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ABSTRACT: I/O performance in scientific applications is an often neglected area of concern during performance
optimizations. However, various scientific applications have been identified which benefit from I/O improvements
due to the volume of data or number of compute processes utilized. This work details the I/O patterns and data
layouts of real scientific applications, discusses their impacts, and demonstrates pragmatic approaches to improve

I/0 performance.
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1 Introduction

Many factors affect the performance of scientific appli-
cations such as utilization of vector processing instruc-
tions, memory access patterns, cache utilization, and in-
terprocess communication patterns. The application’s
interaction with the memory, processor, and intercon-
nect of computing resources has long been a focus for
improving performance. However, the application’s in-
teraction with the file system has recently become a topic
of discussion. Some reasons for this renewed attention
include the increasingly data-intensive nature of compu-
tation and analysis, the increasing size of computational
resources, and the increased availability of shared super-
computing resources.

Various studies have been performed which illumi-
nate the characteristics of file systems and their interac-
tion with specific application patterns [1, 2]. However, in
terms of many established scientific applications, these
patterns are overly simplistic. Scientific applications,
based in part on their field, constrain the applicabil-
ity of I/O patterns and, in some cases, define particu-
lar data formats. These considerations affect the routes
that can be utilized to optimize performance. The goal
of this work is to demonstrate the connection between
more theoretical studies of I/O performance and their
application to the constraints and requirements of real
scientific applications.

1.1 Parallel I/O Performance

The application’s utilization of file I/O is not unlike
other forms of data movement such as interprocess com-
munication and memory access. However, file I/O re-
quires the interaction between the memory, interconnect,
and file system. While all these interactions are subject

to limitations in bandwidth and latency, the file system
interaction is by far the most expensive. Therefore, most
I/0 performance optimizations focus on the file system
interaction.

Some guidelines include:

1. Limit the impact of latency by performing I/O in
as few large chunks as possible.

2. Limit overhead by performing as few metadata op-
erations (file open/close, stat, and seek) as possi-
ble.

3. Write data contiguously whenever possible.

4. Avoid contention on the file system.

A large portion of the I/O performance rests in the
choice of output data format. This choice most directly
affects the above guidelines; however, the data layout in
memory and across processes (for parallel I/0) have a
significant impact on performance. This impact on per-
formance can be due to poor memory or interconnect
usage patterns. However, the mechanism by which data
in memory or across processes is mapped to the output
data format is a significant contributor to performance.
Although, the same data layouts are rarely utilized be-
tween the application (in memory and across processes)
and the output. The best performance is seen when these
data layouts are similar. Differing application and out-
put data formats create constraints to I/O optimization.
The methods utilized to satisfy these constraints may
have significant performance implications.

All results presented in this paper were generated
on Kraken, the Cray XT5 supercomputer located at the
National Institute for Computational Sciences (NICS).



Kraken contains 9,408 compute nodes, each containing 2
hex-core AMD Istanbul processors, 16 GB of RAM, and
a SeaStar 2+ interconnect [3]. Kraken utilizes a Lus-
tre [4] parallel file system with 48 OSSs and 336 OSTs
that is capable of delivering about 30 GB/s in peak per-
formance. The file striping characteristics are presented
with the appropriate results.

1.2 Applications

Three applications were chosen for 1/O optimization
based on a perceived need by the application developers
and/or users. Although performance improvements may
be seen by changing the output data format and/or the
application’s data structures, these improvements are
impractical for many applications due to dependencies
in computational modules or post-processing utilities. In
this work, the output data format for each application is
kept constant so that optimizations do not break back-
ward compatibility. Additionally, existing data struc-
tures within the computational kernels of these applica-
tions are also kept constant. Only data structures used
within the I/O portions of these applications are altered.
Therefore, the I/O optimization of these three applica-
tions focuses on the mapping between application and
output data.

The Parallel Interoperable Computational Mechanics
Simulation System (PICMSS) is a fully parallel compu-
tational platform for solving various incompressible com-
putational fluid dynamics (CFD) problems using finite-
element based methods. This code is developed by a
group of engineers at the University of Tennessee’s CFD
Laboratory.[5] This work applies PICMSS to a validation
benchmark problem that models a three-dimensional
flow in a thermally-driven cubic cavity.

The AWP-ODC [6] application is utilized to conduct
the “M8&” simulation, which models how the ground will
shake in a magnitude 8.0 earthquake on the southern
San Andreas Fault up to 2-Hz. This simulation models
an area of approximately 125,000 square miles (328,050
square kilometers) and takes into account a depth of 50
miles (85 km) for an earthquake 6 minutes in duration.
This software is developed by a multi-disciplinary team
of researchers coordinated by Southern California Earth-
quake Center (SCEC) at the University of Southern Cal-
ifornia (USC).

A parallel implementation of the Basic Local Align-
ment Search Tool (BLAST)[7] has been developed by
researchers at the University of Tennessee.[8] BLAST
compares input nucleotide or protein sequences to se-
quences in a database and reports matches along with
other information, such as the degree of similarity of
matched regions within the sequence. The database used
in this work is a recently obtained non-redundant protein

database which contains 13,663,181 protein sequences.
The total number of amino acids present in the 10.7 GB
database is 4,688,826,815. The input query sequences
were selected based on common searches used by biolo-
gists ranging from 50 to 5,000 amino acids.

Throughout the remainder of this work the appli-
cation’s name is not used. Instead, a designation of
“Application 1 - 3” is used to identify these applica-
tions in no particular order. The output data format
and relevant application data structures are discussed
for each application. The original I/O pattern and the
optimizations performed are discussed in terms of fac-
tors which affect performance. Finally, a quantification
of performance is discussed which compares the original
and optimized application versions.
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Figure 1: The domain decomposition of a 202x125x106
grid among 12 processes in a 3x2x2 grid. The process
assignments are listed PO-P11 and the numbers in brack-
ets detail the number of grid nodes along each direction
for each process block.

2 Application 1

The computational grid consists of 10,125 x 5,000 x 1,060
nodes. However, every other point in each direction is
skipped during I/O, resulting in an I/O grid of 5,062
x 2,500 x 530 nodes. Each node stores three variables.
This grid is decomposed among 30,000 processes via a
process grid of dimension 75x40x10. Nodes are assigned
to processors as evenly as possible giving each process a
local grid between 67x62x53 and 68x63x53 nodes. Fig-
ure 1 shows this decomposition for a grid of 202x125x106
nodes and a process grid of 3x2x2. This global grid is
written in column-major ordering.



For each process, the local grid is stored in three
column-major ordered arrays which correspond to each
variable. This application has the ability to aggregate
time steps in these arrays by simple concatenation (i.e.
the data for time step 2 comes immediately after all data
for time step 1). As a result, these arrays may contain
data for multiple time steps.

Three output files are written which correspond to
each of the three variables and the number of aggregate
time steps. The global grid is ordered column-major for
each time step. Multiple time steps are added by simple
concatenation such that time step 2 comes immediately
after all data for time step 1. Subsequent writes create
a new set of files which contain additional time steps.
MPI-IO [9, 10, 11] is utilized to write these files.

2.1 Optimization

Due to the output data format, data from each pro-
cess is spread throughout the entire file. Data is spread
within a single time step based on the process’s loca-
tion within the process grid and between each time step
based on the number aggregated. The original mapping
between the local data arrays and the output file format
is controlled via a MPI derived data type created by the
MPI_Type_create_hindexed call. Every element of this
array is individually mapped to a location within the
output file via an explicit offset. This allows a single col-
lective write (MPI_File_write_all) to be used for each file.
Although this utilization of a MPI derived data type is
effective, the implementation does not allow for contigu-
ous writes when possible. Each process should be able
to write at least 67 array elements contiguously; how-
ever the mapping of individual elements does not give
the MPI-10 library sufficient information to exploit this
optimization. Additionally, the mapping of every array
element causes problems with the use of explicit offsets
for large data sets and for large amounts of time step
aggregation.

After optimization, the mapping between the lo-
cal data arrays and the output file is achieved
via a MPI derived data type created by the
MPI_Type_create_subarray call. This call provides the
necessary information to the MPI-IO library to allow
contiguous writes to be utilized when appropriate. Ad-
ditionally, this call circumvents the use of explicit offsets
which may cause problems with large data sets. This
subarray data type is also defined with an extent equal
to the global data set (i.e. a single time step) which re-
duces the overhead associated with its definition. This
optimization can also be implemented with the previous
h-indexed data type. A single collective write is still used
to write each file.

2.2 Results

The benchmark case utilizes 30,000 compute cores run
for 200 time steps. Each output file contains 20 time
steps striped across 160 OSTs with a stripe size of 1IMB.
The I/O time is measured by timing each write and tak-
ing the maximum process time. Table 1 shows the I/O
performance for the original and optimized case. Al-
though performance varies, a consistent improvement in
performance by a factor approaching two is observed.
Given the amount of data written, this optimization re-
duces the I/O time by about 12 minutes for each write.
Over 200 time steps, this savings approaches about 2
hours.

Table 1: Comparison between Original and Optimized
I/0 in Application 1

Bandwidth (GB/s)

Time Step Data (TB) Original | Optimized
20 1.46 1.05 2.03
40 1.46 1.06 1.66
60 1.46 1.40 2.16
80 1.46 1.16 1.94
100 1.46 1.27 2.30
120 1.46 1.55 2.06
140 1.46 0.98 1.70
160 1.46 1.30 2.65
180 1.46 0.87 3.34
200 1.46 1.13 2.99

3 Application 2

This application relies on task based parallelism in which
each process obtains work (data) from a master process.
This division of labor is hierarchical such that an appli-
cation master process serves data to node-based master
processes who serves this data to worker processes on
each node. The hierarchy of application and node-level
master processes performs the necessary inter-node com-
munication.

Upon completion of a task, each worker sends the re-
sults in XML format to a writer process whose task is to
write the output to disk. Each node has a single writer
process who obtains output from all the worker processes
on the node. All XML data is concatenated and com-
pressed with zlib library [12]. Each node writes a sin-
gle file which contains one or more of these compressed
blocks of XML data. A 4-byte header is prepended to
each block to identify the block and its length.



3.1 Optimization

The original implementation of this I/O scheme utilizes
on-demand processing. Each task output is compressed
and written to disk individually and immediately upon
arrival by the writer process. This method, though effec-
tive at keeping the writer process busy, results in many
small file writes. Additionally, the 4-byte header for each
compressed block, is written after the block which re-
quires additional file seeks.

To optimize the I/O, two buffers are set up to collect
compressed and uncompressed XML task output. The
first buffer collects and concatenates XML output from
worker processes. Once this buffer is full, the data is
compressed and placed in a second buffer. The second
buffer collects compressed XML data and associated 4-
byte headers. When this buffer is full, the data is written
to the output file. This two-stage buffering minimizes
the overhead connected with the data compression and
the file write.

3.2 Results

The benchmark case utilizes 24,576 compute cores (2,048
nodes). Each node contains a single writer process that
performs both data compression and I1/O. Each com-
pression and write operation performed by this process
is timed and summed for the total execution time of
the application. Table 2 shows the average compression
or write time per writer process along with the average
bandwidth for the original and optimized application
code. Both the compression and write buffers are 768
MB. Each file is striped across one OST with a stripe
size of 1 MB.

Table 2: Comparison between Original and Optimized
I/0 in Application 2

Original  Optimized
Average Compression Time (s) 11.93 8.85
Std. Dev. (s) 0.79 0.46
Bandwidth (MB/s) 25.75 34.63
Average Write Time (s) 10.47 0.30
Std. Dev. (s) 8.36 1.06
Bandwidth (MB/s) 16.04 466.67

The efficiency of both compression and write oper-
ations are improved. An improvement of about 33% is
observed for data compression. However, an improve-
ment of about 29-fold is observed in the data write. An-
other effect of these optimizations is an increase in the
regularity of I/O, which is expressed by a decrease in the
standard deviation.

With these optimizations, the time spent performing
I/0 has been reduced by a factor of about 30. Given that
an average compression ratio of about 1:7.5 is achieved
in these benchmarks and the improved I/O rate, the
uncompressed data may be able to be written to disk in
less time than is required by the compression.
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Figure 2: A 3-D 5x5x5 Cartesian grid decomposed in
slabs along the Z axis among 5 processes (p0-p5). Node
numbers are shown in red and process IDs are shown in
black.

4 Application 3

A uniform 3-D Cartesian grid is utilized with a total
of 2563 nodes. Each node stores 6 variables. This grid
is decomposed between the processes in slabs along the
Z-axis. This is shown in Figure 2 for a 5x5x5 grid de-
composed between 5 processors. However, this applica-
tion decomposes its 256> node grid between 3,000 pro-
cesses. In this case, each process is only assigned a
portion of a full XY slab which contains 2562 nodes.
The decomposition is performed in units of nodes along
the X axis. Each process is assigned an integer number
of “lines” of 256 nodes. The first 2,536 processes are
assigned 22 lines while the remaining processes are as-
signed 21 lines. Since this data structure is stored based
on column-major ordering, this local node assignment to
each process is contiguous.

Additionally, each process stores a set of ghost nodes
that consist of nodes adjacent to their assigned nodes.



Each process’s nodes (ghost and local) are stored in a
contiguous array that is a subset of the global grid. This
data structure is also ordered column-major ensureing
that the local nodes are contiguous. This data structure
is shown in Figure 3.
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Figure 3: A representation of the local process’s data
structure. The local and ghost nodes are labeled.

The output file is in Tecplot binary format [13], which
requires information from process 0 for section headers
and information from all processes for grid and node
data. Figure 4 shows the overall structure of the out-
put file which includes data from all processes. The grid
data, which consists of the node connectivity and X,Y
and Z node coordinates, are output only for the first
time-step (t1). Every time step (t;) includes a header
and the values of all node variables. Each data section
is ordered column-major, and each process supplies the
values for its local nodes. MPI-IO [9, 10, 11] is used to
write this file.

4.1 Optimization

The Tecplot binary output file can be divided into sec-
tions that correspond to each time step. The first time
step is substantially different than subsequent time steps
due to the addition of grid information. As a result, two
subroutines are utilized to write this output file - one
for the first time step and another for subsequent time
steps. Originally, these subroutines opened the output
file in append mode, wrote data, and closed the file. This
mechanism, though effective, requires excessive overhead
due to the many file opens, seeks, and closes. This over-
head is reduced by keeping the output file open between
time steps, which is implemented by moving the file open
and close outside of these subroutines.

The header for the first time step consists of var-
ious data types of varying number, where N is the
number of time steps: 8(MPI.CHAR), 52(MPI_INT),
N[I(MPI_FLOAT), 13(MPIINT), 1(MPI.DOUBLE),
11(MPIINT)], 2(MPI_FLOAT), 12(MPIINT), and
18(MPI_DOUBLE). The header for the subsequent time
steps consists of 1(MPI_LFLOAT), 21(MPI.INT), and
12(MPI_DOUBLE). These headers are only written by
process 0 using a write call for each element (i.e. for
N=1, 118 individual MPI_File_write calls are used for
the first time step). This pattern generates a large
number of very small writes. After optimization, a

single MPI_File_write call is used for each data type
and structure. Six write calls are used for the first
time step and three calls are used for subsequent time
steps. A struct and corresponding MPI derived data
type are used for the N[I(MPI_FLOAT), 13(MPI.INT),
1(MPI_.DOUBLE), 11(MPI_INT)] section of the header.

Header F Processor 0
X coordinate
Y coordinate
t. — | Zcoordinate
1
Variable 0 — Allprocessors
Variable 5
Connectivity
Ju— -
Header F Processor O
t, - Variable 0
2
— All processors
Variable 5
Header Processor O
s Variable 0
N
All processors
Variable 5

Figure 4: A representation of the Tecplot binary out-
put file format.

The data sections (coordinates, connectivity, and
variables) are written by all processes. These sections
are ordered like the global data as a column-major ar-
ray, in which each process’s data is a contiguous subset.
In the original routine, each process calls MPI _File_seek
to move to the location in the global data set where
its data begins. Then, since each process’s data also
contains ghost nodes and other variables which are not
written, the array indices are looped over with a stride
to select a particular variable in order to check whether
each is a ghost node. If the index corresponds to a local
node, it is written. A second seek is then necessary to
align each process to the end of the data set. The result
of this pattern is that a large number of small writes are
performed, and seeks are necessary before and after each
process’s writes.

To remove the file seeks, a MPI derived data type is
created via MPI_Type_create_subarray which defines the



location in the global data set for each process’s data.
This is implemented using MPI_File_set_view. Addition-
ally, a second MPI derived data type is created via a
combination of MPI_Type_vector to select a single vari-
able from the array and MPI_Type_create_indexed_block
to select the set of local nodes from the array. This allows
each data set to be written with a single MPI_File_write
call.

Utilizing a grid of 256 nodes and 3,000 processes,
the amount of data written by each process, per data
set, is much less than 1 MB. The applied optimizations
allow the option to utilize collective writes in MPI-IO
via MPI_File_write_all calls. This also enables the use of
collective buffering within MPI-IO in order to aggregate
I/0O requests from multiple processes which increases the
amount of data written in a single write.

Table 3: Comparison between Original and Optimized
I/O in Application 3

Bandwidth (GB/s)

Time Step Data (GB) Original Optimized
1 1.62 3.47x10702 8.15
2 0.75 2.18x10702 4.22
3 0.75 1.91x10792 5.39
4 0.75 1.74x10792 3.28
5 0.75 2.18x10792 4.54
6 0.75 2.05x10702 3.23
7 0.75 2.01x10702 4.85
8 0.75 1.79x10792 4.56
9 0.75 2.59x10702 4.79
10 0.75 2.62x10702 4.03

4.2 Results

The benchmark case utilizes 3,000 compute cores and
performs 10 time steps. A single file is produced which
contains all 10 time steps. This file is striped across 160
OSTs with a stripe size of 1 MB. The I/O time is de-
termined by timing only the write calls and summing
when appropriate. The maximum process time is taken
as the I/O time. Table 3 shows the I/O bandwidth ob-
tained per time step for both the original and optimized
application code. The performance improves by about a
factor of 200 between the original and optimized applica-
tion code. The majority of this improvement, a factor of
100, is obtained by the use of collective buffering within
MPI-1IO. This optimization would not have been possi-
ble without first addressing the use of application data
buffers, file access, and MPI derived data types.

5 Conclusion

Three scientific applications are optimized to improve
their I/O performance. Although this task is completed
while keeping the application’s data layout in memory
and on-disk constant, substantial performance improve-
ments are realized. Improvements in performance ranged
from a factor of 2 to 200 due to optimizations such as
more efficient use of MPI derived data types, data buffer-
ing, and MPI-IO collective operations. The results in-
clude a savings of about 2 hours in I/O time for a data-
intensive application, the potential to remove a data
compression step which seems less efficient than writ-
ing the uncompressed data, and a factor of 100 increase
in I/O performance that would not have been possible
without initial optimizations.
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