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The performance and scalability of collective operations
plays a key role in the performance and scalability of many
scientific applications. Within the Open MPI code base
we have developed a general purpose hierarchical collec-
tive operations framework called Cheetah, and applied it at
large scale on the Oak Ridge Leadership Computing Fa-
cility’s Jaguar (OLCF) platform, obtaining better perfor-
mance and scalability than the native MPI implementation.
This paper discuss Cheetah’s design and implementation,
and optimizations to the framework for Cray XT 5 plat-
forms. Our results show that the Cheetah’s Broadcast and
Barrier perform better than the native MPI implementation.
For medium data, the Cheetah’s Broadcast outperforms the
native MPI implementation by 93% for 49,152 processes
problem size. For small and large data, it out performs the
native MPI implementation by 10% and 9%, respectively, at
24,576 processes problem size. The Cheetah’s Barrier per-
forms 10% better than the native MPI implementation for
12,288 processes problem size.

1 Introduction

Previous research has shown that collective operations
are important for the performance and scalability of HPC
applications. The profiling of the HPC applications show
that a significant amount of execution time is spent in the
collective operations. The projections of exa-scale systems
predict that the systems will contain million or more proces-
sor cores. As the HPC systems increase in size the amount
of application time spent in collectives only increases.

To improve the performance of MPI collectives for re-
cent and upcoming HPC systems, MPI implementations
should support asynchronous progress, be optimized for the
deep cache hierarchies, support arbitrary network commu-
nication hierarchies, and take advantage of collective capa-
bilities of modern network interfaces [4], [7], [5]. How-
ever, current Open MPI implementation does not take ad-

vantage of modern hardware architectures to improve the
performance of MPI routines [2]. The Open MPI’s cur-
rent infrastructure does not provide the flexibility to imple-
ment customized routines for each of these communication
architectures. Its algorithms and implementation does not
take into account the latency of communication hierarchies.
Further, it does not support the non-blocking collective op-
erations that help improve overlap characteristics of HPC
applications.

In this paper, we present the Cheetah framework, a gen-
eral purpose collectives framework, implemented with the
Open MPI, and the optimizations for the Cray XT plat-
forms. The various communication network hierarchies
are expressed as subgroups or hierarchies, and a collective
primitive is implemented for each of these hierarchy. The
coordinated execution of these primitives achieve a global
collective operation. The grouping of processes and algo-
rithm implementation are decoupled, as a result the frame-
work can choose any algorithm for each of these commu-
nication hierarchies providing customized implementation
for each of these hierarchies, also increasing the code reuse.
Further, the framework supports asynchronous progress of
collectives, and provides scalable memory usage mecha-
nisms.

In the rest of paper, we present the Cheetah design in
Section 3, and discuss the optimizations for Cray XT plat-
forms. Then present results in Section 5 and conclude in
Section 6.

2 Related Work

To improve the performance of collectives for modern
hardware architecture, most of the research has followed the
approach of optimizing algorithms for the shared memory
architectures [10], [9], [3]. Mamidala et. al optimize the
collectives by considering data layouts for the L2 and L3
caches, and minimizing communication over the network



between MPI processes [7]. Tipparaju et al. replace point to
point communications either by shared memory or remote
memory protocols in collective operations for SMP clusters
[10].

There is another body of research that takes the approach
of improving the performance of collectives by optimizing
them for various homogeneous architectures. Almasi et al.
have developed collectives for the BG/L platform taking ad-
vantage of the hardware support for the collectives [1]. Ritz-
dorf et al. developed collectives for NEC’s SX platforms
[8]. This research [6] took advantage of the topology of
switches and chassis of InfiniBand cluster for Scatter and
Gather collectives. This research [2] however concentrated
on selecting collectives for a architecture from the available
implementations.

The Cheetah framework provides a system for imple-
menting customized collectives over arbitrary communica-
tion network topologies. Though we present an optimized
framework for Cray XT platforms here, the platform is gen-
eral to implement collectives over Cray XT platforms, In-
finiBand, CORE-Direct and Ethernet systems. It supports
non-blocking collectives and helps achieve more than 90%
communication and computation overlap on CORE-Direct
systems [11].

3 Design
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Figure 1. The components of the Cheetah
framework along with Open MPI components.

Figure 1 shows the Cheetah components along with the
Open MPI components. We provide a brief overview of the
design, architecture and implementation in this section, and
more detailed discussion can be found in Graham et al. [4]

The collective routines in the Cheetah framework are im-
plemented as a combination of collective routines over the
communication hierarchies. We call this collective routines
- collective primitives. The framework provides the compo-
nents to build, implement, and execute the hierarchical col-
lective primitives and collective routines. The main compo-
nents of the Cheetah framework are BCOL, SBGP, and ML
components.

The BCOL component is responsible for implementing
the collective primitives that are optimized for different
communication architectures. For Cray XT platforms, the
collective primitives are implemented in PTP BCOL com-
ponent. It uses Open MPI portals BTL for message transfer.
Since PTP BCOL component uses PML for message trans-
fer, which supports network interfaces such as InfiniBand,
Ethernet besides Cray XT, the PTP BCOL collective prim-
itives can be used over these networks. Besides Cray XT,
InfiniBand, and Ethernet, there are specialized BCOL com-
ponents for shared memory and CORE-Direct.

The SBGP component groups the processes into sub-
groups based on the communication hierarchy. Currently,
the framework supports UMA, SOCKET, IBNET and P2P
subgroups. For example, the processes on the same CPU
socket are grouped together into SOCKET subgroup, and
processes on a same node can be grouped together into a
UMA subgroup.

The ML component coordinates the BCOL’s collective
primitives across all the subgroups, provides data and con-
trol buffers for the collective operations, and provides a
mapping from MPI collective semantics to collective primi-
tives. The small data transfers on the Cray XT platforms use
mmaped memory bank for shared memory communication,
and for the large data transfers it depends on portals library,
particularly it uses PtlMDMDCopy copy mechanism.

The collective primitives that are combined to achieve a
global collective operation and the order of its execution is
defined by a schedule. The schedule takes into account the
source of the data for the collective, if any. The progress en-
gine based on the schedule starts the collective primitives.
Using a wait list and active list, the progress engine man-
ages the progress of the routines until the completion of the
collective.

4 Collective Algorithms

We have implemented Barrier and Broadcast Collectives
optimized for Cray XT platforms in the Cheetah framework.

4.1 Open MPI Portals BTL

Open MPI portals BTL provides a message transfer layer
for Cray XT platforms. It uses an eager protocol for small
message data and rendezvous protocol for large message



data. The eager protocol sends the message from the sender
to the receiver without any flow control. The BTL layer
uses the portals acknowledgement mechanism to learn the
successful delivery of the data. For large message data, the
sender sends a RTS (Request To Send) message to the re-
ceiver, and the receiver sends the CTS (Clear To Send) mes-
sage to signal the readiness of the receiver to receive the
data.

In the above protocols, every portal message is acknowl-
edged by the receiver and the sender uses the acknowledge-
ment as a successful transmission of the message. However,
the Cray XT 5 platforms’ SeaStar network interface uses
BEER (Basic End to End Reliability) protocol for message
transfer. The protocol provides an end-to-end reliability be-
tween two endpoints, it handles failures such as packet loss,
receive not read, and resource shortages.

In the Cheetah framework, message transfers on the Cray
XT platforms take advantage of the BEER protocol. The
portal message transfer does not generate an acknowledg-
ment in the case of small message protocol, or for RTS and
CTS messages in the case of large message data protocol.

4.2 Broadcast

The hierarchical Broadcast is implemented as a Broad-
cast operation split over multiple subgroups or hierarchies.
Each of these split routines are implemented using different
algorithms that are customized for a network communica-
tion hierarchy. A compile-time or run-time schedule of split
operations provides the order at which these operations are
executed. A progress engine which is part of the ML com-
ponent is responsible for executing these operations. The
order of execution of these operations can be arbitrary, se-
quential order, or order defined based on the source of the
data.

For Cray XT platforms, we implement the algorithms
as three split Broadcast operations over SOCKET, UMA,
and P2P subgroups. For example, a three level hierarchy
Broadcast that has split collective primitives over SOCKET,
UMA, and P2P subgroups. The processes on a CPU socket
are grouped into a SOCKET subgroup, and a process among
them is selected as a group leader. The group leader is re-
sponsible for any communication between processes of any
two subgroups. The leaders of the SOCKET subgroup are
combined to form a UMA subgroup, and the leaders of the
UMA subgroup form a P2P subgroup. The SOCKET and
UMA subgroups use shared memory BCOL, and the Broad-
cast is implemented as a recursive doubling algorithm, and
P2P subgroups use PTPCOLL BCOL, and the Broadcast is
implemented as a scatter-allgather algorithm.

The ML component coordinates the data and control be-
tween these split broadcasts. It also provides and manages
the control and data buffers required for the collective oper-

ations.
We have various implementations of Broadcast collec-

tives in the Cheetah framework. They either vary in the
amount of concurrent progress allowed for the collective
primitives, or the tree used for data distribution. The k-
nomial Knownroot algorithm uses k-nomial tree for data
distribution, and all independent collective primitives over
different hierarchies can progress concurrently. The se-
quential algorithm is similar to Knownroot except that the
collective primitives are progressed sequentially, and on a
node no two primitives progresses at a given time. The N-
ary algorithm is similar to Knownroot except that it uses
N-ary tree for data distribution.

4.3 Barrier

The hierarchical Barrier like hierarchical Broadcast is
implemented as split collective primitives. For Cray XT
platforms, the hierarchical Barrier is implemented as collec-
tive primitives over SOCKET, UMA, and P2P subgroups.
The shared memory BCOL barrier routine is implemented
as a fanin algorithm, and the PTPCOLL BCOL barrier rou-
tine is implemented as a recursive doubling barrier primi-
tive. Say if we have N subgroups (hierarchies) in the col-
lective routine execution, the first N−1 subgroup levels use
FANIN and FANOUT routines and the last subgroup use
recursive doubling routine. The collective routine over P2P
BCOL uses portals BTL for message transfer. The shared
memory collective routine uses a mmaped backed mem-
ory buffer which is a lockless memory sharing mechanism
in Cheetah for small message transfer. For large message
transfer, the Broadcast routine uses a portal library call.

5 Evaluation

In this section, we first provide an overview of exper-
imental test-bed and then provide the results showing the
performance characteristics of Open MPI point-to-point op-
erations, and Cheetah’s Barrier and Broadcast collective op-
erations.

5.1 Experimental Setup

We ran all experiments on the OLCF’s Jaguar, a Cray
XT5 system. It has 18,688 compute nodes, each one con-
taining two 2.6 GHz AMD Opteron (Istanbul) processors,
16 GB of memory, and a SeaStar 2+ router. The routers are
connected in a 3D torus topology. Each AMD Opteron pro-
cessor has six computing cores and three levels of cache
memory. The compute nodes run Compute Node Linux
micro-kernel.



5.2 Results

5.2.1 Point-to-point Message Latency and Bandwidth

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 1  10  100  1000  10000  100000  1e+06

L
a
te

n
c
y
 (

U
s
e
c
)

Message size (bytes)

OMPI vs CRAY portals latency

OMPI with portals optimization
OMPI without portals optimization
Cray MPI

Figure 2. The point-to-point message latency
with and without optimizations in Open MPI
compared to Cray MPI.

Figures 2 shows the latency of message with and without
the portals optimization compared to the latency of message
that is using Cray MPI. The one byte latency of Open MPI
is 6.97 usecs which is 15% better than the Cray MPI. The
latency of Open MPI point-to-point messages are better for
small messages (up to 2 KB). However, for larger message
size the Cray MPI message is marginally better.
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Figure 3. The message bandwidth with and
without optimizations in Open MPI compared
to Cray MPI.

Figure 3 shows the bandwidth of Open MPI with and
without the portals optimization compared to the bandwidth

of Cray MPI. Though the bandwidth for protocols in Open
MPI improved when the optimizations were applied, it is
only similar to Cray MPI protocols. They both achieve a
peak bandwidth of 2 Gbp/s for 4 MB message size.

5.2.2 Latencies of Broadcast Implementations
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Figure 4. The latency of 8 byte Cheetah
Broadcast with three levels of hierarchy com-
pared to the Cray MPI.
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Figure 5. The latency of 4 MB Cheetah Broad-
cast with three levels of hierarchy compared
to the Cray MPI.

Figures 4, 6, and 5 show results comparing the latencies
of Cheetah’s Broadcast with Cray MPI for small, medium
and large data.

For small data as seen in Figure 4 for 24,576 processes
problem size, the latencies of Cheetah’s Knownroot and N-
ary algorithms are 65.26, and 68.38 usecs, respectively,
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Figure 6. The latency of 4 KB Cheetah Broad-
cast with three levels of hierarchy compared
to the Cray MPI.

which is 10% and 5% better than the Cray MPI. The per-
formance of sequential Broadcast is however similar to the
Cray MPI. For large data as seen in Figure 5 for 24,576 pro-
cesses problem size, the Cheetah’s Knownroot and N-ary
algorithms outperform the Cray MPI by 7% and 9%, and
the sequential Broadcast algorithm performs 11% worse.

Figure 6 show the performance of 4 KB Cheetah broad-
cast compared to the Cray MPI. The Cheetah’s algorithms,
blocking Knownroot, nonblocking Knownroot, N-ary, and
sequential algorithm all perform better than the Cray MPI.
The latency of blocking Knownroot, N-ary, nonblocking
Knownroot, sequential and Cray MPI are 98.79, 98.58,
98.391, 100.82, and 190.154 usecs, respectively, which are
92%, 92%, 93% and 88% better than the Cray MPI. From
the graph we can observe that Cheetah’s algorithms out per-
form Cray MPI for all problem sizes.

5.2.3 Latencies of Barrier Implementations

Figure 7 shows the performance of Cheetah barrier com-
pared to the Cray MPI. For 12,288 processes problem size,
the Cheetah’s barrier is 120.94 usecs which is 10% bet-
ter than the Cray MPI. The Cheetah’s Barrier performance
though, lags behind the Cray MPI for smaller problem sizes,
it out performs the Cray MPI after 3,072 processes problem
size.
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Figure 7. The latency of Barrier with three lev-
els of hierarchy compared to the Cray MPI.

6 Conclusion

The performance of Barrier and Broadcast demonstrate
the potential of Cheetah framework to take the advantage of
hardware capabilities provided by the Cray XT platforms.
Further, the optimizations to the Open MPI portal BTL de-
creased the latency of point-to-point message protocols and
collectives.

In Figure 7, we observe that the performance of Chee-
tah’s barrier is better than the Cray MPI for problem size
greater than 3,072 processes, and it out performs the Cray
MPI by 10% for 12,288 processes problem size. For smaller
problem size, the overhead of hierarchy synchronization is
adding to the latency of Barrier, degrading the performance.
However at the large problem size, this overhead is negated
by the performance improvement achieved because of con-
current progress of collective primitives and reduced point-
to-point message transfer latency. In our previous paper [4],
we have shown that by configuring Barrier with two level
hierarchy the overhead of hierarchy synchronization can be
reduced while improving the performance.

Figure 4, 6, and 5 show that the Cheetah’s Knownroot
and N-ary Broadcast algorithms outperforms the Cray MPI.
For small and large data and at 24,576 processes problem
size, the Cheetah’s Knownroot algorithm outperforms the
Cray MPI by 10% and 7%, respectively, and the N-ary
algorithm outperforms the Cray MPI by 5% and 9%, re-
spectively. For medium data and at 49,152 proccesses, the
Knownroot algorithm outperforms the Cray MPI by 92%.
We can also observe that all Cheetah’s algorithms outper-
form the Cray MPI by 90% on average for a 4 KB mes-
sage size. However for large data, the sequential algo-
rithm performs worse than the Cray MPI by 11%. This,
all algorithms outperforming the Cray MPI and sequential



algorithm not performing well, demonstrates the potential
of Cheetah’s design – concurrent progressing of collective
primitives, customizing the collective for the communica-
tion hierarchy and arbitrary communication topology, and
reduced point-to-point message latency – to improve the
performance characteristics of collective implementations.

References

[1] G. Almási, P. Heidelberger, C. J. Archer, X. Martorell,
C. C. Erway, J. E. Moreira, B. Steinmacher-Burow, and
Y. Zheng. Optimization of mpi collective communication
on bluegene/l systems. In Proceedings of the 19th annual in-
ternational conference on Supercomputing, ICS ’05, pages
253–262, New York, NY, USA, 2005. ACM.

[2] E. Garbriel, G. Fagg, G. Bosilica, T. Angskun, J. J. D. J.
Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine,
R. Castain, D. Daniel, R. Graham, and T. Woodall. Open
MPI: Goals, Concept, and Design of a Next Generation MPI
Implementation. In Proceedings, 11th European PVM/MPI
Users’ Group Meeting, 2004.

[3] R. L. Graham and G. Shipman. MPI support for multi-
core architectures: Optimized shared memory collectives. In
Recent Advances in Parallel Virtual Machine and Message
Passing Interface, pages 130 – 140, 2008.

[4] R. L. Graham, M. G. Venkata, J. S. Ladd, P. Shamis, I. Ra-
binovitz, V. Filipov, and G. Shainer. Cheetah: A frame-
work for scalable hierarchical collective operations. In In
Proceedings of the 11th IEEE/ACM International Sympo-
sium on Cluster, Cloud, and Grid Computing, USA Newport
Beach, CA, USA, May 2011 (To appear).

[5] T. Hoefler and G. Zerah. Optimization of a parallel 3d-FFT
with non-blocking collective operations. Invited presenta-
tion at the 3rd International ABINIT Developer Workshop,
Liege, Belgium, 01 2007.

[6] K. Kandalla, H. Subramoni, A. Vishnu, and D. Panda.
Designing topology-aware collective communication algo-
rithms for large scale infiniband clusters: Case studies with
scatter and gather. In Parallel Distributed Processing, Work-
shops and Phd Forum (IPDPSW), 2010 IEEE International
Symposium on, pages 1 –8, april 2010.

[7] A. Mamidala and et al. MPI collectives on modern multi-
core clusters: Performance optimizations and communica-
tion characteristics. CCGRID, 2008.
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