NATIONAL INSTITUTE FOR COMPUTATIONAL SCIENCES

NICS

A Pragmatic Approach to Improving
the Large-scale Parallel I/0
Performance of Scientific
Applications

Lonnie D. Crosby, R. Glenn Brook,
Bhanu Rekapalli, Mikhail Sekachev,
Aaron Vose, and Kwai Wong

/ CUG 2011 « Fairbanks, Alaska +May 23:26

NATIONAL INSTITUTE FOR COMPEITATIONAL SCIENCES

A Pragmatic Approach

e Data Movement

— /0 is fundamentally data movement between the application
and file system.

e Data Layout

— 1/0 patterns are informed by the layout of data within the
application and within files.

¢ |/O Performance

— Although performance is very dependent on data layout within
the application and within files,

— the method by which these layouts are mapped to one another
is a substantial contributor to performance.

NICS,

Optimization of /O Performance

e Data Layout

— within the application is difficult to change (in some
circumstances) due to domain decomposition and algorithmic
constraints.

— within files are easier to change; however, changes the
manner in which post-processing or visualization occur.

— will remain constant during the 1/0 optimization process.

e Mapping between Data Layouts

— Best performance usually seen when the data layout within
the application and within the files are similar.

— Differences in data layout create constrains that may inform
poor I/O implementations.

NICS,

Goals of Study

e Show how /O performance considerations are utilized
in “real” scientific applications to improve performance.

¢ |/O Performance Considerations

— Limit the negative impact of latency and maximize the
beneficial impact of available bandwidth
e Perform /O in as few large chunks as possible.

— Limit file system interaction overhead

e Perform only the file opens, closes, stats, and seeks which are
absolutely necessary.

— Write/read data contiguously whenever possible.

— Take advantage of task parallelism
e Avoid file system contention

NICS,

Kraken (Cray XT5)

e Contains 9,408 compute nodes,

— each containing dual 2.6 GHz hex-core AMD “Istanbul”
processors, 16 GB RAM, and a SeaStar 2+ interconnect.

o Lustre file system
— 48 OSSs and 336 OSTs
— 30 GB/s peak performance

CUG 2011 NICS

“Golden Nuggets of Discovery”

Applications

e PICMSS (The Parallel Interoperable Computational Mechanics
Simulation System)

— A computational fluid dynamics (CFD) code used to provide solutions to
incompressible problems. Developed at the University of Tennessee’s CFD
laboratory.

o AWP-ODC (Anelastic Wave Propagation)

— Seismic code used to conduct the “M8” simulation, which models a
magnitude 8.0 earthquake on the southern San Andreas fault.
Development coordinated by Southern California Earthquake Center
(SCEC) at the University of Southern California.

e BLAST (Basic Local Alignment Search Tool)

— A parallel implementation developed at the University of Tennessee,
capable of utilizing 100 thousand compute cores.

NICS,

Application #1

e Computational Grid

- 10,125 x 5,000 x 1,060 global grid nodes (5,062 x 2,500 x 530 effective grid
nodes)

— Decomposed among 30,000 processes via a process grid of 75x40x 10
processes. (68 x 63 x 53 local grid nodes)

— Each grid stored column-major.

e Application data

— Three variables are stored per grid point in three arrays, one per variable
(local grid). Multiple time steps are stored by concatenation.

e Output data

— Three shared files are written, one per variable, with data ordered
corresponding to the global grid. Multiple time steps are stored by
concatenation.

NICS,

Optimization

Original Implementation

e Derived Data type created via
MPI_Type_create_hindexed

— Each block consists of a single
value placed by an explicit

offset.

67
68

67

'/ p0 /S

P8

/. P6

/P4

P2

PO

53

P2

PO

PO

P3

P1

Bd

Optimized Implementation

e Derived Data type created via
MPI_Type_create_subarray

— Each block consists of a
contiguous set of values
(column) placed by an offset.

Figure 1: The domain decomposition of a
202x125x106 grid among 12 processes in a
3x2x2 grid. The process assignments are listed
P0O-P11 and the numbers in brackets detail the
number of grid nodes along each direction for
each process block.

NICS,

Results

e Collective MPI-IO calls are utilized along appropriate Collective-
buffering and Lustre stripe settings.
— Stripe count =160 Stripe Size = 1MB

Table 1: Comparison between Original and Optimized
I/O in Application 1
Bandwidth (GB/s)
. Time Step Data (TB) Original | Optimized
e Given amount of data -
R o 20 1.46 1.05 2.03
— Optimization saves 12 min/write 40 1.46 1.06 1.66
— Over 200 time steps, 60 146 140 2.10
. f about 2 hours 80 1.46 1.16 1.94
Savings o - 100 1.46 1.27 2.30
120 1.46 1.55 2.06
140 1.46 0.98 1.70
160 1.46 1.30 2.65
180 1.46 0.87 3.34
200 1.46 1.13 2.99
CUG 2011
“Golden Nuggets of Discovery” Nlcs)

Application #2

e Task based parallelism

— Hierarchical application and node-level master processes who serve tasks
to node-level worker processes

— Work is obtained by worker processes via a node-level master process.
The application-level master provides work to the node-level master
processes.

— 1/0 is performed per node via a dedicated writer process.

e Application data

— Each worker produces XML output per task. These are concatenated by
the writer process and compressed.

e Output data

— A file per node is written which consists of a concatenation of compressed
blocks.

NICS,

Optimization

Original Implementation Optimized Implementation

e On-demand compression and e Dual Buffering
write. — A buffer for uncompressed XML data is

_ When the writer process receives output created. Once filled, the concatenated

from a worker it is immediately datais compressed. .
compressed and written to disk. — A buffer for compressed XML data is

created. Once filled, the data is written
to disk.

e Implications

— Output files consist of a large number of
compressed blocks each with a 4-byte

¢ Implications

— Output files consist of a few, large
compressed blocks each with a 4-byte

gea;de:.fll itton ina | ber of header.
— Output files written in a large number o _ , e :
small writes. Output files written in a few, large writes.

NICS,

Results

e Benchmark case utilizes 24,576 compute cores (2,048 nodes)
Optimized case utilizes 768 MB buffers.
— Stripe count=1 Stripe Size =1MB

°® Compression Efficiency Table 2: Comparison between Original and Optimized
. . [/O in Application 2

— Compression ratio of about
1:7.5 Original Optimized

— Compression takes longer Average gcgmgcssicgn] Time (s) 101;9; 323

. . Std. Dev. (s T r

than theflle W':Ite' _ _ Bandwidth (MB/s) 25.75 34.63

- With optlmlzatlons, file write Average Write Time (s) 10.47 0.30
would take about 2.25 Std. Dev. (s) 8.36 1.06
seconds without prior Bandwidth (MB/s) 16.04 166.67
compression.

CUG 2011
12 “Golden Nuggets of Discovery” Nlcs./)

Application #3

e Computational Grid
— 2563 global grid nodes

— Decomposed among 3,000 processes via XY slabs in units of X columns.
The local grid corresponds slabs of about 256 x 22 nodes.

— Six variables per grid node is stored.
— Each grid stored column-major.

e Application data

— A column-major order array containing six values per grid node.

e Output data

— One file in Tecplot binary format containing all data (six variables) for the
global grid in column-major order and grid information.

NICS,

Optimization

Original Implementation

e File open, seek, write, close
methodology between time
steps.

e Headers written element by
element. Requires at least 118
writes.

Optimized Implementation

e File is opened once and
remains open during run.

e Headers written by data type
or structure. Requires 6
writes.

t1

{

\

Header

X coordinate

Y coordinate

Z coordinate

Variable O

Variable 5

Connectivity

Header

Variable O

Variable 5

Header

Variable O

Variable 5

P

Processor O

All processors

Processor O

All processors

Processor O

All processors

Figure 2: A representation of the Tecplot binary
output file format.

NICS,

Optimization

Original Implementation Optimized Implementation
e Looping over array indices to e Use of derived data types to
determine which to write select portion of array which
within data sections. contains only local region and
— Removal of ghost nodes appropriate variable.
— Separation of variables e Use of derived data type to
e Use of explicit offsets in each place local data within data
data section. section.
Ghost node 1 Local node 1 Local node N Ghost node K
l—l—\ o 1 [. A 1
pojip2pafvas| - [VovijvaJvs[vajvs] - [vovijvzjvajvajvs vop1p2|v3W4V5| ‘]

I |
Ghost region “before” Local region Ghost region “after”

o Figure 3: A representation of the local process's data
structure. The local and ghost nodes are labeled.

NICS)

Results

e Collective MPI-IO calls are utilized along appropriate Collective-
buffering and Lustre stripe settings.
— Stripe count =160 Stripe Size = 1MB

Table 3: Comparison between Original and Optimized
[/O in Application 3
Bandwidth (GB/s)
. Time Step Data (GB) Original Optimized
e Collective MPI-IO calls —
1 1.62 3.47x10 8.15
— Account for about a factor of 2 0.75 2.18x10~02 4.22
100 increase in performance. 3 0.75 1.91x107" 5.39
The oth e o 4 0.75 1.74x107 " 3.28
account for about a factor of 6 0.7 2.05x10~02 3.23
2 increase in performance. T 0.75 2.01x107% 4.85
8 0.75 1.79x10~ 92 4.56
9 0.75 2.59x10~%2 4.79
10 0.75 2.62x107%2 4.03
CUG 2011
16 “Golden Nuggets of Discovery” Nlcs)

Conclusion

e Optimization of I/0 performance was achieved without
— changing the output file format.
— changing the data layout within the application.

e |/O performance optimization allowed

— an increase in /0 performance of about a factor of 2 for a
data-intensive application. Over the course of 200 time steps
this saves about 2 hours of I/0 time.

— an increase in I/O performance which may allow the removal
of a time consuming data compression step.

— an increase in /O performance of about a factor of 200. A
performance increase of a factor of 100 is attributed to the use
of collective MPI-IO calls which wasn’t possible before initial
optimization.

NICS)

