
Deploying SLURM on XT, XE, and Future Cray Systems

Gerrit Renker, Neil Stringfellow, Kris Howard, Sadaf Alam and Stephen Trofinoff
Swiss National Supercomputing Center (CSCS)

ABSTRACT: We describe porting the open-source SLURM resource manager to the
Cray BASIL/ALPS interface; and report on experiences of using it on our main 20-
cabinet Cray XT5 production platform, as well as several development systems of a
heterogeneous multi-cluster environment.

KEYWORDS: resource management, scheduling, SLURM, ALPS, XT5, XE6, GPU

1. Introduction and Motivation

The Swiss National Supercomputing Centre
(CSCS) operational facility hosts a number of
Cray MPP platforms and has traditionally been
an early adopter of Cray technologies, including
the first XT3 installation in Europe, and more
recently the XE6 and XMT2 platforms. In order
to guarantee optimal availability, utilisation of
supercomputing resources, and to ensure that
stakeholder criteria are met, CSCS has
developed a highly customized resource
management, scheduling and accounting
environment. Until recently, this was based on
Altair’s PBSPro [PBSPro2011], which allowed
replacing the internal default scheduler with a
site-specific variant written in Tcl [Welch2003].
The initial skeleton of the Tcl scheduler used at
CSCS was developed by Jason Coverston of
Cray, and over the years this has grown into a
sophisticated tool hosting in-house algorithms to
enforce the centre’s evolving policies.
However, recently Altair announced significant
modifications to the scheduling interface in
future versions of PBSPro whereby the option to
use Tcl as a scripting language will no longer be
supported. This leaves scriptable Python hooks,
called at certain points by the system, as only
possibility to customize scheduling policies.

Extensibility and flexibility are thus reduced by
vendor-provided abstractions.

In order to maintain the flexibility of adapting
the system as the centre's policies continue to
evolve, CSCS started to look for alternatives
that, in a similar manner, would support:

1. Aggressive backfilling.
2. Bottom-feeder policies (users can still

run in a very low priority mode, even
after exhausting their quota).

3. Extensions to support a key customer
(MeteoSwiss), tailored to the demanding
requirements of operational weather
forecasting, delivered several times per
day and on-demand.

4. Robustness extensions (scheduler health
monitor).

Having to move forward without the use of our
customized Tcl scheduler, CSCS considered a
wide range of batch and resource management
offerings as viable candidates. These included
batch systems currently in operation at other
Cray sites, such as Altair's PBSPro, Platform
LSF, Torque with Moab, but also alternatives
not yet deployed on Cray XT/XE machines.

Cray User Group 2011 Proceedings 1 of 11

Our investigations into scalable resource
management software for use on Cray systems
identified SLURM [Jette2003] as the most
promising candidate, since it fulfils the key
requirements namely extensibility, flexibility,
and maintainability. From its initial design
phase SLURM has been written with scalability
as a central criterion, and has been deployed on
many of the world’s largest supercomputing
systems. These include the top system in the
world according to [Top500-2010] (a
heterogeneous, GPU-based system), and
Europe's largest supercomputer, at CEA in
France. Moreover, the developers are targeting
even larger systems, including the 20 Petaflop/s
BlueGene/Q system to be deployed in 2012 at
Lawrence Livermore National Laboratory.

The peer-reviewed open-source code is
available for a range of platforms and favoured
by a substantial development community, whose
activity on a large number of systems is evident
in the SLURM mailing list archives.

Since early 2010, CSCS has been porting and
testing SLURM on various XT, XE, and non-
Cray cluster systems; with cluster dimensions
ranging from one or two nodes with a few cores
up to a 20-cabinet Cray XT5. Patches evolving
from this development have been reviewed and
accepted by the main SLURM developers (of
SchedMD, LLC), who continue to evolve the
interface and actively provide ongoing support
for the Cray port of this modern, multi-threaded
resource manager and scheduling system.

Figure 1 shows the general SLURM
architecture. On a regular cluster, there is one
slurmd execution daemon per compute node,
centrally controlled by a slurmctld with failover
possibility.

Users have a list of commands and a graphical

interface called sview available to submit and
query the system. Accounting is built-in via an
integrated MySQL/Postgres interface, where job
run information can be tracked directly.

Figure 1 - SLURM conceptual architecture
(source: courtesy of SchedMD, LLC)

SLURM provides two optimized and priority-
directed mainstream scheduling algorithms,
FIFO scheduling and conservative backfilling,
out of the box. Like many other parts of the
highly configurable architecture, the scheduling
interface is abstracted into a SLURM plugin
(other scheduling plugins include wiki and
wiki2, used by Maui and Moab respectively).

Although hooks are provided to communicate
with other schedulers, the standalone scheduling
performance of SLURM has so far proven to be
more than enough for the needs of our centre. In
particular, the recent addition of a database-
driven multi-cluster feature allows to cross-
submit jobs from one cluster to the other (useful
for our post-processing jobs), and from remote
bastion hosts.

The SLURM database can be used both
passively (classical accounting) and actively, in
order to enforce various limits, quality-of-
service, and fairshare settings. The latter further
enabled us to customize the way the scheduling

Cray User Group 2011 Proceedings 2 of 11

priority is derived, using the powerful
abstractions of the flexible multifactor-priority
plugin. This was an added bonus, since in fact it
took very little effort to implement the centre's
customized allocation policy.

The quality of the source code sets an example
by not only being state-of-the art, but also at an
extremely high standard throughout. It is future-
proof by providing scriptable library interfaces
in C, Python, Perl, and Lua. Furthermore, there
are plugin hooks into nearly every interesting
aspect of the resource manager architecture (job
submission, job priority, scheduling, node
selection, network topology, interconnect switch
type, MPI type, generic consumable resources,
checkpoint/restart type, task execution, process
tracking, accounting, plus additional plugin
architecture for job and node control (SPANK)).

Considering all these advantages, CSCS funded
porting efforts to run SLURM on XE (since
June 2010) and several XT systems. Cray
XT/XE systems employ a uniform batch system
interface called BASIL/ALPS (see next section).
Porting consisted in mapping the SLURM
abstractions onto the 4 methods provided by
BASIL; and in figuring out the undocumented
(proprietary) procedural details of ALPS
operation required for smooth and robust
interaction with a scheduling system.

This report summarizes our steps leading up to
the successful deployment of SLURM on CSCS
day-to-day production machines, including a 20-
cabinet XT5 production platform and a 2-
cabinet XE6 research and development system.

The document layout is as follows: section 2
provides porting and implementation details.
We report on initial centre-wide deployment
experiences with SLURM on Cray/non-Cray
clusters in section 3. Extensibility for future

platforms is discussed in section 4. Section 5
then concludes the paper.

2. Porting SLURM to XT and XE

Placement of executable MPP codes onto Cray
XT/XE compute nodes is handled by the Cray
Application Level Placement Scheduler (ALPS)
whose interface to third-party batch scheduling
systems is specified by the Cray Batch and
Application Scheduler Interface Layer (BASIL).
This is a static XML interface consisting of 4
XML-RPC calls: QUERY (get current
placement inventory); RESERVE (request
nodes); CONFIRM (acknowledge RESERVE
request); RELEASE (indicate to ALPS that the
job should now be finished).

The operational details of this interface are
proprietary, only some aspects have been
published [Karo2006]. In this regard we are
indebted to the exceptionally helpful and
informative support that we have experienced
from Cray when faced with operational
questions that arose in practical experiences
with ALPS. Otherwise, the absence of
documentation for behavioural details would
have been more of a "trial and error
programming". Merely implementing the XML
calls does not produce an operational interface,
let alone provide fault tolerance.

The fact that the entire batch layer is defined by
a single XML-RPC interface means that all
ALPS-based schedulers are essentially
isomorphic. The situation is comparable to the
mandatory basic health insurance in
Switzerland: since every health insurance
company is bound by the same basic
requirements, the insurance companies in effect
all offer the same package, at various prices.

Under the hood of Cray ALPS/BASIL is a

Cray User Group 2011 Proceedings 3 of 11

distributed client/server architecture consisting
of multiple daemons that keep common state
through a MySQL database and memory-
mapped, NFS-shared files.

We are not concerned with the details of ALPS
daemons, since these are described by Cray
documentation, and have also been published
elsewhere [Karo2006]. The two main entry
points of interest are: apbasil, which takes the
XML-RPC calls on its stdin and writes a
response to stdout; and aprun, which remotely
launches applications once an ALPS reservation
has been set up through the BASIL CONFIRM
call. Since ALPS releases a reservation only
when there are no outstanding claims (running
applications) against it, recent additions to
increase robustness also employ apkill in order
to clean up orphaned ALPS reservations after
the terminal (COMPLETING) stage of a job.

Figure 2 shows the interplay of various ALPS
components illustrated on the PBS architecture.
As per the above comments, SLURM mode of
operation is essentially identical; just substitute
sbatch for qsub, slurmd for pbs_mom, and
slurmctld for PBS server/scheduler.

Application
fanout

SDB node

apsched

Compute node
placement list

Login node

apinit

Compute node

User application

apinit

apbasil

qsub

PBS_mom

PBS_server

Scheduler

apsys

shell

aprun

Figure 2 - ALPS interaction with PBSPro
(source: courtesy of Rick Slick, Cray Inc.)

Our port was non-intrusive in not modifying the
generic architecture and command set of
SLURM for the sake of a specific platform.

The single exception to this rule is that, since
application launch is under the control of
ALPS, the SLURM srun command can not be
used for dispatch, control, and accounting of job
steps. At CSCS this currently means using
aprun in its place. Thanks to development effort
at ORNL, there is now also an srun-like wrapper
around aprun which implements the behaviour
of srun to the extent possible. The wrapper is
available in contribs/cray/srun.pl and also in a
separate rpm.

Keeping the port self-contained and non-
intrusive is thanks to the modular select/cray
plugin provided by SLURM developer Danny
Auble. Architecturally it is deployed as a node
selection plugin, whose clever piggybacked
design allows to also accommodate all the
remaining Cray-specific abstractions.

Typical node selection functionality comes into
play before a job run (setting up and confirming
the ALPS reservation), and afterwards
(returning the job nodes via the BASIL
RELEASE call).

The actual SLURM-specific node selection
operation is deferred internally from the
select/cray plugin to the attached select/linear
plugin. This is a tried and tested variant that
always allocates entire nodes to jobs. As of now,
no other allocation mode (such as for instance
select/cons_res based on consumable resources)
can be served, since ALPS from the beginning
has always only supported allocating entire
nodes to jobs. A shared allocation or over-
subscription of resources, such as provided by
the select/cons_res plugin, or task affinity
options, are likewise not possible with the

Cray User Group 2011 Proceedings 4 of 11

current state of ALPS. For these reasons, the
select/linear interface employed internally by
the select/cray plugin provides more than
enough functionality to match the required data
input of ALPS.

With regard to interactive mode, there is a major
difference to PBS-based systems (figure 2): in
those systems, batch and interactive jobs use the
same execution environment and launch
command (qsub), while SLURM offers
dedicated commands (sbatch and salloc) that
stand for two fundamentally different modes of
operation [Jette2003].

In batch mode, job scripts execute as usual on a
remote service node running slurmd, whereas
salloc spawns the interactive session directly on
the current login node. It is thus giving the user
access to exactly the same environment as in a
normal login session. Interactive jobs on PBS-
based systems, in contrast, perform session
forwarding to a remote execution host. The
intuitive appeal of salloc lies in providing full
MPP facilities within the customary
environment of the user. This proved very
beneficial for beginning users, debugging, and
interactive refinement of job scripts.

Since on Cray systems it is not possible to
directly launch applications on compute nodes,
SLURM supports the traditional architecture of
dedicating specific “MoM” service nodes to
execute the job scripts, and then use the ALPS
infrastructure to defer actual application launch
onto remote compute nodes. In PBS-based
systems the job launcher daemon is called
pbs_mom, which in SLURM corresponds to
slurmd in frontend mode. Thanks to recent
extensions by SLURM developer Morris Jette, a
fault-tolerant architecture of multiple such
frontend nodes is now part of SLURM (the
earlier single-frontend mode might have caused

load concerns on older XT service nodes).
An interesting detail of the of the select/cray
plugin is in also providing the abstractions for
network topology and type of interconnect. Such
functionality is normally provided by the
separate TopologyPlugin of SLURM, which
deals with the topological details of the
interconnect. In Cray terms this means torus
dimensions (2D/3D), class of rack/cabinet
cabling, and type/version of the interconnect
(SeaStar, Gemini, or Baker). Though this design
choice meant some overloading of the node
selection plugin, it has helped to keep all Cray-
specific abstractions confined to a single place
(rather than adding a separate topology/cray
plugin). Its operation is transparent to the user:
the same plugin is used for XT and XE
architectures, with differing cabling classes and
torus dimensions.

Accordingly the following topology operations
are performed by the select/cray plugin. During
initialisation, it picks up the currently
configured ALPS_NIDORDER, so that nodes
are selected in exactly the same order as ALPS
would. As a consequence, recent Cray work on
enhanced ALPS node placement [Albing2010]
can directly be leveraged within SLURM.

A second topology operation of the plugin is to
resolve the (X,Y,Z) coordinates of each compute
node (on 2D systems the X component is always
zero). These node coordinates are visible as the
virtual NodeAddr attribute of SLURM nodes,
which can also be viewed in graphical SLURM
tools such as smap or sview.

After 8 months of deploying and refining the
use of SLURM on several smaller Cray clusters
at CSCS, we migrated our main 20-cabinet XT5
production system in April 2011. Despite the
usual skepticism that always accompanies
change, our experience of rolling out SLURM

Cray User Group 2011 Proceedings 5 of 11

has in fact been smooth, efficient and trouble-
free. The excellent code quality and its inherent
scalability meant that we were basically able to
migrate our 2-cabinet test setup onto the 10
times larger production system with very little
change.

During initial roll-out we experienced one of
several "wrong guesses" as to the operational
behaviour of ALPS. On our larger XT5 with
CLE 2 the use of apkill to clean up orphaned
ALPS reservations proved fatal unless first the
reservation is cancelled (a behaviour that had
not been observed with CLE 3 on the XE).
We then were in a position where we had to
deploy a fix on a live system on which jobs
continued to run. The SLURM developers have
anticipated such an eventuality and thus provide
capabilities to also deploy rolling upgrades on
live systems. Owing to the high quality of the
code (actually using a developmental pre-
release), we were able to halt SLURM in mid-
operation, unpack the tarball with our fix, and
bring SLURM back up again, without losing
even a single of the several hundred running
jobs.

CSCS is currently using SLURM on 6 different
clusters, featuring XT, XE, x86, and GPU-based
systems. Many of the clusters are subject to
centre-wide policies such as allocation quotas,
admission control, and usage monitoring.

Despite a host of very specific requirements
(e.g. prime-time/non-prime time mode,
allowing coexistence of research and production
use of one and the same system), the inherent
flexibility of SLURM allowed us to implement
our many detailed requirements with very little
administrative effort, and appreciably little
downtime. The usual pain of mapping the
abstractions of one vendor to another is
noticeably absent: SLURM proved very system

administrator friendly, and provides usually
more than one way to accomplish the same task.

SLURM accounting
DB (mySQL)

CSCS accounting
DB (mySQL)

SLURM instance

Lua hook

Perl cron job

BASIL
XML-RPC/

Cray

ALPS

Priorities
file

Figure 3 - Job accounting infrastructure at CSCS

Figure 3 shows a bird's eye view of our centre-
wide SLURM deployment. A central database
contains user and project information,
controlling also the per-group allocations.

No more than 180 lines of Perl were required to
extract the requisite accounting information
from the job data tracked by SLURM
(accounting parsers for batch vendor logfiles, in
contrast, usually took several months of
development).

CSCS uses 3-month project quotas and offers
its users a bottom-feeder policy: projects which
have exhausted their quota may continue to run
jobs, but only at an extremely low priority,
below any other legitimate user.

This requirement necessitated a dynamic
modification of SLURM's scheduling priorities,
accomplished by just a few lines of lua code,
thanks to the job_submit/lua plugin included
with SLURM. From an external text file, read at
job submission time, we set the base 'nice' value

Cray User Group 2011 Proceedings 6 of 11

for the scheduling priority. Additional factors,
such as ageing and preferring larger jobs over
smaller ones, are taken care of by the
priority/multifactor SLURM plugin, tunable at
runtime via configurable weights.

A few additional lines of job_submit/lua code
ensure that disabled projects are banned from
running jobs, and that the right prime-time/non-
prime-time partition is selected. Given that even
complex administration tasks were handled with
such little effort, we anticipate further required
custom modifications with confidence and ease.

Being a customer site, we were not privy to
information usually available to batch vendors.
In second-guessing undocumented operational
details of the ALPS interface we repeatedly
erred in our guesses. For example, the number
of nodes reserved by ALPS not only depends on
the number of processing elements (-n), thread
depth (-d) and number of processing elements
per node (-N), but also on the per-PE memory (-
m). Hence it happened, after continuously
running our in-house scheduler for over 1 year,
that an error became evident in correctly
deriving the required number of nodes also from
the per-PE memory. As in all other questions,
we are very grateful to the Cray team for their
efficient and informative help on clarifying what
had gone wrong in our initial idea of how ALPS
interprets allocation parameters.

3. Experiences deploying SLURM on Cray
and non-Cray clusters

As a national HPC centre we have been looking
at the migration to SLURM from more than a
single point of view. In this section we detail
one of the main requirements in that regard:
how an end user can interact with a complex
programming environment via the SLURM
interface vs. the PBSPro interface (which

previously had been used on the majority of
CSCS systems). We also contrast how resources
can be managed and controlled on a commodity
multi-core cluster, where the ALPS middleware
is not present.

The Cray XT5 system is composed of dual-
socket six-core Istanbul nodes with SeaStarII
interconnect. A user can control mapping of
MPI tasks and OpenMP threads onto sockets
and nodes (depending on memory and
optimization requirements) by means of batch
script parameters, which enable ALPS to make
an appropriate reservation, and arguments to the
aprun command that describe the claim of an
individual application on compute nodes.

PBS Pro example:

#!/bin/bash
#PBS -l mppwidth=1
#PBS -l mppnppn=1
#PBS -l mppdepth=8
#PBS -l walltime=00:30:00
#PBS -V
cd $PBS_O_WORKDIR
aprun -n 1 -N 1 -d 4 ./exe

SLURM example:

#!/bin/bash
#SBATCH --ntasks=1
#SBATCH --ntasks-per-node=1
#SBATCH --cpus-per-task=8
#SBATCH --time=00:30:00

aprun -n 1 -N 1 -d 4 ./exe

A more complete comparison of PBS and
SLURM directives is available at
http://user.cscs.ch/running_batch_jobs/rosa_cra
y_xt5.

In terms of monitoring and querying their jobs,
users have familiar interfaces available. The
output from squeue command (corresponding to

Cray User Group 2011 Proceedings 7 of 11

http://user.cscs.ch/running_batch_jobs/rosa_cray_xt5/
http://user.cscs.ch/running_batch_jobs/rosa_cray_xt5/

qstat in PBS) illustrates this:

JOBID USER NAME ST START_TIME NODES
12214 blofeld evilplot PD 17:51:55 176
12215 blofeld evilplot PD 18:51:55 176
12216 blofeld evilplot PD 19:51:55 176
12217 blofeld evilplot PD 20:51:55 176
12246 blofeld evilplot PD 23:21:55 176

Furthermore, SLURM’s sview tool provides
different graphical interfaces; for instance job
view (figure 4), or node view (figure 5). The left
side of sview’s display shows the specific nodes
associated with a job or other entity in a two- or
three-dimension format, revealing its topology.

Figure 4 - sview job display on a single-chassis Cray XT5

sview provides complete user control over the
information displayed, including the fields
shown, columns used and sort order. It is also
capable of displaying information about all
clusters on a site.

Figure 5 - sview display of node usage on a small Cray XT5

In addition to porting SLURM to the Cray XT
and XE architectures, CSCS has begun a site-
wide deployment of SLURM onto a number of
other operational clusters, from standard multi-
core/multi-socket configurations to clusters
whose nodes incorporate GPUs. In general, the
configuration and operation of SLURM on these
clusters has shown itself to be straightforward.
As these clusters are frequently used for small
jobs that only require some fractional part of the
resources available on a node, it is desirable to
allow multiple users to share nodes under the
direction of the resource management
infrastructure.

CSCS is currently investigating the potential of
SLURM’s various affinity plugins on these
clusters. On a Cray system the vendor has full
control over the hardware and software stack in
order to provide optimal facilities for task
mapping, including a specific core-
specialization mode.

Owing to the generality of its design, SLURM
can just as well be deployed on commodity
clusters, where, in addition to the flexibility of
OpenMP runtime environments, there are
choices for MPI implementations, such as
OpenMPI, MPICH2 and MVAPICH2. These
open-source MPI implementations have
processor mapping and affinity options
available by default, which work transparently
with process managers and launchers such as
srun, mpirun, mpiexec, or mpiexec.hydra.

We are continuing our investigation of SLURM
features on complex clusters with heterogeneous
sets of nodes, including GPGPU devices.

Cray User Group 2011 Proceedings 8 of 11

4. Discussion: Extensibility for Future
Systems and Programming
Environments

Using SLURM on Cray with ALPS and on
multi-core/multi-socket, as well as GPU clusters
has made us ask what the future ALPS interface
might look like. Already the abilities are quite
restrictive: one executable per node and no
shared allocation mode. In addition, it is not
clear how (multiple) GPUs are to be used with
ALPS.

A key experience has been that the shape of the
ALPS interface has prevented us from taking
advantage of several powerful SLURM features
that would be extremely valuable for application
developers and production science users alike:
such as running multiple executables on a node,
oversubscribing resources for certain types of
scalability tests, and many recent concepts, such
as the upcoming use of cgroups [cgroups2011].

On the Cray systems we have had to make
compromises on what can be offered on a
commodity cluster deploying SLURM, by
reducing batch system interaction to the lowest
common denominator of the select/linear
interface. We may not use select/cons_res to
perform node selection on Cray, and likely are
constrained in developing future extensions,
such as node selection based on GPU features
(generic consumable resources)1.

A major advantage of the native SLURM
application launcher is the ability to share
nodes, either by having multiple executables
running simultaneously, or by placing multiple
different jobs on a node. Notwithstanding the
primary purpose of Cray’s XT and XE systems
for massively parallel applications, it is
sometimes expedient to run serial or small-scale

1https://computing.llnl.gov/linux/slurm/gres.html

parallel applications on such a system, whether
for post-processing or data analysis, for auto-
tuning, or because the installation has to cater to
a wider community of users in the place of a
traditional cluster. However, the ALPS job and
application launchers require that each
executable be placed on a separate node. This
leads to a waste of resources, a situation which
also arises when using a MPMD style of
execution.

Consider the innovative field of code auto-
tuning as an example. The complexity of
modern node architectures makes it difficult or
impossible for either an application developer or
a compiler writer to determine the best set of
optimizations for individual code kernels, and
so a large number of developers are turning to
auto-tuning to derive the best executable for a
given problem. Auto-tuning for a serial kernel
necessitates that a very large number of similar
code fragments are run in order to find the best
variant. Since however the current ALPS
infrastructure does not support running more
than 1 executable on the same node, the
developer typically fills the node with multiple
copies of the same kernel. Whilst on a dual-core
machine this might have been considered an
acceptable loss of machine efficiency, in an era
of 24 and 32 core nodes the accumulated waste
of resources renders such a system economically
unattractive for code auto-tuning.

SLURM’s application launcher further allows
the oversubscription of node resources, so that
jobs may share cores (for example, if the job's
CPU requirements are rather weak, or if
applications are more memory-bound than
CPU-bound). Although such is not a typical
use-case for a Cray MPP system, the ability to
oversubscribe resources is a great asset in
testing parallel applications with larger
numbers of ranks than the number of cores

Cray User Group 2011 Proceedings 9 of 11

https://computing.llnl.gov/linux/slurm/gres.html

available on a machine. This has previously
proven to be useful when Cray’s own MPI
developers were running at 150,000 ranks on a
30,000 core machine [Pagel2009], using a
special ‘emulation’ mode of ALPS. In contrast
to SLURM, this method of operation has not
been made available to the interested user
community.

In terms of large-scale resource management
and information gathering, the ability to collect
accounting information at both the level of jobs
and applications, a default provided by
SLURM, is invaluable to compute centre
managers and system administrators alike. A
resource management system that provides full
accounting transparency allows decision making
to be taken based on the amount of resources
consumed for an individual project through job
accounting; in addition it exposes how
individual applications are launched and the
resources attributed to them, by collecting
individual application run statistics. With the
current ALPS infrastructure it is necessary to
trawl through a number of system log files in
order to collect the relevant statistics; a
cumbersome task such as has been carried out
also at other centres [Maxwell2008],
[Fahey2010].

5. Summary and Future Plans

We demonstrated and discussed the deployment
of the SLURM infrastructure on Cray XT/XE
systems, and use of accounting data within the
existing environment at CSCS.

We have identified a number of important
pieces that are currently missing in ALPS, when
compared to what is available in SLURM; their
inclusion would be invaluable to either
application developers or compute centre staff.

These omissions include allowing multiple jobs

or applications per node and support for over-
subscription of resources (as was previously
allowed internally within Cray [Pagel2009]).

Our expectations have further been raised by the
highly detailed accounting format that SLURM
offers out of the box: job accounting facilities of
that granularity are currently missing in ALPS.
The CLE 3.x mazama job database is under
development and, since it is hosted on the
SMW, it is restricted to system administrators.
Short of parsing multiple ALPS logs in parallel,
there is currently no non-tedious way of
retrieving the same degree of accounting detail
as provided by SLURM.

In conclusion, the cleanest and most future-
proof solution to address the limitations we
experienced would be to:

• open-source ALPS;
• replace (parts of) ALPS with SLURM;
• run slurmd rather than apsys on the

compute nodes;
• use the SLURM/srun communication

infrastructure for communication rather
than the ALPS fanout tree.

At CSCS, we are interested in porting over
some of the algorithms we have been using in
the past years on the earlier Tcl scheduler.
These include a streamlined backfilling strategy
which achieved utilization of > 95% (averaged
over 3 months).

In the longer term we would like to explore
resource management options for other
programming environments such as PGAS
languages on a variety of architectures.

Cray User Group 2011 Proceedings 10 of 11

References

[Welch2003] Brent B. Welch, Ken Jones,
Jeffrey Hobbs. "Practical programming in Tcl
and Tk", 4th edition June 2003. ISBN: 0-13-
038560-3.

[PBSPro2011] PBSPro Product webpages at
http://www.pbsworks.com cited May 2011.

[Jette2003] Morris Jette, Mark Grondona.
"SLURM: Simple Linux Utility for Resource
Management", UCRL-MA-147996, Rev. 3,
June 2003. Article submitted to the 2003
ClusterWorld Conference and Expo.

[Top500-2010] November 2010 edition of the
Top500 web site
http://www.top500.org/list/2010/11/100 cited
May 2011.

[Karo2006] Michael Karo, Richard Lagerstrom,
Marlys Kohnke, and Carl Albing. "Application
Level Placement Scheduler (ALPS)". Paper
presented at the 2006 Cray User Group meeting,
Lugano, Switzerland.

[Albing2010] Carl Albing. "ALPS, Topology,
and Performance". Paper presented at the 2010
Cray User Group meeting, Edinburgh, UK.

[cgroups2011] cgroups documentation at
http://www.kernel.org/doc/Documentation/cgroups/cgrou
ps.txt cited May 2011.

[Pagel2009] Mark Pagel, Kim McMahon, David
Knaak. "Scaling the MPT Software on the Cray
XT5 System and Other New Features". Paper
presented at the 2009 Cray User Group meeting,
Atlanta, GA, USA.

[Maxwell2008] Don Maxwell. "Restoring the
CPA to CNL". Slides presented at the 2008 Cray
User Group meeting, Helsinki, Finland.

[Fahey2010] Mark Fahey, Nick Jones, and Bilel
Hadri. “The Automatic Library Tracking
Database”. Paper presented at the 2010 Cray
User Group meeting, Edinburgh, UK.

[Cray2010] Presentation titled “Cray
Corporate update”, slide 27. Slides available at
http:// www.nersc.gov/assets/Training-
Materials/crayxtarchitecture.pdf cited May 2011.

Acknowledgments

We are indebted to the excellent support,
encouragement, and expert help provided to us
by the lead developers of SLURM: Morris Jette
and Danny Auble of SchedMD, LLC. Their
enthusiasm for the project and active
engagement with the SLURM developer
community are an inestimable advantage of
SLURM compared to other resource
management systems.

On the Cray side, we want to give our special
thanks to Kongmanee Suvanphim, Jason
Coverston, Benjamin Landsteiner, and Carl
Albing.

Cray User Group 2011 Proceedings 11 of 11

http://www.nersc.gov/assets/Training-Materials/crayxtarchitecture.pdf%20
http://www.nersc.gov/assets/Training-Materials/crayxtarchitecture.pdf%20
http://www.kernel.org/doc/Documentation/cgroups/cgroups.txt
http://www.kernel.org/doc/Documentation/cgroups/cgroups.txt
http://www.top500.org/list/2010/11/100
http://www.pbsworks.com/

	1. Introduction and Motivation
	2. Porting SLURM to XT and XE
	3. Experiences deploying SLURM on Cray and non-Cray clusters
	4. Discussion: Extensibility for Future Systems and Programming Environments
	5. Summary and Future Plans
	References
	Acknowledgments

