalasca analysis reports and trace data use open file formats
and libraries are provided for reading and writing which facili-
tates interoperability with third-party tools. While analysis re-
ports can grow to several gigabytes in size, they can still be
transferred to desktop or other local systems for more conve-
nient interactive examination, however, with traces growing to
terabytes this is usually not a viable option.

Analysis reports can be imported into TAU/ParaProf [2],
which offers a callgraph display seen in Figure 7 as well as
an extensive range of profile visualizations as shown in Fig-
ure 8. Since ParaProf was unable to load entire analysis re-
ports on a system with 21 GB of node memory, even at mod-
est scale it was necessary to extract only the main simulation
section (stepperrun) into a separate report (using one of the
report algebra utilities provided with Scalasca).

Merging and converting event trace data files is often imprac-
tical or prohibitively costly, but smaller measurements can be
converted for visualization and analysis. Alternatively, current
versions of the Vampir tools [3] are able to directly read and
visualize distributed event traces generated by Scalasca without
conversion. Using VampirServer running on 512 cores to in-
teractively examine a Scalasca event trace of the execution of
8,192 PFLOTRAN processes, Figure 9 shows the imbalance in
MPI Allreduce on some processes and the detailed communi-
cation behaviour within iterations in the ‘flow’ and ‘transport’
phases of each simulation timestep.

Figure 7: TAU/ParaProf presentation of PFLOTRAN “2B”
callgraph with 8,192 processes on Jaguar Cray XT5, showing
execution time on paths from stepperrun to MPI Allreduce

and other (non-pruned) MPI operations.

4 Scalasca scalability improvement
As part of measurement, Scalasca creates definition records on
each process for each routine, callpath, MPI communicator, etc.,
and at measurement completion it unifies these into a consis-
tent global set of definitions plus associated mappings for each
process [7]. The number of definitions depends on how many
instances of each object are encountered during measurement,
and the total size depends on the lengths of names and sizes of
communicators. While the routines executed typically remain
unchanged with scale, larger numbers of processes often result
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Figure 8: TAU/ParaProf presentations of Scalasca trace analysis report from PFLOTRAN execution with 8,192 processes on Jaguar Cray
XT5. From the diverse graphical profiles of routine execution times, MPI Allreduce is clearly dominant and has significant imbalance.
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Figure 9: Vampir visualizations of a Scalasca event trace of PFLOTRAN execution with 8,192 processes on Jaguar Cray XT5. From
the global timeline view (top) the initialization phase and ten simulation timesteps can be identified, along with the serious imbalance in
MPI Allreduce on groups of processes. An interactive zoom into the fourth timestep (bottom) distinguishes its particularly slow ‘flow’
phase (with solver 4 iterations between yellow and cyan events) followed by the ‘transport’ phase (with solver 8 iterations between cyan
and yellow events) and their distinct patterns of MPI point-to-point and collective communication. Further zooming and scrolling allows
examination of finer detail and individual events in the trace.
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Figure 10: Time to unify PFLOTRAN identifier definitions
(and write them to disk with associated mappings for each pro-
cess) on Jugene IBM BG/P and Jaguar Cray XT5, comparing
original and revised Scalasca implementations.

in larger communicator definitions (since they must denote the
contained ranks).

The resulting trees of PFLOTRAN callpaths are substan-
tial, both in their measurement and subsequent analysis require-
ments. Scalasca analysis reports for larger numbers of processes
are very large and unwieldy, requiring 64-bit versions of pro-
cessing tools and GUI, lots of RAM and patience. The latter
limitations derive from storing only exclusive metric values in
analysis reports, such that the entire data must be loaded to cal-
culate the total values of each metric. On-going work based
on storing and selectively reading metrics as inclusive values is
expected to make interactive analysis practical in future [6].

Although MPI communicator definitions are not needed
for Scalasca summary analyses, they are required to be able
to replay and analyse event traces, and the extensive use
of MPI communicators by PETSc and HDF5 proved to be
much more demanding particularly at scale. 18 duplicates of
MPI_COMM_WORLD and 4 copies of MPI_COMM_SELF communi-
cators were created during “2B” test case executions. On Jaguar
with 128k processes, this resulted in 13% of the total execution
time spent in collective calls to MPI_Comm_dup due to inter-
spersed file I/O!

For MPI communicators that are duplicates of
MPI_COMM_WORLD (which contains all ranks) definition
records grow linearly with the number of processes. For
MPI_COMM_SELF (which only contains a single rank), each
definition is a small fixed size, however, when defined for every
process the total number also grows linearly. The original
Scalasca implementation of MPI communicator definitions
and their unification therefore quickly resulted in gigabytes
of communicator definition records, such that trace analysis
was not possible for more than 48k processes. Along with the
exponential growth in size, unification times of the original
implementation were also unacceptable as seen in Figure 10.

Scalasca definition and unification of MPI communicators

(and associated MPI groups) were re-designed for the 1.3.2 re-
lease to address these two deficiences [6]. Crucially for PFLO-
TRAN and codes using MPI_COMM_SELF, special encoding was
used to distinguish this communicator and duplicates of it, and
handling during communicator unification updated to recognise
this (and avoid retaining separate definitions for each process
rank). Unification of all types of definition records was also
implemented in a hierarchical binary tree fashion for improved
scalability over the original serialised approach. With versions
of Scalasca using the revised implementation, Figure 10 shows
that PFLOTRAN unification times were reduced more than
1500-fold for measurements with 32k processes, and now takes
only a few seconds even for 128k processes.

5 Conclusions

The outcome of a series of Extreme Scaling Workshops hosted
by Jülich Supercomputing Centre has been the conclusion that
many application codes from a variety of disciplines are able to
deliver breakthrough science by effectively exploiting hundreds
of thousands of cores [16]. On the way to this rather remarkable
result, however, the codes naturally had to be comprehensively
debugged and execution performance analyzed at each increase
in scale, to be able to identify, localize and remedy a series of
scalability bottlenecks.

Performance analysis of complex applications executing at
large-scale requires care. Full automatic instrumentation of
an application like PFLOTRAN and its associated libraries
(PETSc) is convenient, but produces more detail and measure-
ment overhead than desirable. Selective instrumentation and/or
measurement filtering must be used to reduce measurement
overhead and sizes of callpath profiles and event traces to man-
agable levels. Even basic execution callpath profiles for many
thousands of processes rapidly become awkwardly large, and
powerful analyses and interactive visualizations are required for
an effective initial overview leading to in-depth refinement of
performance issues. Application developers and analysts there-
fore often require training and coaching in the use of available
tools with their HPC applications, such as offered by regular in-
ternational hands-on tuning workshops of the Virtual Institute –
High-Productivity Supercomputing [21].

While the Scalasca toolset has demonstrated its effectiveness
with numerous applications on current HPC platforms includ-
ing Cray XT/XE and IBM BlueGene, significant challenges
are presented by the combination of extreme scale and grow-
ing application complexity. The highly-scalable PFLOTRAN
code, where MPI usage is encapsulated by PETSc and HDF5 li-
braries, is one such manifestation (but far from exceptional).
Its usage of dozens of (duplicate) MPI communicators from
deep within object-oriented libraries required a fundamental re-
design and new implementation of communicator management
by Scalasca, leading to much improved measurement scalabil-
ity.
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[11] Jülich Supercomputing Centre. PEPC: A multi-purpose parallel
tree-code. http://www2.fz-juelich.de/jsc/pepc/.

[12] J. Labarta, B. P. Miller, B. Mohr, and M. Schulz, ed-
itors. Program Development for Extreme-scale Comput-
ing, number 10181 in Dagstuhl Seminar Proceedings. Schloss
Dagstuhl, Leibniz-Zentrum für Informatik, Germany, May 2010.
http://www.dagstuhl.de/10181.

[13] R. T. Mills, C. Lu, P. C. Lichtner, and G. E. Hammond. Simulat-
ing subsurface flow and transport on ultrascale computers using
PFLOTRAN. In Proc. Scientific Discovery through Advanced
Computing (SciDAC, Boston, MA, USA), volume 78 of Journal
of Physics: Conference Series. IOP Publishing, June 2007.

[14] R. T. Mills, V. Sripathi, G. Mahinthakumar, G. E. Hammond,
P. C. Lichtner, and B. F. Smith. Experiences and challenges scal-
ing PFLOTRAN, a PETSc-based code for subsurface reactive
flow simulations, towards the petascale on Cray XT systems. In
Proc. 51st CUG meeting (Atlanta, GA, USA). Cray User Group,
Inc., May 2009.

[15] R. T. Mills, V. Sripathi, G. Mahinthakumar, G. E. Hammond,
P. C. Lichtner, and B. F. Smith. Engineering PFLOTRAN for
scalable performance on Cray XT and IBM BlueGene architec-
tures. In Proc. Scientific Discovery through Advanced Comput-
ing (SciDAC, Chattanooga, TN, USA), Journal of Physics: Con-
ference Series. IOP Publishing, July 2010.

[16] B. Mohr and W. Frings, editors. Jülich Blue Gene/P Extreme
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