
A Pragmatic Approach to Improving
the Large-scale Parallel I/O

Performance of Scientific
Applications

Lonnie D. Crosby, R. Glenn Brook,
Bhanu Rekapalli, Mikhail Sekachev,

Aaron Vose, and Kwai Wong

A Pragmatic Approach

2
CUG 2011

“Golden Nuggets of Discovery”

 Data Movement
– I/O is fundamentally data movement between the application

and file system.

 Data Layout
– I/O patterns are informed by the layout of data within the

application and within files.

 I/O Performance
– Although performance is very dependent on data layout within

the application and within files,

– the method by which these layouts are mapped to one another
is a substantial contributor to performance.

Optimization of I/O Performance

 Data Layout
– within the application is difficult to change (in some

circumstances) due to domain decomposition and algorithmic
constraints.

– within files are easier to change; however, changes the
manner in which post-processing or visualization occur.

– will remain constant during the I/O optimization process.

Mapping between Data Layouts
– Best performance usually seen when the data layout within

the application and within the files are similar.

– Differences in data layout create constrains that may inform
poor I/O implementations.

3
CUG 2011

“Golden Nuggets of Discovery”

Goals of Study

 Show how I/O performance considerations are utilized
in “real” scientific applications to improve performance.

 I/O Performance Considerations
– Limit the negative impact of latency and maximize the

beneficial impact of available bandwidth
 Perform I/O in as few large chunks as possible.

– Limit file system interaction overhead
 Perform only the file opens, closes, stats, and seeks which are

absolutely necessary.

– Write/read data contiguously whenever possible.

– Take advantage of task parallelism
 Avoid file system contention

4
CUG 2011

“Golden Nuggets of Discovery”

Kraken (Cray XT5)

 Contains 9,408 compute nodes,
– each containing dual 2.6 GHz hex-core AMD “Istanbul”

processors, 16 GB RAM, and a SeaStar 2+ interconnect.

 Lustre file system
– 48 OSSs and 336 OSTs

– 30 GB/s peak performance

5
CUG 2011

“Golden Nuggets of Discovery”

Applications

 PICMSS (The Parallel Interoperable Computational Mechanics
Simulation System)
– A computational fluid dynamics (CFD) code used to provide solutions to

incompressible problems. Developed at the University of Tennessee’s CFD
laboratory.

 AWP-ODC (Anelastic Wave Propagation)
– Seismic code used to conduct the “M8” simulation, which models a

magnitude 8.0 earthquake on the southern San Andreas fault.
Development coordinated by Southern California Earthquake Center
(SCEC) at the University of Southern California.

 BLAST (Basic Local Alignment Search Tool)
– A parallel implementation developed at the University of Tennessee,

capable of utilizing 100 thousand compute cores.

6
CUG 2011

“Golden Nuggets of Discovery”

Application #1

 Computational Grid
– 10,125 x 5,000 x 1,060 global grid nodes (5,062 x 2,500 x 530 effective grid

nodes)

– Decomposed among 30,000 processes via a process grid of 75 x 40 x 10
processes. (68 x 63 x 53 local grid nodes)

– Each grid stored column-major.

 Application data
– Three variables are stored per grid point in three arrays, one per variable

(local grid). Multiple time steps are stored by concatenation.

 Output data
– Three shared files are written, one per variable, with data ordered

corresponding to the global grid. Multiple time steps are stored by
concatenation.

7
CUG 2011

“Golden Nuggets of Discovery”

Optimization

Original Implementation

 Derived Data type created via
MPI_Type_create_hindexed
– Each block consists of a single

value placed by an explicit
offset.

Optimized Implementation

 Derived Data type created via
MPI_Type_create_subarray
– Each block consists of a

contiguous set of values
(column) placed by an offset.

8
CUG 2011

“Golden Nuggets of Discovery”

Figure 1: The domain decomposition of a

202x125x106 grid among 12 processes in a

3x2x2 grid. The process assignments are listed

P0-P11 and the numbers in brackets detail the

number of grid nodes along each direction for

each process block.

Results

 Collective MPI-IO calls are utilized along appropriate Collective-
buffering and Lustre stripe settings.
– Stripe count = 160 Stripe Size = 1MB

 Given amount of data
– Optimization saves 12 min/write

– Over 200 time steps,
savings of about 2 hours.

9
CUG 2011

“Golden Nuggets of Discovery”

1
2
+ (2x+ 5)

Application #2

 Task based parallelism
– Hierarchical application and node-level master processes who serve tasks

to node-level worker processes

– Work is obtained by worker processes via a node-level master process.
The application-level master provides work to the node-level master
processes.

– I/O is performed per node via a dedicated writer process.

 Application data
– Each worker produces XML output per task. These are concatenated by

the writer process and compressed.

 Output data
– A file per node is written which consists of a concatenation of compressed

blocks.

10
CUG 2011

“Golden Nuggets of Discovery”

Optimization

Original Implementation

 On-demand compression and
write.
– When the writer process receives output

from a worker it is immediately
compressed and written to disk.

 Implications
– Output files consist of a large number of

compressed blocks each with a 4-byte
header.

– Output files written in a large number of
small writes.

Optimized Implementation

 Dual Buffering
– A buffer for uncompressed XML data is

created. Once filled, the concatenated
data is compressed.

– A buffer for compressed XML data is
created. Once filled, the data is written
to disk.

 Implications
– Output files consist of a few, large

compressed blocks each with a 4-byte
header.

– Output files written in a few, large writes.

11
CUG 2011

“Golden Nuggets of Discovery”

Results

 Benchmark case utilizes 24,576 compute cores (2,048 nodes)
Optimized case utilizes 768 MB buffers.
– Stripe count = 1 Stripe Size = 1MB

12
CUG 2011

“Golden Nuggets of Discovery”

1
2
+ (2x+ 5)

 Compression Efficiency
– Compression ratio of about

1:7.5

– Compression takes longer
than the file write.

– With optimizations, file write
would take about 2.25
seconds without prior
compression.

Application #3

 Computational Grid
– 2563 global grid nodes

– Decomposed among 3,000 processes via XY slabs in units of X columns.
The local grid corresponds slabs of about 256 x 22 nodes.

– Six variables per grid node is stored.

– Each grid stored column-major.

 Application data
– A column-major order array containing six values per grid node.

 Output data
– One file in Tecplot binary format containing all data (six variables) for the

global grid in column-major order and grid information.

13
CUG 2011

“Golden Nuggets of Discovery”

Optimization

Original Implementation

 File open, seek, write, close
methodology between time
steps.

 Headers written element by
element. Requires at least 118
writes.

Optimized Implementation

 File is opened once and
remains open during run.

 Headers written by data type
or structure. Requires 6
writes.

Figure 2: A representation of the Tecplot binary
output file format.

14
CUG 2011

“Golden Nuggets of Discovery”

Optimization

Original Implementation

 Looping over array indices to
determine which to write
within data sections.
– Removal of ghost nodes

– Separation of variables

 Use of explicit offsets in each
data section.

Optimized Implementation

 Use of derived data types to
select portion of array which
contains only local region and
appropriate variable.

 Use of derived data type to
place local data within data
section.

15
CUG 2011

“Golden Nuggets of Discovery”

 Figure 3: A representation of the local process's data
structure. The local and ghost nodes are labeled.

Results

 Collective MPI-IO calls are utilized along appropriate Collective-
buffering and Lustre stripe settings.
– Stripe count = 160 Stripe Size = 1MB

16
CUG 2011

“Golden Nuggets of Discovery”

1
2
+ (2x+ 5)

 Collective MPI-IO calls
– Account for about a factor of

100 increase in performance.

– The other optimizations
account for about a factor of
2 increase in performance.

Conclusion

Optimization of I/O performance was achieved without
– changing the output file format.

– changing the data layout within the application.

 I/O performance optimization allowed
– an increase in I/O performance of about a factor of 2 for a

data-intensive application. Over the course of 200 time steps
this saves about 2 hours of I/O time.

– an increase in I/O performance which may allow the removal
of a time consuming data compression step.

– an increase in I/O performance of about a factor of 200. A
performance increase of a factor of 100 is attributed to the use
of collective MPI-IO calls which wasn’t possible before initial
optimization.

17

CUG 2011

“Golden Nuggets of Discovery”

