
A Pragmatic Approach to Improving
the Large-scale Parallel I/O

Performance of Scientific
Applications

Lonnie D. Crosby, R. Glenn Brook,
Bhanu Rekapalli, Mikhail Sekachev,

Aaron Vose, and Kwai Wong

A Pragmatic Approach

2
CUG 2011

“Golden Nuggets of Discovery”

 Data Movement
– I/O is fundamentally data movement between the application

and file system.

 Data Layout
– I/O patterns are informed by the layout of data within the

application and within files.

 I/O Performance
– Although performance is very dependent on data layout within

the application and within files,

– the method by which these layouts are mapped to one another
is a substantial contributor to performance.

Optimization of I/O Performance

 Data Layout
– within the application is difficult to change (in some

circumstances) due to domain decomposition and algorithmic
constraints.

– within files are easier to change; however, changes the
manner in which post-processing or visualization occur.

– will remain constant during the I/O optimization process.

Mapping between Data Layouts
– Best performance usually seen when the data layout within

the application and within the files are similar.

– Differences in data layout create constrains that may inform
poor I/O implementations.

3
CUG 2011

“Golden Nuggets of Discovery”

Goals of Study

 Show how I/O performance considerations are utilized
in “real” scientific applications to improve performance.

 I/O Performance Considerations
– Limit the negative impact of latency and maximize the

beneficial impact of available bandwidth
 Perform I/O in as few large chunks as possible.

– Limit file system interaction overhead
 Perform only the file opens, closes, stats, and seeks which are

absolutely necessary.

– Write/read data contiguously whenever possible.

– Take advantage of task parallelism
 Avoid file system contention

4
CUG 2011

“Golden Nuggets of Discovery”

Kraken (Cray XT5)

 Contains 9,408 compute nodes,
– each containing dual 2.6 GHz hex-core AMD “Istanbul”

processors, 16 GB RAM, and a SeaStar 2+ interconnect.

 Lustre file system
– 48 OSSs and 336 OSTs

– 30 GB/s peak performance

5
CUG 2011

“Golden Nuggets of Discovery”

Applications

 PICMSS (The Parallel Interoperable Computational Mechanics
Simulation System)
– A computational fluid dynamics (CFD) code used to provide solutions to

incompressible problems. Developed at the University of Tennessee’s CFD
laboratory.

 AWP-ODC (Anelastic Wave Propagation)
– Seismic code used to conduct the “M8” simulation, which models a

magnitude 8.0 earthquake on the southern San Andreas fault.
Development coordinated by Southern California Earthquake Center
(SCEC) at the University of Southern California.

 BLAST (Basic Local Alignment Search Tool)
– A parallel implementation developed at the University of Tennessee,

capable of utilizing 100 thousand compute cores.

6
CUG 2011

“Golden Nuggets of Discovery”

Application #1

 Computational Grid
– 10,125 x 5,000 x 1,060 global grid nodes (5,062 x 2,500 x 530 effective grid

nodes)

– Decomposed among 30,000 processes via a process grid of 75 x 40 x 10
processes. (68 x 63 x 53 local grid nodes)

– Each grid stored column-major.

 Application data
– Three variables are stored per grid point in three arrays, one per variable

(local grid). Multiple time steps are stored by concatenation.

 Output data
– Three shared files are written, one per variable, with data ordered

corresponding to the global grid. Multiple time steps are stored by
concatenation.

7
CUG 2011

“Golden Nuggets of Discovery”

Optimization

Original Implementation

 Derived Data type created via
MPI_Type_create_hindexed
– Each block consists of a single

value placed by an explicit
offset.

Optimized Implementation

 Derived Data type created via
MPI_Type_create_subarray
– Each block consists of a

contiguous set of values
(column) placed by an offset.

8
CUG 2011

“Golden Nuggets of Discovery”

Figure 1: The domain decomposition of a

202x125x106 grid among 12 processes in a

3x2x2 grid. The process assignments are listed

P0-P11 and the numbers in brackets detail the

number of grid nodes along each direction for

each process block.

Results

 Collective MPI-IO calls are utilized along appropriate Collective-
buffering and Lustre stripe settings.
– Stripe count = 160 Stripe Size = 1MB

 Given amount of data
– Optimization saves 12 min/write

– Over 200 time steps,
savings of about 2 hours.

9
CUG 2011

“Golden Nuggets of Discovery”

1
2
+ (2x+ 5)

Application #2

 Task based parallelism
– Hierarchical application and node-level master processes who serve tasks

to node-level worker processes

– Work is obtained by worker processes via a node-level master process.
The application-level master provides work to the node-level master
processes.

– I/O is performed per node via a dedicated writer process.

 Application data
– Each worker produces XML output per task. These are concatenated by

the writer process and compressed.

 Output data
– A file per node is written which consists of a concatenation of compressed

blocks.

10
CUG 2011

“Golden Nuggets of Discovery”

Optimization

Original Implementation

 On-demand compression and
write.
– When the writer process receives output

from a worker it is immediately
compressed and written to disk.

 Implications
– Output files consist of a large number of

compressed blocks each with a 4-byte
header.

– Output files written in a large number of
small writes.

Optimized Implementation

 Dual Buffering
– A buffer for uncompressed XML data is

created. Once filled, the concatenated
data is compressed.

– A buffer for compressed XML data is
created. Once filled, the data is written
to disk.

 Implications
– Output files consist of a few, large

compressed blocks each with a 4-byte
header.

– Output files written in a few, large writes.

11
CUG 2011

“Golden Nuggets of Discovery”

Results

 Benchmark case utilizes 24,576 compute cores (2,048 nodes)
Optimized case utilizes 768 MB buffers.
– Stripe count = 1 Stripe Size = 1MB

12
CUG 2011

“Golden Nuggets of Discovery”

1
2
+ (2x+ 5)

 Compression Efficiency
– Compression ratio of about

1:7.5

– Compression takes longer
than the file write.

– With optimizations, file write
would take about 2.25
seconds without prior
compression.

Application #3

 Computational Grid
– 2563 global grid nodes

– Decomposed among 3,000 processes via XY slabs in units of X columns.
The local grid corresponds slabs of about 256 x 22 nodes.

– Six variables per grid node is stored.

– Each grid stored column-major.

 Application data
– A column-major order array containing six values per grid node.

 Output data
– One file in Tecplot binary format containing all data (six variables) for the

global grid in column-major order and grid information.

13
CUG 2011

“Golden Nuggets of Discovery”

Optimization

Original Implementation

 File open, seek, write, close
methodology between time
steps.

 Headers written element by
element. Requires at least 118
writes.

Optimized Implementation

 File is opened once and
remains open during run.

 Headers written by data type
or structure. Requires 6
writes.

Figure 2: A representation of the Tecplot binary
output file format.

14
CUG 2011

“Golden Nuggets of Discovery”

Optimization

Original Implementation

 Looping over array indices to
determine which to write
within data sections.
– Removal of ghost nodes

– Separation of variables

 Use of explicit offsets in each
data section.

Optimized Implementation

 Use of derived data types to
select portion of array which
contains only local region and
appropriate variable.

 Use of derived data type to
place local data within data
section.

15
CUG 2011

“Golden Nuggets of Discovery”

 Figure 3: A representation of the local process's data
structure. The local and ghost nodes are labeled.

Results

 Collective MPI-IO calls are utilized along appropriate Collective-
buffering and Lustre stripe settings.
– Stripe count = 160 Stripe Size = 1MB

16
CUG 2011

“Golden Nuggets of Discovery”

1
2
+ (2x+ 5)

 Collective MPI-IO calls
– Account for about a factor of

100 increase in performance.

– The other optimizations
account for about a factor of
2 increase in performance.

Conclusion

Optimization of I/O performance was achieved without
– changing the output file format.

– changing the data layout within the application.

 I/O performance optimization allowed
– an increase in I/O performance of about a factor of 2 for a

data-intensive application. Over the course of 200 time steps
this saves about 2 hours of I/O time.

– an increase in I/O performance which may allow the removal
of a time consuming data compression step.

– an increase in I/O performance of about a factor of 200. A
performance increase of a factor of 100 is attributed to the use
of collective MPI-IO calls which wasn’t possible before initial
optimization.

17

CUG 2011

“Golden Nuggets of Discovery”

