
A Programming Environment for Heterogeneous Multi-Core

Computer Systems

ORNL
Richard Graham, Bronson Messer, Oscar Henrandez, Christos Kartsaklis, Thomas Ilsche,

Tiffany Mintz, Wayne Joubert, Robert Whitten, Ricky Kendall

May 6, 2011

Abstract

As part of the Oak Ridge Leadership Computing
Facility (OLCF)-3 project, the Oak Ridge Na-
tional Laboratory (ORNL) is working with sev-
eral vendors and engaged in research to develop
a Programming Environment (PE) for mixed
CPU/GPU based ultra-scale computer systems.
The environment provides a toolset to port or
develop CPU/GPU systems while reducing de-
velopment time to improve the performance and
portability of the codes while minimizing sources
of errors. Our toolset consists of compilers for
high-level GPU directives, libraries, performance
tools, and a debugger with synergistic interfaces
among them. In this paper we show how these
tools work together and how they support the
different stages of the program development and
porting cycle. We describe how we successfully
used the tools to port Department of Energy
codes to a CPU/GPU system.

1 Introduction

A PE is defined as the software stack that sup-
ports the application development cycle for one

or more programming models (PM). The com-
piler, programming language(s), debuggers and
profilers are components of a typical PE.

ORNL’s OLCF-3 Cray GPU-based system,
Titan [5], poses a number of challenges. There
has not been a production-grade PE for produc-
tion HPC systems to address challenges, such
as rapidly porting codes to hybrid GPU-based
systems, and meeting petascale-level scalability
requirements, and this is what we are establish-
ing. Vendors, and application and tool devel-
opers are working hand-in-hand so that OLCF-
3 users’ productivity can be increased and the
porting of their codes simplified as demonstrat-
ing the system’s performance through user codes
is a certain requirement. Consequently, our work
comprises the assessment and proposal of en-
hancements towards the Cray PE, partnerships
for readying third-party tools for our Cray-based
PE (in terms of requesting extensions for OLCF-
3 requirements and future trends), and the di-
rect integration of third-party tools (i.e. “as they
are”) with the PE.

Specifically, we have collaborated with CAPS
to extend its HMPP language with features that
OLCF-3 application developers will directly ben-

1



efit from, and to produce HMPP-aware perfor-
mance analysis and code-refactoring tools. We
have worked with the TU Dresden to make
Vampir CUDA-aware, as the CUDA runtime
will most likely occur in the software stack and
we have collaborated with Allinea to make the
Allinea DDT applicable to both the Cray PE
and HMPP. Finally, our commitment in the es-
tablishment of the PE can also be highlighted by
being members of OpenMP Architecture Review
Board (ARB).

Figure 1 depicts, in terms of the framed items
and the edges among them, what we consider as
a representative work-flow that our users engage
in, plus the selection of tools that implement it.
With regards to the Titan system, we have been
working on complementing the Cray PE with a
number of third-party tools, some of which are
shown in Figure 1. We have partnered with the
vendors of these tools for the purpose of extend-
ing them so that they meet the requirements of
our Cray-based PE.

The remainder of this paper is organized as
follows: We begin by discussing the PE at the
language and compiler level, then move on to
tools that assist with analysis of programs, then
profiling and tracing tools of the PE, and finally
the debugging elements of the PE. The descrip-
tion is mostly vendor- and application-oriented.

2 Languages and Compilers

An important aspect of a successful PE is to in-
crease users’ producitivy with regards to perfor-
mance engineering and application development
processes; processes such as porting are generally
regarded as a combination of these two.

Let us firstly outline the basic properties of
the PM. The PM will support distributed mem-

ory and the heterogeneity of the system will
be managed mainly with high level directives.
These directives, apart from tasks such as work
distribution and data motion, should also ease
code restructuring, which is often where most
time is spent. We consider a distributed mem-
ory model across the nodes (MPI programmable)
and shared memory within the nodes (OpenMP
programmable). Node devices will support both
the shared and distributed model by software-
based concurrency control, and shadowing mech-
anisms (for discrete GPUs). Device memory
will also be more prominent in that it will be
addressable during inter-node operations (e.g.
transfering data to a remote GPU memory)
and opportunities such as disjoint heterogeneous
caching1 and scratchpad programming should
be exploited. Overall, however, there will be
more explicit data motion control for reasons of
power efficiency. Both the task-parallel and the
data-parallel model will be featured. The hybrid
CPU-GPU PM poses challenges at both the data
and program-structuring levels.

At the data level, the following are challenges
that need to be addressed: (1) data need to
be copied in and out of the accelerator device
manually (lack of integrated memory) and of-
ten not as a whole (worksharing), (2) data needs
to be staged in accelerator memories so that
their access pattern matches the capabilities of
these memories, (3) data often need reorgani-
zation if being present in multiple access pat-
terns, (4) data whose production/consumption
spans device boundaries often need their con-
sistency maintained, and (5) as data motion is
more expensive, latency hiding mechanisms need
to be employed. On the other hand, there are

1i.e. the presence of separate caches in the same pro-
cessing unit, each featuring different caching policies.

2



program-structuring level challenges too, such
as: (1) separate host and device code needs to be
developed and maintained, (2) accelerators dif-
fer greatly at the PM level, (3) the presence of
multiple accelerating units (cores, SIMD units,
multiple GPUs) must be supported at the work
distribution level (at least), and (4) tools that
help users with utilizing the language facilities
of the PM (e.g. preparatory steps for using par-
ticular directives).

Directives (compiler pragmas) are a conve-
nient means for program restructuring and for
conveying information to the compiler. They
promote incremental porting and development,
which leads to rapid emission of code for ac-
celerators, and are recognized by tools, which
simplifies the association of sources with tools’
analysis. We are evaluating Cray’s implementa-
tion of OpenMP extensions for accelerators [4]
in the Cray CE as well as being members of the
OpenMP ARB. The next paragraphs document
features that have been developed in HMPP [2]
as part of our partnership with CAPS, have
reached or are near completion, and which are
currently being utilized by OLCF applications.
HMPP is a directives-based compiler that can
generate parallel code for hybrid platforms and
which hides knowledge of the target hardware
from the programmer.

Copying data in and out of accelerator de-
vices is a time-consuming process as the data
do not always have a flat layout (e.g. an array
of primitive data types). HMPP has been ex-
tended to support user-defined data types as well
as data structures holding pointer field; our ap-
plications, such as the Community Atmosphere
Model/Spectral Element (CAM/SE) and oth-
ers rely on user defined data types to store the
cubed elements information. With the intro-
duction of dynamic CPU/GPU coherency man-

agement our users are relieved from manually
mirroring host/device images of data structures
upon modification. Requesting coherency main-
tenance through a directive as opposed to imple-
menting it by hand reduces code size greatly and
is type-agnostic.

Users often need to contrast the performance
of hand-tunned, compiler-generated and exter-
nal (e.g. library-provided) kernels. The imple-
mentation of User-Kernel Integration instructs
HMPP to bypass its own code generation and
utilize user-supplied code directly, and thus, it
achieves the desired effect. The Locally Self-
consistent Multiple Scattering [14] (LSMS) de-
velopers are in the process of modifying their
application so that it can make use of CULA [1]
(a GPU linear algebra library) in terms of this
facility. Our partnership with CAPS has also
led to the formation of HMPP++. HMPP++
bridges HMPP and OO programming by allow-
ing application C++ classes to inherit from the
HMPP runtime’s classes while utilizing fully the
HMPP directives (extended to by C++ scope-
aware, etc.) at the same time; this hybrid model
has been tested successfully in the context of
the Multiresolution Adaptive Numerical Envi-
ronment for Scientific Simulation (MADNESS)
application.

Data staging is not always a single copy oper-
ation; data may need certain accelerator-specific
processing such as transfering them to the de-
vice, reformatting them while on the device,
and placing them in shared memory2. HMPP’s
CUDA-specific direct share memory operations
achieve this. The staging process is also affected
by the affinity of data. Certain enhancements
to the data residency qualifiers have helped with

2The NVIDIA GPU shared memory is not accessible
from the host.

3



data structure that are only “live” on the GPU.
Host-device data transfers can be expenssive
and advantage needs to be taken of the non-
blocking data-transfer opportunities next to the
transfers’ planning and strategic placement. Im-
provements against the HMPP asynchronous
IO mechanism combined with the mechanism’s
type-awareness has simplified these tasks.

3 Analysis and Transformation

Static program analysis is a way of automati-
cally analyzing code for the purpose of deter-
mining what code restructuring could be per-
formed to gain opmtimal performance. When
computationally intensive portions of code have
been identified, it is often beneficial to extract
the code from the application for implementa-
tion on a GPU to improve performance. In or-
der to facilitate developers in restructuring their
code and porting computationally intensive alo-
gorithms to a GPU architecture, Titan’s PE will
incorporate HMPP Feedback and HMPP Wiz-
ard into its toolset. The primary purpose of
HMPP Feedback is to provide static analysis in
text form on code that can be ported or has been
ported to a GPU while HMPP Wizard presents
the analysis in a graphical user interface (GUI)
along with additional diagnoses and analysis to
help users perform code transformations.

The HMPP Wizard and Feedback are static
analysis tools aimed at detecting source code
that prevents GPU parallelization (referred to
as diagnosis) and suggests code transformations
to increase GPU performance (referred to as ad-
vice). In HMPP Feedback, these “diagnoses”
and “advice” are provided to developers as a text
formatted report to help optimize HMPP gener-
ated codelets. The HMPP Wizard serves as a

graphical interface to map this analyses to the
source code. In addition, for cases where a port-
ing and optimization strategy based on the type
of computation is known (i.e. matrix multipli-
cation, convolutions, etc), the Wizard proposes
specific advice based on previous knowledge from
experts in the computational domain. The Wiz-
ard tool uses the same front-end technology as
the HMPP compiler, and provides generic pro-
gramming advice to make the kernels suitable for
GPU execution, minimizing performance degra-
dation penalties. The Wizard and Feedback
tools serve as a link between the application and
the diagnosis, and provides an interactive envi-
ronment to apply HMPP optimizations.

With both HMPP Wizard and Feedback, ev-
ery function in the source code file is evaluated
as a potential HMPP codelet. A codelet is a
pure function that can be remotely executed on
a massively parallel accelerator. Loops within a
function are considered to be possible GPU ker-
nels. Kernels represent a loop or group of nested
loops that define an iteration space and grid of
GPU threads. Each loop in a loop nest defines
one dimension of the iteration space. The grid of
threads defined by the kernel is a subset of the
iteration space, and can be used to compute the
kernels memory access pattern. Once all of the
loops within the potential codelet are analyzed
and a GPU grid of threads is computed, a set of
analyses are applied to each kernel and perfor-
mance improvements advice are emitted along
with static analyses statistics (i.e. the number
of the memory accesses and floating point com-
putation). During the analysis, code between
kernels is also taken into consideration when for-
mulating advice. This analysis is only intended
to validate computationally intensive code seg-
ments as HMPP codelets and optimize HMPP
GPU kernels. It does not address CPU-GPU

4



data movement and device allocation optimiza-
tions.

In HMPP Wizard, if a computation matches
a well-know pattern, the Wizard provides addi-
tional advice specific for the type of computa-
tion matched. While the advice is meant to be
general enough for GPU programming, some of
it is targeted at CUDA optimizations such as
improving memory coalescing based on memory
accesses patterns.
Kernel Validation. When the user wants

to port a subroutine to an accelerator using
HMPP codelets, ceirtain checks need to be done
to the subroutine to ensure that it conforms to
the HMPP programming model. The require-
ments of the HMPP programming model are: (1)
that the function codelet has parameters that
are either scalars or arrays, (2) the number of
parameters are constant and known at compile
time, (3) the function does not contain static
or volatile variable declarations, (4) the func-
tion does not contain references or definitions of
function pointers, (5) the function does not use
pointer arithmetic, and (6) the function is not re-
cursive. The function may contain references to
global data and callsite to other functions within
the same source file. In the latter case, the Wiz-
ard will check if those functions can be converted
to kernels.
Kernel Analysis. After performing the con-

formance checks, additional analyses is needed
to detect the type of parallelism found in a ker-
nel, and see how it can be mapped to a GPU.
For this step, a grid of GPU threads analysis is
performed. The analysis consists of computing
the parallelism status of each loop which can be:
(1) sequential: if no parallelism is found, (2) de-
termined parallel: if parallelism is detected by
the tool, and (3) specified parallel: if the user
inserted a directive specifying that the codelet is

parallel. Additionally this analysis will display
the shape of the kernel grid for 1D/2D grid ker-
nels, where the X dimension may be the inner
loop and the Y dimension may be the outer loop
dimension of a loopnest.
Diagnosis and Advice. The HMPP wizard

can provide diagnosis to detect code regions that
are generating inefficient GPU code. For each of
these, diagnosis and advice are presented to the
user so he/she can take action to solve the per-
formance issue. An example diagnosis may be
the detection of a loopnest that is in a form that
can not be normalized which would prevent the
HMPP compiler from performing dependence
analyses. Another diagnosis may be the detec-
tion of branches inside a codelet which would
be accompanied by the advice to use masks or
split loopnests to eliminate the conditional state-
ments.
Insertion of Directives. Once we have

found a subroutine suitable for acceleration, the
HMPP Wizard allows the user to select regions
of the subroutine to apply HMPP directives. If
a directive already precedes the piece of code, it
can be selected to insert the directive just after.
The user can rerun the codelet analysis by click-
ing a refresh button which will take into account
the newly inserted code. The user may also se-
lect a directive and remove it just by clicking on
the code window.
Graphical User Interface. The GUI of the

Wizard contains a menu, a toolbar, and windows
to display the input source code, analyses and
advice information. The goal of these windows
is to relate and display the source code with the
diagnoses, and advice in a user-friendly environ-
ment. The File menu performs file related oper-
ations such as opening, saving, and closing files.
The directive menu can be used to insert or re-
move directives from the source code. Most of

5



these menu operations can also be done via the
toolbar. If a source code is modified, a refresh
button can be used to rerun the analyses and
advices.

Pattern Matching Analysis. The HMPP
Wizard also has the capability of doing pattern
matching to compare the memory access foot-
print of a HMPP codelet to a predefined mem-
ory access pattern known by the HMPP wizard
which can be used to generate a GPU optimized
version of the code. The memory access pattern
is defined by the sequences of memory accesses
with specific strides combined with a pre-defined
pattern for the computations. The array access
stride is calculated from the linear expression in
the array subscripts that uses the loop induction
variable. Currently the HMPP Wizard only sup-
ports the array access pattern for the convolution
and matrix multiplication.

Figure 2 shows the HMPP Wizard windows
when applied to the codelet calcMixH of the S3D
application. Initially the kernel analyses were
not able to determine that the loop was parallel
because of an output dependence. After the user
applied a directive specifying that a loop is par-
allel if a variable is privatized for each thread, the
Wizard shows the GPU grid analyses of the new
code, and informs the user that there is a condi-
tional statement within the accelerator loop and
strategies to hoist it out of the loopnest. Addi-
tionally the user can insert more directives using
the GUI to keep improving the performance of
the code.

4 Profiling and Tracing

Performance analysis tools help the application
developers to fully utilize the resources of grow-
ing HPC systems. This is especially true for het-

erogeneous leadership-class systems that reach
new levels of scalability. On the one side, com-
munication patterns, which work well with a
few thousands of cores, can become a bottleneck
when running hundred thousand cores and more.
One aspect of performance analysis tools is to
help the application developer to understand the
communication patterns in the application and
its performance impact. Heterogeneous systems
add another aspect to performance analysis.

To fully leverage those systems, the applica-
tion developer needs to understand the usage of
the different resources and the implications of
porting complex applications beyond the look at
small kernel programs. While performance anal-
ysis tools aid the application developers when
targeting new large scale heterogeneous systems,
those systems also present challenges to the per-
formance analysis tools themselves. What fol-
lows is a description of how VampirTrace has
been extended for our PE’s challenges plus the
HMPP Performance Analyzer, which is a prod-
uct of our partnership with CAPS.

4.1 VampirTrace

The Vampir tool-set is used as performance anal-
ysis tools in OLCF-3. We are working together
with Vampir’s vendor to make this tool-set ready
for the targeted OLCF-3 system. Vampir uses
program tracing to record a detailed list of events
during the execution of an application. Using a
set of compiler wrappers for C, C++ and FOR-
TRAN, the application can be built with specific
instrumentations. VampirTrace provides instru-
mentation of the parallel paradigms MPI, and
OpenMP/Threads as well as generic recording of
function invocations through compiler- or man-
ual instrumentation. Vampir then provides a
post-mortem visualization of the program exe-

6



cution based on the recorded trace. This visual-
ization features a set of different displays to help
understand the behavior of the application. The
analysis for visualization is provided by a par-
allel server and a GUI application, allowing the
processing of large traces. The entire tool-chain
is tailored for a scalable parallel analysis. To
match the scale of the target OLCF-3 system,
additional improvements have and are being in-
corporated to Vampir. Specific optimizations
in the communication behavior of VampirServer
now enable the use of more than 10,000 analy-
sis processes. Multiple improvements target the
handling of an increasing amount of trace data
from hundreds of thousands of processes. Pat-
tern matching based compression will improve
the recording, while filtering and the highlight-
ing of irregularities supports the evaluation of
large scale traces.

Figure 3: Vampir when applied to LAMMPS ac-
celerated with GPU

The other important contribution is the inte-
grated CUDA support in VampirTrace. CUDA-
API calls are captured and recorded. GPU
events such as kernel execution and memory
copies are mapped to CUDA streams. Those
events can be invoked asynchronously and are
correctly embedded into the timeline of tradi-
tional program events. The support for GPU
performance counters adds information to the
trace. This integrated approach allows analyzing

hybrid MPI/OpenMP/CUDA applications as a
whole and provides a better picture of the ap-
plication’s performance characteristics than just
looking at isolated CUDA kernels. Figure 3
displays a timeline of four MPI processes each
with an associated CUDA stream that runs the
GPU accelerated version of LAMMPS. With
these improvements Vampir provides a compre-
hensive performance analysis tool for the upcom-
ing OLCF-3 system. It helps the application
developers to port and adapt their code to this
system and therefore increases its utilization and
facilitates the solution of new scientific problems.

It is possible to analyze GPU applications that
have been developed with HMPP in Vampir.
The code generated by HMPP uses the CUDA
runtime library as a backend. The calls to the
CUDA library are wrapped by VampirTrace in
the same way this is done for manually devel-
oped CUDA applications. The same functional-
ity is therefore available for HMPP applications,
including memory copies, kernel (codelets) exe-
cutions, and performance counters. Vampir ex-
poses details on how HMPP maps the codelets
to the GPU, but might lose some information
about the high level HMPP code. This preser-
vation of high level HMPP semantic is subject to
ongoing development. HMPP and VampirTrace
both use compiler wrappers for their functional-
ity. Those compiler wrappers have to be chained
for the integration. This is done by using vtcc as
a compiler for hmpp.

4.2 The HMPP Performance Ana-
lyzer

While certain effort is required to decide on what
to offload to the accelerator and the related data-
transfer issues, this task is most likely to be suc-
ceeded with fine tuning of the kernels runnning

7



on the accelerator, which is often both API (e.g.
CUDA) and architecture (e.g. GPU generation)
dependent. Our partnership with CAPS has led
to the HMPP Performance Analyzer. It assists
users with optimizing their HMPP codelets, as
opposed to the HMPP Wizard that examines the
entire application looking for candidates for con-
version to HMPP, conformance, etc.

Users utilize the Performance Analyzer simi-
larly to the Wizard; in fact, the Performance An-
alyzer specializes the Wizard’s infrastructure for
its purposes. The users select HMPP codelets
from the GUI and then the Performance Ana-
lyzer evaluates the (previously gathered) perfor-
mance figures and provide the users with per-
formance metrics and optimization hints. The
Performance Analyzer offers its own, synthetic,
metrics such as memory throughput, load/store
density, the branch ratios, etc., which are de-
rived from raw metrics that the NVIDIA pro-
filer generates. Apart from the metrics, the Per-
formance Analyzer provides optimization hints,
such as loop transformations for minimizing di-
vergence, and generally guides the user on the
application of HMPP low-level code-generating
directives (hmppcg-level) in a spirit similar to
that of Wizard with the high-level directives.

5 Debugging

A scalable, hybrid platform aware debugger is
an essential component for the PE of Titan that
works well on a massive hybrid GPU-based clus-
ter system. We have worked with Allinea to
make their debugger scale up to 200,000 cores.
Our collaboration with Allinea DDT allows to
addresses these requirements by utilizing so-
phisticated tree topology and tight integration
with advanced Crays PE features such as: scal-

able breakpoints, stepping and program stack
queries, scalable process management, scalable
visualization of variable values using statistical
analysis and prefetching techniques, distributed
core file generation with abnormal process termi-
nation, and full integration with Crays process
launcher. All the above DDT capabilities pro-
vide basic building blocks for creating efficient
debugger for the PE. Figure 4 shows the time
that it takes to set a breakpoint or step over
program statements during a debugging session
up to 200,000 MPI process. The figure clearly
shows that the debugger is scalable.

Figure 4: DDT scalable breakpoints and step-
ping for large MPI process counts in Jaguar XT5

In addition, DDT has enhanced their existing
debugger capabilities to support CUDA and the
HMPP compiler. The current implementation
supports stepping over CUDA kernels, and au-
tomatic detection of HMPP fragments, step over
HMPP codelets, and report error codes from the
HMPP runtime.

Figure 5 shows how we can set up a breakpoint
before we enter an HMPP region directive in one
of the CAM/SE kernels. The DDT debugger is
able to recognize the HMPP directives and step

8



over them correctly.

6 Research

We are currently researching ways to manage the
complexity of porting codes to the new Ttitan
system. We are currently working on two tools
which will help to automate some aspects of the
porting work flow such as automating the pro-
cess of applying transformations and tools for de-
tecting different regions of code in an application
that may benefit from the same optimization and
porting strategies. For the first task we have de-
veloped a tool called HERCULES, and for the
latter a similarity analysis tool called Klonos.

6.1 HERCULES

HERCULES is a framework that empowers the
application developers with facilities for rapid
prototyping of transformations without requir-
ing the developers to be compiler engineers.
HERCULES uses two concepts: a pattern and
a transformation script. The purpose of the pat-
tern is to identify aspects of an application that
exhibit a particular behavior or properties. The
pattern and a transformation script comprises a
“transformation recipe;” recipes are recorded by
HERCULES and can be used for the construc-
tion of more complex recipes. HERCULES takes
the recipes and applies them against application
sources.

HERCULES’ integration with the PE presents
new opportunities for significant improvements
with regards to the pattern’s richness and further
transformations support. HERCULES’ pattern-
matching language will be extended in order to
take advantage of code transformation tools like
ROSE [12] and LLVM [11]. HERCULES’ trans-
formations engine will be extended to support

the majority of the transformations that will fea-
ture GPU-oriented and data motion transforma-
tions, and will be integrated in the workflow with
the HMPP Wizard and Cray’s Apprentice.

6.2 Similarity Analysis

Code replication is a phenomenon that occurs
in practice in any large code bases. Developers
copy and paste code regions, unknowingly reim-
plement already existing functionality or apply
tools that translate domain languages to pro-
duction code, each leading to multiple, simi-
lar portions of code. Code regions with similar
structure (or with a degree of similarity based
on a specific metric) are called “code clones”
and represent [13, 3] on average 5-20% of pro-
duction software. Clones pose code mainte-
nance problems and require replication of port-
ing efforts. Four categories of code clones are
identified in [13]: (1) identical code fragments
(Type I); (2) syntactically identical code frag-
ments with variation in identifiers, literals, types
(Type II); (3) copied fragments that have been
further modified or changed (Type III); and (4)
semantically similar code fragments (Type IV)
that are implemented differently.

As porting and tuning codes will benefit from
clone detection, we will provide similarity anal-
yses within the PE to detect clones of types I-
III. We will combine metrics from static anal-
yses, modeling, and performance measurements
to define a similarity metric, and provide dif-
ferent views on how to detect clones in an ap-
plication. We will use results of related stud-
ies [16, 15, 16, 10, 6, 7, 9, 8] to define the met-
ric system to classify families of code clones that
are good candidates for porting or optimizations.
We have successfully applied this tool to detect
code clones in CAM/SE and classify them based

9



on their syntactic similarities.

7 Conclusions

The purpose of this paper has been to present
the PE that we are establishing for the upcoming
Cray-based Titan system. We continue to collab-
orate with a number of vendors, namely Allinea,
CAPS and TU Dresden, to enhance their offer-
ings as part of the Cray PE hardening. The PE
is being tested on existing systems and applica-
tions already make use of it and follow up with
its developments. The PE will be at production
level upon Titan’s arrival.

References

[1] CULA. http://www.culatools.com/,
2011.

[2] The HMPP workbench. http://www.

caps-entreprise.com/hmpp.html, 2011.

[3] B. S. Baker. On finding duplication and
near-duplication in large software systems.
In Proceedings of the Second Working Con-
ference on Reverse Engineering, WCRE ’95,
pages 86–, Washington, DC, USA, 1995.
IEEE Computer Society.

[4] J. Beyer. OpenMP for Accelerators 1.1.
February 2011.

[5] B. Bland. HPC @ ORNL where do we go
from here? In SC10, 2010.

[6] R. Brixtel, M. Fontaine, B. Lesner,
C. Bazin, and R. Robbes. Language-
independent clone detection applied to pla-
giarism detection. In International Working

Conference on Source Code Analysis and
Manipulation, September 2010.

[7] S. Ducasse, M. Rieger, and S. Demeyer.
A language independent approach for de-
tecting duplicated code. In International
Conference on Software Maintenance, Au-
gust/September 1999.

[8] M. Funaro, D. Braga, A. Campi, and
C. Ghezzi. A hybrid approach (syntactic
and textual) to clone detection. In Interna-
tional Workshop on Software Clones, May
2010.

[9] J.H. Johnson. Substring matching for clone
detection and change tracking. In Inter-
national Conference on Software Mainte-
nance, September 1994.

[10] R. Koschke. Frontiers of software clone
management. In Froniters of Software
Maintenance, September/October 2008.

[11] Chris Lattner and Vikram Adve. LLVM:
A Compilation Framework for Lifelong Pro-
gram Analysis & Transformation. In Pro-
ceedings of the 2004 International Sympo-
sium on Code Generation and Optimiza-
tion (CGO’04), Palo Alto, California, USA,
March 2004.

[12] D. Quinlan. Rose: Compiler support for
object-oriented frameworks. In Proceed-
ings of Conference on Parallel Compilers
(CPC2000), 2000.

[13] Chanchal K. Roy and James R. Cordy. An
empirical study of function clones in open
source software. In Proceedings of the 2008
15th Working Conference on Reverse En-
gineering, pages 81–90, Washington, DC,
USA, 2008. IEEE Computer Society.

10



[14] Timothy J. Sheehan, William A. Shelton,
Thomas J. Pratt, Philip M. Papadopoulos,
Philip LoCascio, and Thomas H. Duni gan.
The locally self-consistent multiple scatter-
ing code in a geographically distributed
linked mpp environment. Parallel Comput-
ing, 24(12-13):1827 – 1846, 1998.

[15] R. Smith and S. Horwitz. Detecting and
measuring similarity in code clones. In In-
ternational Workshop on Software Clones,
March 2009.

[16] A. Walenstein, M. El-Ramly, J.R. Cordy,
W.S. Evans, K. Mahdavi, M. Pizka, G. Ra-
malingam, J. Wolff von Gudenberg, and
T. Kamiya. Similarity in programs. In
R. Koschke, E. Merlo, and A. Walen-
stein, editors, Duplication, Redundancy,
and Similarity in Software, number 06301 in
Dagstuhl Seminar Proceedings, April 2007.

11



Decision 
Points / Rapid 
Development 

Local 
Restructuring 

Global 
Restructuring 

Program 
Verifica;on 

Ported . 
Op;mized  
Applica;on 

Ini;al  
Applica;on 

Compila;on 
(Vendor 
Compiler) 

Execu;on /  
Experiment 

Performance 
Analyses 

Sta;c 
Analyses / 
Kernel 

Extrac;on 

Experimenta;on 

Feedback 

Performance 
Metrics 

Start 

Finish 

Cray 
PGI 
HMPP Compiler 
Pathscale 
GNU 

• CrayPat, 
• Vampir (scalable & GPU) 
• TAU,  
• HPCToolkit , 
• NVIDIA profiler 
• HMPP Perf. Analyzer, 

• Cray Appren;ce 
• HMPP Feedback 
• Intel Inspector 

• HMPP Wizard 
• Cray Appren;ce 
• Parallel Nsight 

• HMPP Wizard 
• Hercules 

• Allinea DDT for 
 scalability and GPU 
• NVIDIA gdb debugger 
• Parallel Nsight Debugger  

• Hercules, 
• ROSE 
• Open64 

Figure 1: System Diagram

12



Figure 2: The HMPP Wizard when applied to the codelet calcMixH of the S3D application

13



Figure 5: The DDT debugger when applied to the HMPP codelet divergence sphere from the
CAM/SE application

14


