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A Pragmatic Approach

e Data Movement

— /0 is fundamentally data movement between the application
and file system.

e Data Layout

— 1/0 patterns are informed by the layout of data within the
application and within files.

¢ |/O Performance

— Although performance is very dependent on data layout within
the application and within files,

— the method by which these layouts are mapped to one another
is a substantial contributor to performance.
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Optimization of /O Performance

e Data Layout

— within the application is difficult to change (in some
circumstances) due to domain decomposition and algorithmic
constraints.

— within files are easier to change; however, changes the
manner in which post-processing or visualization occur.

— will remain constant during the 1/0 optimization process.

e Mapping between Data Layouts

— Best performance usually seen when the data layout within
the application and within the files are similar.

— Differences in data layout create constrains that may inform
poor I/O implementations.
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Goals of Study

e Show how /O performance considerations are utilized
in “real” scientific applications to improve performance.

¢ |/O Performance Considerations

— Limit the negative impact of latency and maximize the
beneficial impact of available bandwidth
e Perform /O in as few large chunks as possible.

— Limit file system interaction overhead

e Perform only the file opens, closes, stats, and seeks which are
absolutely necessary.

— Write/read data contiguously whenever possible.

— Take advantage of task parallelism
e Avoid file system contention

NICS,




Kraken (Cray XT5)

e Contains 9,408 compute nodes,

— each containing dual 2.6 GHz hex-core AMD “Istanbul”
processors, 16 GB RAM, and a SeaStar 2+ interconnect.

o Lustre file system
— 48 OSSs and 336 OSTs
— 30 GB/s peak performance
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Applications

e PICMSS (The Parallel Interoperable Computational Mechanics
Simulation System)

— A computational fluid dynamics (CFD) code used to provide solutions to
incompressible problems. Developed at the University of Tennessee’s CFD
laboratory.

o AWP-ODC (Anelastic Wave Propagation)

— Seismic code used to conduct the “M8” simulation, which models a
magnitude 8.0 earthquake on the southern San Andreas fault.
Development coordinated by Southern California Earthquake Center
(SCEC) at the University of Southern California.

e BLAST (Basic Local Alignment Search Tool)

— A parallel implementation developed at the University of Tennessee,
capable of utilizing 100 thousand compute cores.
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Application #1

e Computational Grid

- 10,125 x 5,000 x 1,060 global grid nodes (5,062 x 2,500 x 530 effective grid
nodes)

— Decomposed among 30,000 processes via a process grid of 75x40x 10
processes. (68 x 63 x 53 local grid nodes)

— Each grid stored column-major.

e Application data

— Three variables are stored per grid point in three arrays, one per variable
(local grid). Multiple time steps are stored by concatenation.

e Output data

— Three shared files are written, one per variable, with data ordered
corresponding to the global grid. Multiple time steps are stored by
concatenation.
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Optimization

Original Implementation

e Derived Data type created via
MPI_Type_create_hindexed

— Each block consists of a single
value placed by an explicit

offset.
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Optimized Implementation

e Derived Data type created via
MPI_Type_create_subarray

— Each block consists of a
contiguous set of values
(column) placed by an offset.

Figure 1: The domain decomposition of a
202x125x106 grid among 12 processes in a
3x2x2 grid. The process assignments are listed
P0O-P11 and the numbers in brackets detail the
number of grid nodes along each direction for
each process block.

NICS,



Results

e Collective MPI-IO calls are utilized along appropriate Collective-
buffering and Lustre stripe settings.
— Stripe count =160 Stripe Size = 1MB

Table 1: Comparison between Original and Optimized
I/O in Application 1
Bandwidth (GB/s)
. Time Step Data (TB) Original | Optimized
e Given amount of data -
R o 20 1.46 1.05 2.03
— Optimization saves 12 min/write 40 1.46 1.06 1.66
— Over 200 time steps, 60 146 140 2.10
. f about 2 hours 80 1.46 1.16 1.94
Savings o - 100 1.46 1.27 2.30
120 1.46 1.55 2.06
140 1.46 0.98 1.70
160 1.46 1.30 2.65
180 1.46 0.87 3.34
200 1.46 1.13 2.99
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Application #2

e Task based parallelism

— Hierarchical application and node-level master processes who serve tasks
to node-level worker processes

— Work is obtained by worker processes via a node-level master process.
The application-level master provides work to the node-level master
processes.

— 1/0 is performed per node via a dedicated writer process.

e Application data

— Each worker produces XML output per task. These are concatenated by
the writer process and compressed.

e Output data

— A file per node is written which consists of a concatenation of compressed
blocks.
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Optimization

Original Implementation Optimized Implementation

e On-demand compression and e Dual Buffering
write. — A buffer for uncompressed XML data is

_ When the writer process receives output created. Once filled, the concatenated

from a worker it is immediately datais compressed. .
compressed and written to disk. — A buffer for compressed XML data is

created. Once filled, the data is written
to disk.

e Implications

— Output files consist of a large number of
compressed blocks each with a 4-byte

¢ Implications

— Output files consist of a few, large
compressed blocks each with a 4-byte

gea;de:.fll itton ina | ber of header.
— Output files written in a large number o _ , e :
small writes. Output files written in a few, large writes.
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Results

e Benchmark case utilizes 24,576 compute cores (2,048 nodes)
Optimized case utilizes 768 MB buffers.
— Stripe count=1 Stripe Size =1MB

°® Compression Efficiency Table 2: Comparison between Original and Optimized
. . [/O in Application 2

— Compression ratio of about
1:7.5 Original Optimized

— Compression takes longer Average gcgmgcssicgn] Time (s) 101;9; 323

. . Std. Dev. (s T r

than theflle W':Ite' _ _ Bandwidth (MB/s) 25.75 34.63

- With optlmlzatlons, file write Average Write Time (s) 10.47 0.30
would take about 2.25 Std. Dev. (s) 8.36 1.06
seconds without prior Bandwidth (MB/s) 16.04 166.67
compression.
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Application #3

e Computational Grid
— 2563 global grid nodes

— Decomposed among 3,000 processes via XY slabs in units of X columns.
The local grid corresponds slabs of about 256 x 22 nodes.

— Six variables per grid node is stored.
— Each grid stored column-major.

e Application data

— A column-major order array containing six values per grid node.

e Output data

— One file in Tecplot binary format containing all data (six variables) for the
global grid in column-major order and grid information.
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Optimization

Original Implementation

e File open, seek, write, close
methodology between time
steps.

e Headers written element by
element. Requires at least 118
writes.

Optimized Implementation

e File is opened once and
remains open during run.

e Headers written by data type
or structure. Requires 6
writes.
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Figure 2: A representation of the Tecplot binary
output file format.
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Optimization

Original Implementation Optimized Implementation
e Looping over array indices to e Use of derived data types to
determine which to write select portion of array which
within data sections. contains only local region and
— Removal of ghost nodes appropriate variable.
— Separation of variables e Use of derived data type to
e Use of explicit offsets in each place local data within data
data section. section.
Ghost node 1 Local node 1 Local node N  Ghost node K
l—l—\ o 1 [ . A 1
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I |
Ghost region “before” Local region Ghost region “after”

o Figure 3: A representation of the local process's data
structure. The local and ghost nodes are labeled.
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Results

e Collective MPI-IO calls are utilized along appropriate Collective-
buffering and Lustre stripe settings.
— Stripe count =160 Stripe Size = 1MB

Table 3: Comparison between Original and Optimized
[/O in Application 3
Bandwidth (GB/s)
. Time Step Data (GB) Original Optimized
e Collective MPI-IO calls —
1 1.62 3.47x10 8.15
— Account for about a factor of 2 0.75 2.18x10~02 4.22
100 increase in performance. 3 0.75 1.91x107" 5.39
The oth e o 4 0.75 1.74x107 " 3.28
account for about a factor of 6 0.7 2.05x10~02 3.23
2 increase in performance. T 0.75 2.01x107% 4.85
8 0.75 1.79x10~ 92 4.56
9 0.75 2.59x10~%2 4.79
10 0.75 2.62x107%2 4.03
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Conclusion

e Optimization of I/0 performance was achieved without
— changing the output file format.
— changing the data layout within the application.

e |/O performance optimization allowed

— an increase in /0 performance of about a factor of 2 for a
data-intensive application. Over the course of 200 time steps
this saves about 2 hours of I/0 time.

— an increase in I/O performance which may allow the removal
of a time consuming data compression step.

— an increase in /O performance of about a factor of 200. A
performance increase of a factor of 100 is attributed to the use
of collective MPI-IO calls which wasn’t possible before initial
optimization.
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