
Future Proofing WL-LSMS:

Preparing for First Principles Thermodynamics Calculations on

Accelerator and Multicore Architectures

Markus Eisenbach

Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

ABSTRACT: The WL-LSMS code has a very good track record for scaling on massively parallel
architectures and achieves a performance of approx. 1.8 PF on the current Jaguar system at ORNL. Yet
the code architecture assumes a distributed memory with a single thread of execution per MPI rank, which
is not a good fit for multicore nodes and the emerging accelerator based architectures. This paper presents
the ongoing work to restructure the WL-LSMS code to take advantage of these new architectures and
continue to work efficiently during the next decade.
KEYWORDS: Magnetism, Monte-Carlo, Matrix Inversion, GPU

1 Introduction

A large number of codes that get employed in basic
research evolve at a rapid pace. Quite often new fea-
tures, that are required to investigate new scientific
directions, get implemented in an ad hoc fashion by
the code’s users and might not be coordinated. While
this appears to be a code developer’s and maintainer’s
nightmare, this is tempered by the large overlap of
the user and developer communities, which in some
cases might be identical. This uncoordinated evo-
lution of the code base, while not ideal, is usually
manageable as long as no other disruptive changes in
the computing environment occur. The recent prolif-
eration of multicore and accelerator based architec-
tures represent such a disruptive event that has to
be addressed and which potentially can necessitate
fundamental changes in an actively evolving research
code. In the present paper I will outline the experi-
ence in restructuring the WL-LSMS code to allow it
to exploit the capabilities offered by these new archi-
tectural challenges. First I will outline the structure

of the code and it’s main components and the I will
describe the changes that were made to the LSMS
portion in moving from LSMS-1 to LSMS-3 to facili-
tate the use of accelerators and multithreading.

2 Structure of WL-LSMS

The WL-LSMS code uses a hybrid parallelization
scheme. At the top level, the code parallelizes over
concurrent random walkers, where we use a master-
slave scheme, with a master that accumulates the
density of states of the system, and the slaves that
execute the random walks, each running its own in-
stance of the LSMS method. The second paralleliza-
tion level is the LSMS portion of the code, where
domain decomposition is used with one atom per
processing core. In typical production runs, the WL
method would use a hundred to a few thousand con-
current walkers, and the LSMS portion would be par-
allelized over up to a few thousand processing cores.
The method hence will scale to hundred thousand or

1

OAK RIDGE NATIONAL LABORATORY

U. S. DEPARTMENT OF ENERGY

Structure of Wang-Landau-LSMS

33

Wang-Landau Driver (1 process)!

g(E); {!mi}M

LSMS!

Instance 1!

(N procs)!

LSMS!

Instance 1!

(N procs)!

LSMS!

Instance M!

(N procs)!

Figure 1: Parallelization strategy of the combined
Wang-Landau/LSMS algorithm. The Wang-Landau
process (Alg. 1) generates random spin configurations
for M walkers and updates a single density of states
g(E). The energies for these N atom systems are
calculated by independent LSMS processes (Fig. 2).
This results in two levels of communication, between
the Wang-Landau driver and the LSMS instances,
and the internal communication inside the individual
LSMS instances spanning N processes each.

millions of processing cores. The schematics of the
parallelization structure are shown in fig. 1.

The Wang-Landau portion of the code uses the al-
gorithm 1 to calculate the thermodynamic density
of states necessary to investigate material behavior
at finite temperature. Since this part already had
been written with an interface in mind that allows
the easy exchange of the energy calculation (the com-
putationally intensive part performed by LSMS) no
modifications were necessary in moving from LSMS-1
to LSMS-3 and the only part that is of concern for
this study is the LSMS section of the code.

3 The LSMS Algorithm

For the energy evaluation, we employ the first prin-
ciples framework of density functional theory (DFT)
in in the local spin density approximation (LSDA).
To solve the Kohn-Sham equations arising in this
context, we use a real space implementation of the
multiple scattering formalism. The Locally Self-

Algorithm 1 Wang-Landau/LSMS algorithm

1: initialize logarithmic density of states ln g(E) ←
0, histogram h(E) ← 0, modification factor γ ←
1, and the set of magnetic moment directions for
the M walkers {ê}1...M

2: repeat
3: submit new random moment directions {ênew}

to idle LSMS instances
4: receive new energy Enew

n from walker n
5: accept new set of directions {ênew}n with prob-

ability min[1, g(Eold
n)/g(Enew

n)]
6: if Move accepted then
7: {êold}n ← {ênew}n
8: end if
9: update density of states ln g(En)← ln g(En) +

γ and histogram h(En)← h(En) + 1
10: if h(E) flat then
11: γ ← γ/2, h(E)← 0
12: end if
13: until g(E) converged, i.e. γ ≈ 0

consistent Multiple Scattering (LSMS) method cal-
culates the electronic properties from first principles
in reals space, but introduces some approximations
that make the treatment of infinite systems possible.
Furthermore this method results in a code that scales
linearly with the size of the system.

The LSMS method is based on the observation
that good convergence can be obtained by solving the
Kohn-Sham equation of density functional theory at
a given atomic site by considering not the whole sys-
tem, but only a sufficiently large neighborhood, the
local interaction zone (LIZ), of each site. The details
of this method for calculating the Green function and
the total ground state energy E[n(~r), ~m(~r)] are de-
scribed elsewhere [3, 4]. For the present discussion it
is important to note that the computationally most
intensive part is the calculation of the scattering path
matrix τ for each atom in the system by inverting the
multiple scattering matrix.

τ = [I − tG0]
−1
t (1)

The only part of τ that will be required in the sub-
sequent calculation of site diagonal observables (i.e.

2

magnetic moments, charge densities, and total en-
ergy) is a small (typically 32× 32) diagonal block of
this matrix who’s rank is O(4k). This will allow us
to employ the algorithm described in the next section
for maximum utilization of the on node floating point
compute capabilities.

For a more detailed description of the underlying
algorithms see [10].

4 LSMS 3

4.1 LSMS 1 Background

The original LSMS-1 code was written to efficiently
exploit the capabilities of distributed memory archi-
tectures of the 1990s. Due to the experience of the
original programmers and the widely available soft-
ware development environments available at the time
this resulted in the use of Fortran 77 (with some ad-
ditions of Fortran 90 features, such as dynamic mem-
ory allocation) and MPI for the communication layer.
Additionally BLAS and Lapack are used for the
dense linear algebra that accounts for approximately
95% of the execution time. For the most part the use
of COMMON blocks was avoided and all arguments for
subroutine calls were passed explicitly. This resulted
in unwieldy long subroutine calls in Fortrang 77 due
to the lack of user defined data types, but it signifi-
cantly improved the reusability of a large number of
subroutines in the new LSMS 3 code. Consequently,
the major architectural feature missing in LSMS 1 go-
ing forward to new hardware architectures, was the
assumption of a on-to-one mapping between atoms
and MPI ranks that limited the code’s flexibility in
adapting to a hybrid multi-threaded and distributed
memory (OpenMP/MPI) paradigm or utilizing accel-
erators such as GPUs.

4.2 Overall Code Structure

As the refactoring of LSMS had to be done by one
person, it was important to be able to reuse as much
code from LSMS-1, either directly or with mini-
mal modifications. Yet it was also desirable to use
more expressive and economical coding styles by us-

ing abstractions that were not available in the orig-
inal Fortran 77 code. To achieve these goals The
new code employes both C++ and Fortran. The
main skeleton of the code and the I/O sections are
written in C++ while the main computational sub-
routines reuse the original LSMS-1 based Fortran
code. The combination of pruning obsolete code
and the greater expressiveness of C++ resulted in
a reduction of the size of the LSMS main subrou-
tine in LSMS-1, lsms main as subroutine.f, from
2539 lines to 353 lines in LSMS-3’s lsmsClass.cpp.
Listing 1 shows the essential part of the standalone
(without Wang-Landau) LSMS main. The data re-
quired to perform the LSMS calculation has been
encapsulated in four classes that contain 1) sys-
tem wide parameters, such as the total number of
atoms or the energy contour and other method re-
lated parameters (LSMSSystemParameters), 2) the
crystal structure, thus describing the physical system
(CrystalParameters), 3) the data that is needed
only on individual nodes, e.g. the atomic potentials
(LocalTypeInfo) and 4) a class to hold the informa-
tion needed do distribute the data and perform the
communication (LSMSCommunication).

Listing 1: Structure of main

LSMSSystemParameters lsms;

LSMSCommunication comm;

CrystalParameters crystal;

LocalTypeInfo local;

// Initialize communication and accelerator

// Read the input file

communicateParameters(comm ,lsms ,crystal);

local.setNumLocal(distributeTypes(crystal ,

comm));

local.setGlobalId(comm.rank ,crystal);

buildLIZandCommLists(comm ,lsms ,crystal ,

local);

loadPotentials(comm ,lsms ,crystal ,local);

setupVorpol(lsms ,crystal ,local ,

sphericalHarmonicsCoeficients);

calculateCoreStates(comm ,lsms ,local);

3

N-2

j

l

m i k

1 2 3

NN-1

titi

ti

ti

tktm

tl

tj

NODE/
ATOM

j

NODE/
ATOM

m

NODE/
ATOM

k

NODE/
ATOM

l

 NODE / ATOM

INPUT vM
i (r) : !M

i (r)

COMPUTE ti : GM
SEND ti

RECEIVE t j tk tl tm

COMPUTE " = [1# tG]#1t

 $ nM
i

COMPUTE !M
i (r) !(r)

 $ v(r)

Figure 2: Schematic, Left: LIZ centered at processor/atom i; Right: message passing and computation.

energyContourIntegration(comm ,lsms ,local);

calculateChemPot(comm ,lsms ,local ,eband);

Listing 2: Class to store data for local atoms

class LocalTypeInfo {

public:

void setNumLocal(int n);

void setGlobalId(int rank ,

CrystalParameters &crystal);

int num_local;

std::vector <int > global_id;

std::vector <AtomData > atom;

std::vector <int > n_per_type;

int lDimTmatStore;

Matrix <Complex > tmatStore;

std::vector <int > tmatStoreGlobalIdx;

};

4.3 Input

The major user visible change is the choice of a new
input file format. The LSMS-1 code reads its main

input line by line from a text file and expects the
input parameters on the correct line in the correct
order. This can make it difficult to track down errors
in the input and also the rigidity of this format makes
extensions to the input format challenging. To pro-
vide flexibility and extensibility of the input, LSMS-3
uses a Lua [11], a scripting language that is popular
for its simple API and light weight, based input.

This change is not necessary for the change to mul-
ticore and accelerator based architectures, yet the
value added by this new interface change will con-
tribute to the future adaptability of the code. The
input to LSMS-3 consists of a Lua script that is ex-
ecuted at the start of the code on MPI rank 0. An
example for a 1024 iron run is given in listing 3. Af-
ter executing the script the code will read the values
of the Lua that contain the system information, such
as energyContour for the energy integration param-
eters or bravais and site for the crystal structure.
The script allows the user to specify calculations for
the input parameters. In the example given the lat-
tice constant of iron is defined in one place as a =

4

5.42 and can then reused to specify the lattice struc-
ture in terms of this parameter, which improves both
the readability of the input file and allows for easy
change of this parameter. Finally the example shows
the power of the scripting language approach for fill-
ing in default parameters without the need to provide
complicated mechanism inside the scientific code it-
self that would have to account for multiple usage
scenarios.

Listing 3: Input file for 1024 atom iron calculation

systemid="Fe1024"

system_title = "Iron test for LSMS 3"

pot_in_type =1

num_atoms =2

nspin=3

xRepeat =8

yRepeat =8

zRepeat =8

makeTypesUnique =1

energyContour = {npts=31,grid=2,ebot=-0.3,

etop =0.0, eitop =0.825 , eibot =0.025}

a = 5.42

bravais = {}

bravais [1]={a,0,0}

bravais [2]={0 ,a,0}

bravais [3]={0 ,0 ,a}

site_default ={lmax=3,rLIZ =12.5, rsteps

={89.5 ,91.5 ,93.2 ,99.9} , atom="Fe",Z=26,Zc

=10,Zs=8,Zv=8,rad=2}

site = {}

for i =1,num_atoms do site[i]={} end

site [1]. pos={0,0,0}

site [1]. evec ={0,0,1}

site [2]. pos ={0.5*a,0.5*a ,0.5*a}

site [2]. evec ={0,0,1}

-- set site defaults

for i =1,num_atoms do

for k,v in pairs(site_default) do

if(site[i][k]==nil) then site[i][k]=v

end

end

end

4.4 Communication

A major change in the code structure in moving from
LSMS-1 to LSMS-3 involved the distribution of work
across MPI ranks. LSMS-1 assumes a on-to-one map-
ping between atoms and MPI ranks and does not
allow for further parallelism beyond the atom level.
(The additional Wang-Landau parallelism that sits
on top of the LSMS part is not effected by this.) Con-
sequently the main driving force for the refactoring
of LSMS-3 was the desire to allow greater flexibility
in the distribution of work and allow in addition to
the original scheme the possibility to assigne multiple
atoms to a MPI rank and use OpenMP on a multi-
core node to further distribute the work or to utilize
accelerators such as GPUs that are usually have a
different number available then the number of cores
(eg. a node with twelve CPU cores and one GPU).

This change significantly complicates the commu-
nication pattern to distribute the t matrices inside
the LIZ as shown in figure 2. The original path taken
in LSMS-2, an ongoing Fortran 90 rewrite of LSMS
to implement new scientific capabilities such as full
potential and k space calculations, was to use a GET
based on-sided communication scheme, since the sites
from which t matrices are required can be easily cal-
culates whereas the sites that require a given atom’s
t matrix are harder to calculate. Unfortunately on
many distributed memory architectures this commu-
nication scheme incurs a unacceptably large perfor-
mance penalty.

Algorithm 2 The construction of the LIZ commu-
nication lists
for all atoms i in the crystal do

build the local interaction zone LIZi =
{j|dist(xi,xj) < rLIZ} of atom i
for all atoms j in LIZi do

add atom j to the list Ri of data to receive for
atom i (tmatFrom)
add atom i to the list Sj of data to send from
atom j (tmatTo)

end for
end for
remove duplicate entries from Sj and Ri

5

To achieve this the code first constructs the con-
nections between the atomic sites in the crystal. This
has to be performed in a sufficiently general way to
not restrict the structures that can be investigated.
The steps take to calculate these lists are sketched out
in algorithm 2. For all atoms in the system two lists
are generated, Ri of the remote sites that are required
by site i to generate its scattering matrix and Si of
the sites that need data from site i to construct their
scattering matrix. Care must be taken to take peri-
odic boundary conditions into account and to remove
duplicates from these lists, that can result from both
the boundary conditions and the overlap of interac-
tion zones. From this information the data structures
tmatTo and tmatFrom in listing 4 are filled that list
for each remote node the data for the atomic sites
that are identified by their global index globalIdx

that need to be exchanged and where it has to be
stored locally (tmatStoreIdx).

Listing 4: Data structures for communication sup-
port

class TmatCommType {

public:

int remoteNode;

int numTmats;

std::vector <int > tmatStoreIdx;

std::vector <int > globalIdx;

std::vector <MPI_Request >

communicationRequest;

};

class LSMSCommunication {

public:

int rank;

int size;

MPI_Comm comm;

int numTmatTo , numTmatFrom;

std::vector <TmatCommType > tmatTo , tmatFrom

;

};

This data struct needs to be constructed only once
at startup and does not result in a major memory
requirement, since it needs only be kept only for the
sites that are local to a particular MPI rank. The ac-
tual communication of the atom data needed to build
the scattering path matrices is provided by the three
functions shown in listing 5 that allow the implemen-

tation of non blocking communication. In particular
expectTmatCommunication can be called before the
calculation of the individual t matrices to pre-post
non blocking receives. The t matrix calculation itself
requires no inter node communication and can easily
exploit multithreaded intra node parallelism across
the node local atomic sites. The routine sendTmats

sends the t matrices after they have been calculated
and finalizeTmatCommunication waits for the non-
blocking communications to be finished before the in-
verse scattering path τ (eq. 1) matrix is constructed.

Listing 5: Functions for t matrix communication

void expectTmatCommunication(

LSMSCommunication &comm ,LocalTypeInfo &

local);

void sendTmats(LSMSCommunication &comm ,

LocalTypeInfo &local);

void finalizeTmatCommunication(

LSMSCommunication &comm);

Additionally the code provides encapsulations of
commonly used communication to isolated the ex-
plicit use of a specific external API such as MPI. The
example of a global sum shown in listing 6 also il-
lustrates the expressiveness of templated C++ for
type-general implementation of functions.

Listing 6: Functions using MPI communication can
be templated on the communicated type using traits

template <typename T>

void globalSum(LSMSCommunication &comm ,T &a)

{

T r;

MPI_Allreduce (&a,&r,1,TypeTraits <T>::

mpiType (),MPI_SUM ,comm.comm);

a=r;

}

Here the use of traits (listing 7) provides the mecha-
nism to obtain the type specific parameters that need
to be passed to function calls thus leading to a signif-
icantly higher reusability of code and less code that
needs to be maintained.

Listing 7: Type trait for generic functions using MPI

template <>

class TypeTraits <double >

{

public:

6

inline static MPI_Datatype mpiType(void) {

return MPI_DOUBLE ;}

};

4.5 Matrix Inversion

The most computationally intensive part of the
LSMS calculation is the matrix inversion to obtain
the multiple scattering matrix τ . (eq. 1) The amount
of computational effort can be reduced by utilizing
the fact that for each local interaction zone only the
left upper block (τ00) of the scattering path matrix τ
is required. LSMS uses an algorithm that reduces the
amount of work needed while providing excellent per-
formance due to its reliance on dense matrix-matrix
multiplications that are available in highly optimized
form in vendor or third party provided implementa-
tions (i.e ZGEMM in the BLAS library).

The method employed in LSMS to calculate the
required block of the inverse relies on the well known
expression for writing the invers of a matrix in term
of inverses and products of subblocks:(

A B
C D

)−1

=

(
U V
W Y

)
where

U = (A−BD−1C)−1

and similar expressions for V , W , and Y . This this
method can be applied multiple times to the subblock
U until the desired block τ00 of the scattering path
matrix is obtained.

The Fortran based implementation of this algo-
rithm for CPUs, that is used in all versions of LSMS,
is shown in listing 8.

Listing 8: CPU version of the matrix block inversion
function zblock lu

subroutine zblock_lu(a,lda ,blk_sz ,nblk

,ipvt ,mp ,idcol ,k)

...

c Do block LU

n=blk_sz(nblk)

joff=na -n

do iblk=nblk ,2,-1

m=n

ioff=joff

n=blk_sz(iblk -1)

joff=joff -n

c invert the diagonal blk_sz(iblk) x blk_sz(

iblk) block

call zgetrf(m,m,a(ioff+1,ioff +1),lda ,

ipvt ,info)

c calculate the inverse of above multiplying

the row block

c blk_sz(iblk) x ioff

call zgetrs(’n’,m,ioff ,a(ioff+1,ioff

+1),lda ,ipvt ,

& a(ioff +1,1),lda ,info)

if(iblk.gt.2) then

call zgemm(’n’,’n’,n,ioff -k+1,na-ioff ,

cmone ,a(joff+1,ioff +1),lda ,

& a(ioff+1,k),lda ,cone ,a(joff+1,k),

lda)

call zgemm(’n’,’n’,joff ,n,na-ioff ,

cmone ,a(1,ioff +1),lda ,

& a(ioff+1,joff +1),lda ,cone ,a(1,

joff +1),lda)

endif

enddo

call zgemm(’n’,’n’,blk_sz (1),blk_sz (1)

-k+1,na-blk_sz (1),cmone ,

& a(1,blk_sz (1)+1),lda ,a(blk_sz (1)

+1,k),lda ,cone ,a,lda)

end

The code performs LU factorizations and linear
solves by utilizing the Lapack routines zgetrf and
zgerts respectively and the BLAS routine zgemm

for the matrix multiplications. The reliance on
these common library routines for the implementa-
tion of the main computational kernel of LSMS has
ensured performance portability in the past, when
moving between different CPU platforms. This ap-
proach is also enabling the easy port to accelera-
tors if the necessary libraries are available. Listing 9
shows the implementation of zblock lu using CULA
[12]. The only changes needed were the replace-
ment of the BLAS and LAPACK routines by their
cuBLAS and CULA counterparts cublas zgemm,
cula device zgetrf and cula device zgetrs as
well as the data movement to and from the device
(cublas set matrix and cublas get matrix.

Performing these calculations using a different lin-
ear algebra library, such as Magma [13] only re-
quires similar changes, enabling the easy comparison
of other libraries and choosing the best performing
library for a given combination of computer architec-

7

ture and physical simulation with a simple recompi-
lation of the code.

Listing 9: GPU version of the matrix block inversion
function zblock lu using CULA[12]

subroutine zblock_lu(a,lda ,blk_sz ,nblk

,ipvt ,mp ,idcol ,k)

...

! copy matrix to device

info = cublas_set_matrix(lda , na,

sizeof_Z , a, lda , devA , lda)

...

c Do block LU

n=blk_sz(nblk)

joff=na -n

do iblk=nblk ,2,-1

m=n

ioff=joff

n=blk_sz(iblk -1)

joff=joff -n

c invert the diagonal blk_sz(iblk) x blk_sz(

iblk) block

info = cula_device_zgetrf(m,m,

& devA+idx2f(ioff+1,ioff+1,lda)*

sizeof_Z ,lda ,devIPVT)

c calculate the inverse of above multiplying

the row block

c blk_sz(iblk) x ioff

info = cula_device_zgetrs(’n’,m,ioff ,

& devA+idx2f(ioff+1,ioff+1,lda)*

sizeof_Z ,lda ,devIPVT ,

& devA+idx2f(ioff+1,1,lda)*sizeof_Z

,lda)

if(iblk.gt.2) then

call cublas_zgemm(’n’,’n’,n,ioff -k+1,

na-ioff ,cmone ,

& devA+idx2f(joff+1,ioff+1,lda)*

sizeof_Z ,lda ,

& devA+idx2f(ioff+1,k,lda)*sizeof_Z

,lda ,cone ,

& devA+idx2f(1,joff+1,lda)*sizeof_Z

,lda)

endif

enddo

call cublas_zgemm(’n’,’n’,blk_sz (1),

blk_sz (1)-k+1,na-blk_sz (1),

& cmone ,devA+idx2f(1,blk_sz (1)+1,

lda)*sizeof_Z ,lda ,

& devA+idx2f(blk_sz (1)+1,k,lda)*

sizeof_Z ,lda ,cone ,devA ,lda)

info = cublas_get_matrix(lda ,blk_sz (1)

,sizeof_Z ,devA ,lda ,a,lda)

end

5 Conclusion

Actively evolving research codes that explore new
physics, such as the WL-LSMS demonstrated here,
benefit from occasional rewrites not only for porting
to new architectures, but these rewrites are an excel-
lent opportunity to prune abandoned features in the
code base and organize the code structure in a more
transparent way that will enable the future viability
of the code for new generations of scientists.

Acknowledgments

This work was conducted at Oak Ridge National Lab-
oratory (ORNL), which is managed by UT-Battelle
for the U.S. Department of Energy (US DOE) under
contract DE-AC05- 00OR22725.

About the Author

M. Eisenbach is a computational scientist at the
National Center for Computational Sciences at Oak
Ridge National Laboratory. He is one of the devel-
opers of the LSMS code as well as the main author
of the WL-LSMS hybrid code.

References

[1] Martin, R. M., Electronic Structure: Basic The-
ory and Practical Methods, Cambridge, 2004.

[2] F. Wang, D. P. Landau, Phys. Rev. Lett. 86,
2050 (2001).

[3] Yang Wang, G. M. Stocks, W. A. Shelton, D.
M. C. Nicholson, Z. Szotek, and W. M. Tem-
merman, Phys. Rev. Lett. 75 2867 (1995).

[4] M. Eisenbach, B. L. Györffy, G. M. Stocks, and
B. Újfalussy, Phys. Rev. B 65, 144424 (2002).

[5] G. M. Stocks, Y. Wang, D. M. C. Nicholson, W.
A. Shelton, Z. Szotek, W. M. Temmerman, B.
N. Harmon, V. P. Antropov, Mater. Res. Soc.
Symp. Proc. 408, 157 (1996).

8

[6] G. M. Stocks, B. Újfalussy, X. Wang, D.M.C.
Nicholson, W. A. Shelton, Y. Wang, A. Can-
ning, and B. L. Györffy, Philos. Mag. B 78, 665
(1998).

[7] B. Újfalussy, X. Wang, D.M.C. Nicholson, W.
A. Shelton, G. M. Stocks, Y. Wang, and B. L.
Györffy, J. Appl. Phys. 85, 4824 (1999).

[8] C.-G. Zhou, T. C. Schulthess, S. Torbrügge, D.
P. Landau, Phys. Rev. Lett. 96, 120201 (2006).

[9] M. Eisenbach, C.-G. Zhou, D. M. Nicholson, G.
Brown, J. Larkin, T. C. Schulthess, SC’09: Pro-
ceedings of the Conference on High Performance
Computing, Networking, Storage and Analysis,
ACM, 2009.

[10] M. Eisenbach, C.-G. Zhou, D. M. Nicholson, G.
Brown, J. Larkin, T. C. Schulthess, Proceedings
of CUG 2010.

[11] http://www.lua.org

[12] http://www.culatools.com

[13] http://icl.cs.utk.edu/magma

9

