
Scalability of Paraview’s Coprocessing Capability

Nathan Fabian, Sandia National Laboratories

ABSTRACT: For exceedingly large high performance computing runs, writing all data to disk
is unmanageably slow. It becomes necessary to have analysis and visualization communicate with
the simulation in memory instead of through disk, retaining access to all available data for analy-
sis. The open source visualization and analysis tool, Paraview, has recently added a coprocessing
API allowing it to be linked into simulation codes. We will demonstrate scalability of Paraview
coprocessing on up to 64000 cores on the new NNSA platform, Cielo.

KEYWORDS: coprocessing, in situ

1 Introduction

Planning is in place to reach exascale by the 2018-2021
timeframe [1]. High performance computing software
must be ready to run at this scale. Historically visu-
alization has most effectively performed on specialized
visualization hardware. While the raw number crunch-
ing power of visualization clusters has kept pace with the
larger systems supporting simulation, the cost of saving
data out to disk and possibly moving it and then reading
it from disk on the visualization cluster is becoming un-
acceptably high [11]. As simulations problems grow to
exascale in size, so much data will be written to disk it
may not be worth writing it at all.

By coupling the visualization with the simulation ei-
ther directly via memory-to-memory copy or through the
network to a process running on a separate visualization
cluster, we can avoid writing to disk as late into the fi-
nal analysis as possible. Whereas many projects have in-
tegrated visualization with the solver to various degrees
of success, they have tended to completely couple the
solver and visualization components, thereby creating a
single path to a final visual representation. Instead we
use ParaView’s coprocessing library which provides a
framework for the more general notion of salient data

1Sandia National Laboratories is a multi-program laboratory man-
aged and operated by Sandia Corporation, a wholly owned subsidiary
of Lockheed Martin Corporation, for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-AC04-
94AL85000.

!"#$%&'

()*+'

!,"&-.%'

/)*0-#)1-2"3'

40##'5%*6'

!"#$%&'

()*+'

!,"&-.%'

/)*0-#)1-2"3'

78-.%*'

!"#$%&'

()*+'

!,"&-.%'

4%-,0&%*'9'

!,-2*2:*'

!-#)%3,'(-,-'

/)*0-#)1-2"3'

Figure 1: Different modes of visualization. In the tra-
ditional mode of visualization at left, the solver dumps
all data to disk. Many in-situ visualization projects cou-
ple the entire visualization within the solver and dump
viewable images to disk, as shown in the middle. We
encourage the more versatile mode at right where the co-
processing extracts salient features and computes statis-
tics on the data within the solver.

extraction. Rather than simply render the raw data gen-
erated by the solver, in coprocessing we extract the infor-
mation that is relevant for analysis, possibly transform-
ing the data in the process. The extracted information
has a small data representation, which can be written at a
much higher fidelity than the original data, which in turn
provides more information for analysis. This difference
is shown in Figure 1.

In this paper we will discuss the coprocessing library

Cray User Group 2011 Proceedings 1 of 5

and in particular focus on scaling a fragment detection
algorithm. This algorithm is a compelling example be-
cause one of the results analysts are interested in is a his-
togram of various quantities on each fragment, thus re-
gardless of original input data size the final extracted data
of interest is a very small constant size, easily written to
disk. While it might be useful to incorporate this partic-
ular algorithm directly into the simulation code, by im-
plementing it through the coprocessing API of a general
visualization solver, we retain access to a larger number
of possible analysis results, such as the raw fragment ge-
ometry for visual inspection. We will focus on the effort
to scale this algorithm from running effectively on a typ-
ical visualization cluster size of up to 512 cores to being
capable of running on 65,536 cores of the new Alliance
for Computing at Extreme Scale (ACES) petaFLOP plat-
form, Cielo.

2 Previous Work
Coupling visualization with the simulation was first men-
tioned in the 1987 National Science Foundation Visu-
alization in Scientific Computing workshop report, [9]
which is often attributed to launching the field of scien-
tific visualization. Over the years, there have been many
visualization systems built to run in tandem with simu-
lation, often on supercomputing resources. Recent ex-
amples include a visualization and delivery system for
hurricane prediction simulations [4] and a completely in-
tegrated meshing-to-visualization system for earthquake
simulation [14]. These systems are typically lightweight
and specialized to run a specific type of visualization un-
der the given simulation framework. A general coupling
system exists [5] which uses a framework called EPSN
to connect M simulation nodes to N visualization nodes
through a network layer.

SCIRun [7] provides a general problem solving envi-
ronment that contains general purpose visualization tools
that are easily integrated with several solvers so long as
they are also part of the SCIRun problem solving en-
vironment. Other more general purpose libraries exist
that are designed to be integrated into a variety of solver
frameworks such as pV3 [6] and RVSLIB [3]. How-
ever, these tools are focused on providing imagery re-
sults whereas in our experience it is often most useful to
provide intermediate geometry or statistics during copro-
cessing rather than final imagery.

Ultimately, the integration of coprocessing libraries
into solvers gets around the issues involved with file I/O.
There are also some related efforts in making the I/O in-
terfaces abstract to allow loose coupling through file I/O

to be directly coupled instead. Examples include the In-
teroperable Technologies for Advanced Petascale Simu-
lations (ITAPS) mesh interface [2] and the Adaptable I/O
System (ADIOS) [8]. If these systems become widely
adopted, then it could simplify the integration of copro-
cessing libraries with multiple solvers.

3 Coprocessing Library

ParaView coprocessing is a C++ library with an exter-
nally facing API to C, FORTRAN and Python. It is
built atop the Visualization Toolkit (VTK) [12] and Par-
aView [13]. Nearly all the algorithms available in tra-
ditionally interactive interface are also available through
the coprocessing pipeline. The exceptions are those al-
gorithms that expect to see the entire time-series. When
coprocessing only the current time step is available.

To interface a new simulation with the coprocessing
library, we write a small piece of code to translate data
structures between the simulation’s code and the copro-
cessing library’s VTK-based architecture. An adaptor
is also responsible for determining when the coprocess-
ing library will run. By calling out to the coprocessing
pipeline at regular intervals (even as often as every simu-
lation step) the coprocessing can run at as high a fidelity
as necessary to achieve the required level of accuracy.

4 Simulation Coupling

CTH is an Eulerian shock physics code that uses an adap-
tive mesh refinement (AMR) data model. We examine a
simulation of an exploding pipe bomb, Figure 2. Us-
ing an algorithm which finds water-tight fragment iso-
surfaces over each material volume fraction within the
AMR cells, we can find fragments that separate from the
original mesh and measure various quantities of interest
in these fragments.

The challenge in finding an isosurface over values in
an AMR mesh is in the difference of resolution between
cells. More so this difference can also bridge processor
boundaries, requiring ghost cell information at two dif-
ferent resolutions. We handle this by finding connected
neighbors using an all-to-all communication at the be-
ginning of computation and then exchanging ghost data
between only connected neighbors and finally perform
the AMR corrected isosurface algorithm. The result is a
polyhedral mesh surface which contains no gaps and can
be significantly smaller than the original AMR mesh. In
some cases, where an analyst is only concerned with a

Cray User Group 2011 Proceedings 2 of 5

Figure 2: Fragments detected in a simulation of an ex-
ploding pipe.

histogram of fragment quantities, the data written can be
on the order of bytes.

In general, CTH is running at the upper edge of avail-
able memory, which leaves very little room for the adap-
tor to copy the simulations memory into the pipeline.
One solution may be to increase the number of nodes
in the job request so that the memory is not so limited,
but this is usually not an option. Instead, we have devel-
oped an interface above the standard VTK array to shal-
low copy the data from CTH and view it in it is native
layout. Although VTK has the ability to work with ex-
ternal pointers to memory, the layout in CTH is different
than the one VTK algorithms expect. Therefore the inter-
face acts as a wrapper over the array’s accessor functions
to translate to CTH layout before reading from a memory
location. This allows us to circumvent the memory copy
using a much smaller overhead.

A future option to explore with the coprocessing
framework would involve combining ParaView’s stream-
ing capability with the adaptor source. This would al-
low the pipeline to work in extremely limited memory
cases by passing small pieces of the simulation memory
through the pipeline at a time. While the above method
for addressing CTH’s memory restrictions works well,
the fragment detection algorithm creates a surface rep-
resentation of the data which is in addition to the mem-
ory representing the AMR volume. By employing the
streaming interface the pipeline could operate on frag-

ments individually, which would require much less resi-
dent memory with some additional computational over-
head. Looking into the future at exascale where com-
putation is much less expensive than everything else this
option may become unavoidable.

5 Results

 0

 5

 10

 15

 20

 25

 30

 0 500 1000 1500 2000 2500 3000 3500 4000 4500
S

ec
on

ds
Cores

Refinement Depth 4
Refinement Depth 5
Refinement Depth 6

 0

 50

 100

 150

 200

 250

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

B
lo

ck
s

pe
r

C
or

e

Cores

Refinement Depth 4
Refinement Depth 5
Refinement Depth 6

Figure 3: Results running on the capacity cluster, Red-
sky. Each line is an instance of strong scaling at one par-
ticular refinement depth of the AMR representation. The
top image shows the running time, and the bottom image
shows the corresponding number of blocks per core.

To simplify the scaling process, we increase only the
depth limit of CTH’s mesh refinement process. By incre-
menting this parameter the mesh size will increase by at
most a factor of eight, but in practice will increase less
than eight due to CTH choosing not to refine certain re-
gions. We ran each depth as a strong scaling problem up
until the number of blocks per core dropped below a min-
imum suggested by the simulation. We then increase the
depth and rerun to overlap the timings. Each refinement

Cray User Group 2011 Proceedings 3 of 5

depth is represented as a separate line on all charts.
In order to establish the scaling, we first tested the

algorithm at lower scale using Sandia’s capacity clus-
ter, Redsky, Figure 3. Although there is some noise in
the measurements, it scales acceptably through to 4096
cores.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 5000 10000 15000 20000 25000 30000 35000

S
ec

on
ds

Cores

Refinement Depth 6
Refinement Depth 7

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 5000 10000 15000 20000 25000 30000 35000

B
lo

ck
s

pe
r

C
or

e

Cores

Refinement Depth 6
Refinement Depth 7

Figure 4: Results running on Cielo. As in Figure 3 each
line is an instance of strong scaling at a refinement depth.

Once we established scaling on the capacity cluster,
we ran this pipeline on the new ASC/NNSA machine
Cielo using from 1 thousand to 32 thousand cores. The
results of these runs are shown in Figure 4, again with
each refinement depth represented as a separate line. The
sizes in number of blocks resulting from these refinement
levels are shown below.

Although this algorithm works well enough to achieve
a high number of communicating cores, as is visible in
Figure 4, it is no longer performing any speedup beyond
16 thousand processors. Although we have executed at
64 thousand cores, the pipeline didn’t run to completion
in a reasonable amount of time, so no timing results are
available. Our next steps will be to increase the speedup
for the lower processor counts leading up to the 64 thou-

sand run. It is important to note that these scalability
results are specific to this fragment algorithm and not to
the framework in general. For further work on the frame-
work’s general scalability, please see Moreland et al. [10]

Currently the fragment finding requires an all-to-all
communication to determine neighbor information. This
information is also maintained within the simulation
code, but not exported through normal file I/O to con-
serve space. The current adaptor implementation relies
on the existing file I/O API in the simulation to trans-
fer the data structures to VTK. However, because we are
running in the same memory space as the simulation,
we can potentially access this information via the adap-
tor and avoid the visualization having to repeat finding
neighbor information.

Despite the current slowdown, there remains an over-
all speedup due to the scalability of the simulation. Thus
it is still effective to run coprocessing on larger problems
using larger numbers of cores. More importantly, it is
much faster than writing the full dataset to disk.

6 Conclusion
In this paper we have examined fragment detection as
a means of extracting the features of interest in a CTH
dataset. For exceptionally large runs storing, moving,
and managing data can be a prohibitive expense. The
ability to shrink the data down to a small constant-
sized histogram of interesting values becomes increas-
ingly necessary. Although it takes more computation to
produce results with a coprocessing simulation, these re-
sults can be substantially smaller than the unprocessed
version time is saved not writing to disk. In addition,
when the analysis results are produced with the simula-
tion results no further analysis processing or data man-
agement is needed.

Acknowledgements
The author would like to thank Charles Law at Kitware
Inc. for explaining the depths of the fragment detection
algorithm and Andrew Bauer at Kitware Inc. for imple-
menting the coprocessing API.

About the Authors
Nathan Fabian is a Member of Staff in the Scalable Anal-
ysis and Visualization department at Sandia National
Laboratories. Nathan is the technical lead for Sandia’s
coprocessing efforts.

Cray User Group 2011 Proceedings 4 of 5

References

[1] J. Ang, D. Doerfler, S. Dosanjh, S. Hemmert,
K. Koch, J. Morrison, and M. Vigil. The alliance
for computing at the extreme scale. In Proceedings
of CUG2010, Edinburgh, UK, 2010.

[2] K. Chand, B. Fix, T. Dahlgren, L. F. Diachin, X. Li,
C. Ollivier-Gooch, E. S. Seol, M. S. Shephard,
T. Tautges, and H. Trease. The ITAPS iMesh inter-
face. Technical Report Version 0.7, U. S. Depart-
ment of Energy: Science Discovery through Ad-
vanced Computing (SciDAC), 2007.

[3] S. Doi, T. Takei, and H. Matsumoto. Experiences
in large-scale volume data visualization with RVS-
LIB. Computer Graphics, 35(2), May 2001.

[4] D. Ellsworth, B. Green, C. Henze, P. Moran, and
T. Sandstrom. Concurrent visualization in a pro-
duction supercomputing environment. IEEE Trans-
actions on Visualization and Computer Graphics,
12(5), September/October 2006.

[5] A. Esnard, N. Richart, and O. Coulaud. A Steering
Environment for Online Parallel Visualization of
Legacy Parallel Simulations. In Proceedings of the
10th International Symposium on Distributed Sim-
ulation and Real-Time Applications (DS-RT 2006),
pages 7–14, Torremolinos, Malaga, Spain, October
2006. IEEE Press.

[6] R. Haimes and D. E. Edwards. Visualization in a
parallel processing environment. In Proceedings of
the 35th AIAA Aerospace Sciences Meeting, num-
ber AIAA Paper 97-0348, January 1997.

[7] C. Johnson, S. Parker, C. Hansen, G. Kindlmann,
and Y. Livnat. Interactive simulation and visual-
ization. IEEE Computer, 32(12):59–65, December
1999.

[8] J. F. Lofstead, S. Klasky, K. Schwan, N. Pod-
horszki, and C. Jin. Flexible IO and integration
for scientific codes through the adaptable IO system
(ADIOS). In Proceedings of the 6th International
Workshop on Challenges of Large Applications in
Distributed Environments, pages 15–24, 2008.

[9] B. H. McCormick, T. A. DeFanti, and M. D.
Brown, editors. Visualization in Scientific Com-
puting (special issue of Computer Graphics), vol-
ume 21. ACM, 1987.

[10] K. Moreland, N. Fabian, P. Marion, and B. Geveci.
Visualization on supercomputing platform level ii
asc milestone (3537-1b) results from sandia. Tech-
nical Report SAND2010-6118, Sandia National
Laboratories, 2010.

[11] R. B. Ross, T. Peterka, H.-W. Shen, Y. Hong,
K.-L. Ma, H. Yu, and K. Moreland. Visualiza-
tion and parallel I/O at extreme scale. Journal of
Physics: Conference Series, 125(012099), 2008.
DOI=10.1088/1742-6596/125/1/012099.

[12] W. Schroeder, K. Martin, and B. Lorensen. The Vi-
sualization Toolkit: An Object Oriented Approach
to 3D Graphics. Kitware Inc., fourth edition, 2004.
ISBN 1-930934-19-X.

[13] A. H. Squillacote. The ParaView Guide: A Paral-
lel Visualization Application. Kitware Inc., 2007.
ISBN 1-930934-21-1.

[14] T. Tu, H. Yu, L. Ramirez-Guzman, J. Bielak,
O. Ghattas, K.-L. Ma, and D. R. O’Hallaron. From
mesh generation to scientific visualization: An end-
to-end approach to parallel supercomputing. In
Proceedings of the 2006 ACM/IEEE conference on
Supercomputing, 2006.

Cray User Group 2011 Proceedings 5 of 5

