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 Data Movement 
– I/O is fundamentally data movement between the application 

and file system. 

 Data Layout 
– I/O patterns are informed by the layout of data within the 

application and within files. 

 I/O Performance 
– Although performance is very dependent on data layout within 

the application and within files, 

– the method by which these layouts are mapped to one another 
is a substantial contributor to performance. 



Optimization of I/O Performance 

 Data Layout 
– within the application is difficult to change (in some 

circumstances) due to domain decomposition and algorithmic 
constraints.  

– within files are easier to change; however, changes the 
manner in which post-processing or visualization occur. 

– will remain constant during the I/O optimization process. 

Mapping between Data Layouts 
– Best performance usually seen when the data layout within 

the application and within the files are similar. 

– Differences in data layout create constrains that may inform 
poor I/O implementations. 
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Goals of Study 

 Show how I/O performance considerations are utilized 
in “real” scientific applications to improve performance. 

 I/O Performance Considerations 
– Limit the negative impact of latency and maximize the 

beneficial impact of available bandwidth 
 Perform I/O in as few large chunks as possible. 

– Limit file system interaction overhead 
 Perform only the file opens, closes, stats, and seeks which are 

absolutely necessary. 

– Write/read data contiguously whenever possible. 

– Take advantage of task parallelism 
 Avoid file system contention 
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Kraken (Cray XT5) 

 Contains 9,408 compute nodes, 
– each containing dual 2.6 GHz hex-core AMD “Istanbul” 

processors, 16 GB RAM, and a SeaStar 2+ interconnect. 

 Lustre file system 
– 48 OSSs and 336 OSTs 

– 30 GB/s peak performance 
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Applications 

 PICMSS (The Parallel Interoperable Computational Mechanics 
Simulation System) 
– A computational fluid dynamics (CFD) code used to provide solutions to  

incompressible problems.  Developed at the University of Tennessee’s CFD 
laboratory. 

 AWP-ODC (Anelastic Wave Propagation) 
– Seismic code used to conduct the “M8” simulation, which models a 

magnitude 8.0 earthquake on the southern San Andreas fault.  
Development coordinated by Southern California Earthquake Center 
(SCEC) at the University of Southern California. 

 BLAST (Basic Local Alignment Search Tool) 
– A parallel implementation developed at the University of Tennessee, 

capable of utilizing 100 thousand compute cores. 
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Application #1 

 Computational Grid 
– 10,125 x 5,000 x 1,060 global grid nodes (5,062 x 2,500 x 530 effective grid 

nodes)  

– Decomposed among 30,000 processes via a process grid of  75 x 40 x 10 
processes. (68 x 63 x 53 local grid nodes) 

– Each grid stored column-major. 

 Application data 
– Three variables are stored per grid point in three arrays, one per variable 

(local grid). Multiple time steps are stored by concatenation. 

 Output data 
– Three shared files are written, one per variable, with data ordered 

corresponding to the global grid.  Multiple time steps are stored by 
concatenation. 
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Optimization 

Original Implementation 

 Derived Data type created via 
MPI_Type_create_hindexed 
– Each block consists of a single 

value placed by an explicit 
offset. 

Optimized Implementation 

 Derived Data type created via 
MPI_Type_create_subarray 
– Each block consists of a 

contiguous set of values 
(column) placed by an offset. 

8 
CUG 2011 

“Golden Nuggets of Discovery” 

Figure 1:     The domain decomposition of a 

202x125x106 grid among 12 processes in a 

3x2x2 grid. The process assignments are listed 

P0-P11 and the numbers in brackets detail the 

number of grid nodes along each direction for 

each process block. 



Results 

 Collective MPI-IO calls are utilized along appropriate Collective-
buffering and Lustre stripe settings. 
– Stripe count = 160   Stripe Size = 1MB 

 

 

 

 Given amount of data 
– Optimization saves 12 min/write 

– Over 200 time steps,                                                                                                     
savings of about 2 hours. 
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Application #2 

 Task based parallelism 
– Hierarchical application and node-level master processes who serve tasks 

to node-level worker processes 

– Work is obtained by worker processes via a node-level master process.  
The application-level master provides work to the node-level master 
processes. 

– I/O is performed per node via a dedicated writer process. 

 Application data 
– Each worker produces XML output per task.  These are concatenated by 

the writer process and compressed.  

 Output data 
– A file per node is written which consists of a concatenation of compressed 

blocks. 
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Optimization 

Original Implementation 

 On-demand compression and 
write. 
– When the writer process receives output 

from a worker it is immediately 
compressed and written to disk. 

 

 Implications 
– Output files consist of a large number of 

compressed blocks each with a 4-byte 
header. 

– Output files written in a large number of 
small writes. 

Optimized Implementation 

 Dual Buffering 
– A buffer for uncompressed XML data is 

created.  Once filled, the concatenated 
data is compressed. 

– A buffer for compressed XML data is 
created.  Once filled, the data is written 
to disk. 

 Implications 
– Output files consist of a few, large 

compressed blocks each with a 4-byte 
header. 

– Output files written in a few, large writes. 
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Results 

 Benchmark case utilizes 24,576 compute cores (2,048 nodes)  
Optimized case utilizes 768 MB buffers.  
– Stripe count = 1   Stripe Size = 1MB 
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 Compression Efficiency 
– Compression ratio of about 

1:7.5 

– Compression takes longer 
than the file write. 

– With optimizations, file write 
would take about 2.25 
seconds without prior 
compression. 



Application #3 

 Computational Grid 
– 2563 global grid nodes 

– Decomposed among 3,000 processes via XY slabs in units of X columns. 
The local grid corresponds slabs of about 256 x 22 nodes. 

– Six variables per grid node is stored. 

– Each grid stored column-major. 

 Application data 
– A column-major order array containing six values per grid node. 

 Output data 
– One file in Tecplot binary format containing  all data (six variables) for the 

global grid in column-major order and grid information. 
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Optimization 

Original Implementation 

 File open, seek, write, close 
methodology between time 
steps. 

 Headers written element by 
element. Requires at least 118 
writes. 

Optimized Implementation 

 File is opened once and 
remains open during run. 

 Headers written by data type 
or structure. Requires 6 
writes. 

 

Figure 2: A representation of the Tecplot binary 
output file format. 
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Optimization 

Original Implementation 

 Looping over array indices to 
determine which to write 
within data sections. 
– Removal of ghost nodes 

– Separation of variables 

 Use of explicit offsets in each 
data section. 

 

Optimized Implementation 

 Use of derived data types to 
select portion of array which 
contains only local region and 
appropriate variable. 

 Use of derived data type to 
place local data within data 
section. 
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 Figure 3: A representation of the local process's data 
structure. The local and ghost nodes are labeled. 



Results 

 Collective MPI-IO calls are utilized along appropriate Collective-
buffering and Lustre stripe settings. 
– Stripe count = 160   Stripe Size = 1MB 
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 Collective MPI-IO calls 
– Account for about a factor of 

100 increase in performance. 

– The other optimizations 
account for about a factor of 
2 increase in performance. 



Conclusion  

Optimization of I/O performance was achieved without 
– changing the output file format. 

– changing the data layout within the application. 

 I/O performance optimization allowed 
– an increase in I/O performance of about a factor of 2 for a 

data-intensive application. Over the course of 200 time steps 
this saves about 2 hours of I/O time. 

– an increase in I/O performance which may allow the removal 
of a time consuming data compression step. 

– an increase in I/O performance of about a factor of 200.  A 
performance increase of a factor of 100 is attributed to the use 
of collective MPI-IO calls which wasn’t possible before initial 
optimization. 
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