
 CUG 2011 Proceedings 1 of 10

Parallel Finite Element Earthquake Rupture Simulations

on Quad- and Hex-core Cray XT Systems

Xingfu Wu
Institute for Applied Mathematics and Computational Science

Department of Computer Science & Engineering, Texas A&M University, College Station, TX 77843
Email: wuxf@cse.tamu.edu

Benchun Duan

Department of Geology & Geophysics, Texas A&M University, College Station, TX 77843
Email: bduan@tamu.edu

Valerie Taylor

Department of Computer Science & Engineering, Texas A&M University, College Station, TX 77843
Email: taylor@cse.tamu.edu

Abstract: In this paper, we integrate a 3D mesh generator into the simulation, and use MPI to parallelize
the 3D mesh generator, illustrate an element-based partitioning scheme for explicit finite element methods,
and based on the partitioning scheme and what we learned from our previous work, we implement our
hybrid MPI/OpenMP finite element earthquake simulation code in order to not only achieve multiple levels
of parallelism of the code but also to reduce the communication overhead of MPI within a multicore node
by taking advantage of the shared address space and on-chip high inter-core bandwidth and low inter-core
latency. We evaluate the hybrid MPI/OpenMP finite element earthquake rupture simulations on quad- and
hex-core Cray XT 4/5 systems from Oak Ridge National Laboratory using the Southern California
Earthquake Center (SCEC) benchmark TPV 210. Our experimental results indicate that the parallel finite
element earthquake rupture simulation obtains the accurate output results and has good scalability on these
Cray XT systems.

Keywords: Parallel simulations, Earthquake rupture, Finite element method, OpenMP, MPI, and Multicore

1. Introduction

Numerical modeling of dynamic earthquake rupture
propagation and seismic wave propagation provides
seismologists with a powerful tool to discover the
underlying physics controlling earthquake rupture process
and resultant near-field ground motion. Figure 1 shows an
example of how near-field ground motion might be
controlled by rupture propagation on the fault in the 2008
Ms 8.0 Wenchuan earthquake [Duan10]. This devastating
earthquake occurred in Wenchuan county, Sichuan province
of China on May 12th, 2008, and killed more than 60,000
people. In Figure 1, the black line is the trace of a shallow
dipping fault in the model, and circle, triangular, plus, and
cross signs denote the epicenter, Chengdu, Beichuan, and
Wenchuan cities, respectively. Distribution of near-field
ground velocity is strongly affected by the shallow dipping
fault geometry with higher ground motion on the hanging

wall side of the fault (below the black line in the figure).
These numerical models are also necessary to assess
possible rupture scenarios in future earthquakes in
earthquake-prone areas such as California, which are critical
for seismic hazard analysis in these regions. Due to scarcity
of near-field strong ground motion recordings, strong
ground motion prediction from future earthquakes largely
depends on these numerical models.

Most widely used numerical codes in the field of
earthquake dynamic source models are based on the finite
difference method (FDM) [AB03, SR08, CM08]. But it is
difficult for FDM to deal with complex fault geometry and
complex geological structures. Duan et al. [DO06, DO07,
DD08] have been developing and using an explicit dynamic
finite element method (EQdyna) to implement sequential
simulations for modeling spontaneous earthquake rupture on
geometrically complex faults, such as faults with bends,
stepovers, or branches. However, a sequential simulation
takes more than 120 hours for relatively small earthquake

 CUG 2011 Proceedings 2 of 10

model datasets for the Wenchuan earthquake (with ~ 46
million elements) on a SUN server with 4 dual-core AMD
Opteron processors. It means waiting for five days to verify
and validate a model. Therefore, it is necessary to parallelize
the sequential earthquake simulation code. On one hand, the
parallel earthquake simulation can significantly shorten the
simulation time by fully utilizing all processor cores. On the
other hand, the parallel simulation will make it feasible to
utilize large-scale supercomputing resources from TAMU
supercomputing facilities and other national labs.

Figure 1. Snapshots of horizontal ground velocity
from a simplified dynamic model of the 2008 Ms 8.0

Wenchuan earthquake [Duan10]

In the finite element method, the data dependence is

much more irregular than the finite difference method, so it
is generally more difficult to parallelize. Ding and Ferraro
[DF96] discussed node-based and element-based
partitioning strategies, found that main advantage for
element-based partitioning strategy over node-based
partitioning strategy was its modular programming approach
to the development of parallel applications, and developed
an element-based concurrent partitioner for partitioning
unstructured finite element meshes on distributed memory
architectures.
 Mahinthakumar and Saied [MS02] presented a hybrid
implementation adapted for an implicit finite-element code
developed for groundwater transport simulations based on
the original MPI code using a domain decomposition
strategy, and added OpenMP directives to the code to use
multiple threads within each MPI process on SMP clusters.
Nakajima [NK03] presented a parallel iterative method in
GeoFEM for finite element method which was node-based
with overlapping elements on the Earth Simulator, and
explored a three-level hybrid parallel programming model,
including message passing (MPI) for inter-SMP node
communication, loop directives by OpenMP for intra-SMP
node parallelization and vectorization for each processing
element.

In our previous work [WD09, WD11], we used OpenMP
to parallelize a sequential earthquake simulation code

EQdyna for modeling spontaneous dynamic earthquake
rupture along geometrically complex faults, and based on
what we learned from the OpenMP implementation, we
developed an initial hybrid MPI/OpenMP implementation of
the sequential earthquake simulation code EQdyna with a
3D mesh as an input, which was generated by a 3D mesh
generator separately before the simulation execution. In this
paper, we integrate the 3D mesh generator into the
simulation, and use MPI to parallelize the 3D mesh
generator, illustrate an element-based partitioning scheme
for explicit finite element methods, and evaluate its
performance on Quad- and Hex-core Cray XT systems at
Oak Ridge National Laboratory [NCCS] using the Southern
California Earthquake Cente (SCEC) benchmark TPV 210.
The experimental results indicate that the hybrid
MPI/OpenMP implementation has the accurate output
results and the good scalability on these systems.

The remainder of this paper is organized as follows.
Section 2 illustrates an element-based partitioning scheme,
discusses our hybrid MPI/OpenMP parallel finite element
Earthquake rupture simulations in detail. Section 3 describes
the architecture and memory hierarchy of quad- and hex-
core Cray XT systems used in our experiments. Section 4
discusses the benchmark problem TPV210 and verifies our
simulation results. Section 5 evaluates and explores
performance characteristics of our hybrid MPI/OpenMP
implementation, and presents the experimental results.
Section 6 concludes this paper.

2. Hybrid MPI/OpenMP Parallel Finite
Element Earthquake Rupture Simulations

In this section, based on what we learned from our previous
work [WD09, WD11], we integrate a 3D mesh generator
into the simulation, and use MPI to parallelize the 3D mesh
generator, illustrate an element-based partitioning scheme
for explicit finite element methods, and discuss how
efficiently to use hybrid MPI/OpenMP implementations in
the earthquake simulations for not only achieving multiple
levels of parallelism but also reducing the communication
overhead of MPI within a multicore node, by taking
advantage of the globally shared address space and on-chip
high inter-core bandwidth and low inter-core latency on
large-scale multicore systems.

2.1 Mesh Generation and Model Domain
Partitioning
In our previous work [WD09, WD11], we developed an
initial hybrid MPI/OpenMP implementation of the
sequential earthquake simulation code EQdyna with a 3D
mesh as an input, which was generated by a 3D mesh
generator separately before the simulation execution. As we
discussed in our previous work, the earthquake simulation
code is memory bound, when the number of elements

 CUG 2011 Proceedings 3 of 10

increases, the required system memory for storing large
arrays associated with the entire model domain increases
dramatically. In order to overcome the limitation, in this
paper, we integrate the 3D mesh generator into the
simulation, and use MPI to parallelize the 3D mesh
generator.

Figure 2. Schematic diagram to show mesh and model
domain partitioning

 To parallelize the 3D mesh generator, based on the
number of MPI processes used, we partition the entire
model domain by the coordinate along fault strike (e.g., the
x-coordinate in a Cartesian coordinate system) shown in
Figure 2 so that we can define small arrays for each MPI
process independently. Figure 2 gives a schematic diagram
for the 3D mesh partitioning. Thus, memory requirements
by large arrays that are associated with the entire model
domain in a previous version of the code [WD11]
significantly decrease.
 To facilitate message passing between adjacent MPI
processes, based on the partitions of the entire model
domain by the coordinate along fault strike, during the mesh
generation step, we create a sub-mesh for each MPI process
and record shared boundary nodes between two adjacent
MPI processes. This converts reading initial large input
mesh data to computing and generating small mesh data for
each MPI process. Note that, in this partitioning scheme, the
maximum number of MPI processes that can be used is
bounded by the total number of nodes along the x-
coordinate.

2.2 Element-based Partitioning

In our explicit finite element earthquake simulation, we
primarily use trilinear hexahedral elements to discretize a
3D model for computational efficiency, with wedge-shaped
elements along the fault to characterize dipping fault
geometry as illustrated in Figure 2. We use a large buffer
region with increasingly coarser element sizes away from

the fault to prevent reflections from artificial model
boundaries from contaminating examined phenomena.

Figure 3. 2D geometry for the EQdyna: 12 elements
(boxes) and each element with 4 nodes (circles)

Figure 4. Element-based Partitioning Scheme

 For simplicity, we discuss our partitioning scheme with a
hypothetical 2D mesh shown in Figure 3, where there are 12
elements (boxes) and each element has four nodes (circles)
adjacent to it. We propose an element-based partitioning
scheme because most time-consuming computation in the
earthquake rupture simulation code is element-based.
Within one timestep, element contribution (both internal
force and hourglass force) to its nodes' nodal force is first
calculated. Then, contributions to a node's nodal force from

 CUG 2011 Proceedings 4 of 10

all of its adjacent elements are assembled. For instance, the
nodal force at node 1 only involves element 1, while the
nodal force at node 5 involves elements 1, 2, 3, and 4. The
nodal force at node 5 is the sum of contributions from all
these four elements.
 Figure 4 illustrates the element-based partitioning scheme
for the finite element method, where the 2D domain is split
into three components. In this scheme, we essentially
partition the model domain based on element numbers. Each
component consists of four elements and the nodes adjacent
to them. A node that lies on the boundary between two
components is called a boundary node. For example, nodes
7, 8 and 9 are the boundary nodes between the first two
components, and nodes 13, 14 and 15 are the boundary
nodes between the last two components. To update the
nodal force at a boundary node such as node 8, it needs
contributions from elements 3 and 4 in the first component
and those from elements 5 and 6 in the second component.
This requires the data exchange between the first two
components.
 Similarly, the above element-based partitioning scheme
can be extended to large 3D datasets. The element-based
partitioning method described in this section is applicable to
more irregular meshes as well.

2.3 Hybrid Implementations

Multicore clusters provide a natural programming paradigm
for hybrid programs. Generally, MPI is considered optimal
for process-level coarse parallelism and OpenMP is optimal
for loop-level fine grain parallelism. Combining MPI and
OpenMP parallelization to construct a hybrid program is not
only to achieve multiple levels of parallelism but also to
reduce the communication overhead of MPI at the expense
of introducing OpenMP overhead due to thread creation and
increased memory bandwidth contention. Therefore, we use
hybrid MPI/OpenMP to parallelize the finite element code
for exploring the parallelism of the code at node level
(OpenMP) and the parallelism of the code between nodes
(MPI) so that the parallel earthquake simulation can be run
on most supercomputers. Note that, in the hybrid
MPI/OpenMP implementations, we separate MPI regions
from OpenMP regions, and OpenMP threads cannot call
MPI subroutines.
 Figure 5 shows the parallelism at MPI and OpenMP
levels within one timestep for the hybrid implementation of
the earthquake simulation. As we discussed in the previous
section, using the element-based partitioning scheme, we
can partition the 2D mesh geometry into three components,
and dispatch each component to a MPI process for MPI
level parallelism. So each MPI process is in charge of four
elements and the nodes adjacent to them. Because the
earthquake simulation is memory-bound, each MPI process
is created on a different node as illustrated in Figure 5. MPI
process 0 is run on Node 0; process 1 is on Node 1; process
2 is on Node2. On each node, OpenMP level parallelism can

be achieved by using element-based partitioning scheme and
OpenMP. Each MPI process (the master thread) forks
several new threads to take advantage of the shared address
space and on-chip high inter-core bandwidth and low inter-
core latency on the node.

Figure 5. Parallelism at MPI and OpenMP levels within
one timestep

 To manipulate and update nodal forces at these boundary
nodes, it requires the data exchange between two MPI
processes via message passing. For each boundary node
such as node 7 shown in Figure 5, to update its nodal force
at the end of each timestep, we sum the nodal force at node
7 from process 0 and the nodal force at node 7 from process
1, then use the sum to update the nodal forces at node 7 for
the processes 0 and 1.
 To implement updating the nodal force at each boundary
node at the end of each timestep, we propose the following
algorithm to deal with the problem.

Algorithm: Update the nodal forces at boundary nodes:

Step 1: Partition the initial data mesh based on the number

of MPI processes to ensure load balancing, get the
information about shared boundary nodes between MPI
processes i and i+1 from the mesh generator discussed in
Section 2.1, and allocate a temporal array btmp with the
nodal forces at the shared boundary nodes,

Step 2: The MPI process i sends the array btmp to its
neighbor process i+1 using MPI_Sendrecv,

 CUG 2011 Proceedings 5 of 10

Step 3: The MPI process i+1 receives the array from
process i using MPI_Sendrecv. For each shared
boundary node, it sums the nodal force from the array
and the local nodal force at the shared boundary node,
then assigns the summation to the nodal force at the
shared node locally,

Step 4: The MPI process i+1 updates the array locally, and
sends the updated array back to the MPI process i,

Step 5: The MPI process i receives the updated array and
update the nodal forces at the shared nodes locally, and
deallocates the temporal array at the end of the timestep

Step 6: Repeat the above Steps 1-5 for the next timestep.

 The algorithm implements the straightforward data
exchanges illustrated in Figure 5, and it is efficient because
of sending/receiving smaller messages. This can simplify
the programming efforts and reduce the communication
overhead.

3 Experimental Platforms

In this paper, we conduct our experiments using Jaguar
(Cray XT5 and XT4) from Oak Ridge National Laboratory
[NCCS]. Table 1 shows their specifications and the same
compilers used for all experiments. All systems have private
L1 and L2 caches and shared L3 cache per node. Jaguar is
the primary system in the ORNL Leadership Computing
Facility (OLCF). It consists of two partitions: XT5 and XT4
partitions shown in Figure 6.

Table 1. Specifications of quad- and hex-core Cray XT
Systems

Configurations JaguarPF
(XT5)

Jaguar
(XT4)

Total Cores 224,256 31,328
Total Nodes 18,688 7,832

Cores/Socket 6 4
Cores / Node 12 4

CPU type AMD
2.6GHz hex-

core

AMD
2.1GHz

quad-core
Memory/Node 16GB 8GB

L1 Cache/Core,
private

64 KB 64 KB

L2 Cache/Core,
private

512KB 512KB

L3 Cache/Socket,
shared

6MB 2MB

Compiler ftn ftn
Compiler Options -O3 -

mp=nonuma
-fastsse

-O3 -
mp=nonuma

-fastsse

Figure 6. Jaguar and JaguarPF System Architecture
[NCCS]

Figure 7. AMD hex-core Opteron chip architecture

[NCCS]

The Jaguar XT5 partition (JaguarPF) contains 18,688
compute nodes in addition to dedicated login/service nodes.
Each compute node contains dual hex-core AMD Opteron
2435 (Istanbul shown in Figure 7) processors running at
2.6GHz, 16GB of DDR2-800 memory, and a SeaStar 2+
router. The resulting partition contains 224,256 processing
cores, 300TB of memory, and a peak performance of 2.3
petaflop/s. The Jaguar XT4 partition (Jaguar) contains 7,832
compute nodes in addition to dedicated login/service nodes.
Each compute node contains a quad-core AMD Opteron
1354 (Budapest) processor running at 2.1 GHz, 8 GB of
DDR2-800 memory, and a SeaStar2 router. The resulting
partition contains 31,328 processing cores, more than 62 TB
of memory, over 600 TB of disk space, and a peak

 CUG 2011 Proceedings 6 of 10

performance of 263 teraflop/s. The SeaStar2+ router (XT5
partition) has a peak bandwidth of 57.6GB/s, while the
SeaStar2 router (XT4 partition) has a peak bandwidth of
45.6GB/s. The routers are connected in a 3D torus topology,
which provides an interconnect with very high bandwidth,
low latency, and extreme scalability.

4. Result Verification and Benchmark
Problems

4.1 Benchmark Problem TPV210

To validate the hybrid MPI/OpenMP earthquake simulation
code, we apply it to a SCEC/USGS benchmark problem
TPV210, which is the convergence test of the benchmark
problem TPV10 [HB09, SUVP]. In TPV10, a normal fault
dipping at 60° (30 km long along strike and 15 km wide
along dip) is embedded in a homogeneous half space. Pre-
stresses are depth dependent and frictional properties are set
to result in a subshear rupture. This benchmark problem is
motivated by ground motion prediction at Yucca Mountain,
Nevada, which is a potential high-level radioactive waste
storage site [DD10]. In TPV10, modelers are asked to run
simulations at an element size of 100 m on the fault surface.
In TPV210, we conduct the convergence test of the solution
by simulating the same problem at a set of element sizes,
i.e., 200 m, 100 m, 50 m, 25 m, 12.5 m, and so on. Here, we
work on 100 m and 50 m element sizes. Table 2 summarizes
model parameters for the two element sizes. Because the
number of elements with a discretization varies a little bit
with the number of MPI processes used, Table 2 only gives
a rough estimate of this number. In the table, nxt is the node
number along the x-coordinate in a sequential simulation,
which limits how many MPI processes one can use in a
hybrid parallel simulation.

Table 2. Model parameters for two element sizes

Parameters TPV210-100m TPV210-50m
Element	 size	 100	 m	 50	 m	
Total	 elements	 	 ~	 25,000,000	 ~100,000,000	
Time	 step	 (sec)	 0.008	 0.004	

Termination	 Time	
(seconds)	

15	 15	

nxt	 477	 829	

4.2 Result Verifications

Figure 8 show the rupture time (in seconds) contours on the
60° dipping fault plane. Red star denotes the hypocenter of
simulated earthquakes. Results from two simulations are
plotted in the figure. One (black) is the result from a
previous run with 50 m element size that was verified in the

SCEC/USGS code validation exercise [SUVP]. The other is
the result from a run performed in this study on JaguarXT5
with 50 m element size using 256 MPI processes. These two
results essentially overlap, indicating our current hybrid
implementation gives accurate results.

Figure 8. Rupture time contours on the dipping fault
plane for TPV210 with 50m

Figure 9. The dip-slip component of slip velocity on a

fault station for TPV210 with 50m

Figure 10. The vertical component of particle velocity at

an off-fault station for TPV210 with 50m

 CUG 2011 Proceedings 7 of 10

 Figures 9 and 10 compares time histories of the dip-slip
component of slip velocity at an on-fault station and the
vertical component of particle velocity at an off-fault station
from the two simulations with 50m discussed above. The
locations of the stations are in the figures. The result from
the current hybrid implementation matches that from the
verified one very well. This indicates that our hybrid
MPI/OpenMP implementation is validated and has the
accurate output results of fault movement and ground
shaking.

5. Performance Analysis and Comparison

In this section, we analyze and compare the performance of
the hybrid MPI/OpenMP finite element earthquake
simulation on quad- and hex-core Cray XT systems. Note
that TPN stands for Threads Per Node.

Figure 8. Function-level performance for TPV210 with
50m on Cray XT4

Figure 9. Function-level performance for TPV210 with
50m on Cray XT5

 Figures 8 and 9 presents the function-level performance
of the hybrid MPI/OpenMP finite element earthquake
simulation with 50m on Cray XT4 and XT5 systems, where

there are seven main functions in the code; the functions
Input and qdct2 are called once, and the functions updatedv,
qdct3, hourglass, faulting and communication are within the
main timestep loop. The function communication means the
MPI communication, and the MPI communication overhead
was measured on each master MPI process for all hybrid
executions.

Figure 10. Relative Speedup for TPV 210 with 50m

Figure 10 shows the relative speedup for TPV210 with 50 m
on Cray XT4 and XT5 systems from Figures 8 and 9, where
we assume that the relative speedup for TPV210 with 50 m
executed on 256 nodes is 256, then calculate the relative
speedup for 384 to 800 nodes. In fact, for 256 nodes, the
hybrid execution on Cray XT4 utilizes 256 MPI processes
with 1 MPI process per node and 4 OpenMP TPN; the
hybrid execution on Cray XT5 utilizes 256 MPI processes
with 1 MPI process per node and 12 OpenMP TPN. We
observe that the hybrid execution on Cray XT4 has better
scalability than that on Cray XT5. From Table 1, Cray XT5
is much faster than Cray XT4. As shown in Figures 8 and 9,
the MPI communication overhead was similar on Cray XT4
and XT5 systems. What really caused the performance
degradation on the Cray XT5 system?

Figure 11. Function-level Performance Comparison for
TPV210 with 50m

 CUG 2011 Proceedings 8 of 10

Table 3. Percentage difference for updatedv (of TPV210
with 50m) on Cray XT4 and XT5

Number
of Nodes

updatedv-
XT4 (s)

updatedv-
XT5 (s)

%
difference

256 176.87 339.29 91.83
384 145.91 321.53 120.36
512 133.83 313.45 134.22
640 128.82 308.36 139.37
768 125.97 305.27 142.34
800 125.89 305.13 142.38

 Figure 11 indicates that four main functions updatadv,
qdct3, hourglass and faulting are the primary source of
performance degradation, where updatadv-XT4 means the
performance of updatedv on Cray XT4, and updatedv-XT5
means the performance of updatedv on Cray XT5, and so
on. The hybrid executions on Cray XT4 and Cray XT5 are
the same except the difference in number of OpenMP
threads per node. We used 4 OpenMP threads per node for
Cray XT4, and 12 OpenMP threads per node for Cray XT5.
How did this impact the performance? From Figure 11, the
function updatedv has the biggest percentage difference up
to 142.38% shown in Table 3. The function updatedv
entails updating velocity and displacement at each time step.
Its code segment is as follows:

 !$omp parallel do default(shared) private(l,j,k)
 do l=1,numnp
 do j=1,ndof
 k=id(j,l)
 if(k > 0) then !only non-boundary,update
 v(j,l) = v(j,l) + brhs(k) * dt
 d(j,l) = d(j,l) + v(j,l) * dt
 endif
 enddo
 enddo
 !$omp end parallel do

 Where numnp is the total number of nodes assigned to
each MPI process. Because we use element-based
partitioning, the total number of nodes are assocated with
the number of elements assigned to each MPI process. From
Table 3, we can observe that using 12 OpenMP threads per
MPI process on Cray XT5 has more OpenMP overhead than
using 4 OpenMP threads per MPI process on Cray XT4.
The similar performance trend occurs for other functions.
This is similar to what we found in [WT11], the number of
OpenMP threads per node for hybrid programs is limited by
number of cores per node in the underlying system, the
underlying system software, as well as the loop size to
which OpenMP parallelization is applied. For strong scaling
scientific applications like our hybrid earthquake simulation,
with increasing number of cores, some parallelization loop

sizes become very small, which may cause more OpenMP
overhead.
 The other reason is related to memory subsystems and
how efficiently they support OpenMP programming. In the
function updatedv, we use the default OpenMP scheduling,
i.e, static scheduling without chunck, which distributes
iterations in blocks of size approximately numnp/12 for
Cray XT5 and numnp/4 for Cray XT4 over all threads in a
round-robin fashion, thus, using 12 OpenMP threads per
MPI process on Cray XT5 caused more OpenMP load
imbalance than using 4 OpenMP threads per MPI process
on Cray XT4.

Figure 12. Relative Speedup for TPV 210 with 100m

Figure 13. Function-level Performance Comparison for
TPV210 with 100m

 Similarly, we find the same performance trend for
TPV210 with 100m on Cray XT4 and XT5 systems shown
in Figures 12 and 13.

6. Conclusions

In this paper, we integrated a 3D mesh generator into the
simulation, and used MPI to parallelize the 3D mesh
generator, illustrated an element-based partitioning scheme
for explicit finite element methods, and based on the

 CUG 2011 Proceedings 9 of 10

partitioning scheme and what we learned from our previous
work, we implemented our hybrid MPI/OpenMP finite
element earthquake simulation code to achieve multiple
levels of parallelism of the code. The experimental results
demonstrated that the hybrid MPI/OpenMP implementation
has the accurate output results and the good scalability on
Cray XT4 and XT5 systems. However, for the benchmark
problem TPV 210, it is interesting to observe that using 12
OpenMP threads per MPI process on Cray XT5 has more
OpenMP overhead than using 4 OpenMP threads per MPI
process on Cray XT4 for the hybrid executions on the same
number of nodes with 1 MPI process per node although
Cray XT5 is much faster than Cray XT4.
 Because we partitioned the entire model domain by the
coordinate along fault strike (e.g., the x-coordinate in a
Cartesian coordinate system), the maximum number of MPI
processes that can be used is bounded by the total number of
nodes along the x-coordinate. This limits the scalability of
the hybrid simulation. We also found that we could not use
any number of MPI processes for the hybrid execution
because load imbalance could cause large MPI
communication overhead. For the future work, we plan to
further improve the memory requirements of the hybrid
simulation code by partitioning the entire model domain in
X-, Y- and Z-dimensions, and consider some load balancing
strategies discussed in [TS01].

Acknowledgements

This work is in part supported by NSF grant CNS-0911023,
the Award No. KUS-I1-010-01 made by King Abdullah
University of Science and Technology (KAUST), and NSF
grant EAR-1015597. The authors would like to
acknowledge National Center for Computational Science at
Oak Ridge National Laboratory for the use of Jaguar and
JaguarPF under DOE INCITE project “Performance
Evaluation and Analysis Consortium End Station”.

About the Authors

 Xingfu Wu has been working at Texas A&M University
as TEES Research Scientist since July 2003. He is a senior
ACM member and an IEEE-CS member. His research
interests are performance evaluation and modeling, parallel
programming environments and tools, parallel scientific
computing, and power and energy analysis in HPC systems.
His monograph: Performance Evaluation, Prediction and
Visualization of Parallel Systems, was published by Kluwer
Academic Publishers (ISBN 0-7923-8462-8) in 1999.
 Benchun Duan is an assistant professor in the
Department of Geology & Geophysics at Texas A&M
University. His research interests include earthquake rupture
dynamics, seismic wave propagation, geomechanical
modeling, and parallel scientific computing. He has been an
active participant in the dynamic code validation exercise

sponsored by the Southern California Earthquake Center
and the U.S. Geological Survey.
 Valerie E. Taylor earned her B.S. in Electrical and
Computer Engineering and M.S. in Computer Engineering
from Purdue University in 1985 and 1986, respectively, and
a Ph.D. in Electrical Engineering and Computer Science
from the University of California, Berkeley, in 1991. From
1991 through 2002, Dr. Taylor was a member of the faculty
in the Electrical and Computer Engineering Department at
Northwestern University. Dr. Taylor joined the faculty of
Texas A&M University as Head of the Dwight Look
College of Engineering's Department of Computer Science
in January of 2003, and is, also, currently a holder of the
Royce E. Wisenbaker Professorship. Her research interests
are in the area high performance computing. She has
authored or co-authored over 100 papers in these areas. Dr.
Taylor is a member of ACM and Senior Member of IEEE-
CS.

References

[AB03] V. Akcelik, J. Bielak, G. Biros, et al., High

Resolution Forward and Inverse Earthquake Modeling
on Terascale Computers, SC03, 2003.

[CM08] Y. Cui, R. Moore, K. Olsen, et al., Toward
Petascale Earthquake Simulations, Acta Geotechnica,
DOI 10.1007/s11440-008-0055-2, 2008.

[DD08] B. Duan and S. M. Day, Inelastic Strain
Distribution and Seismic Radiation From Rupture of a
Fault Kink, J. Geophys. Res., 113, 2008.

[DD10] B. Duan and S. M. Day, Sensitivity study of
physical limits of ground motion at Yucca Mountain,
Bull. Seism. Soc. Am., 100 (6), 2996-3019, 2010.

[DF96] H. Ding and R. Ferraro, An Element-based
Concurrent Partitioned for Unstructured Finite Element
Meshes, IPPS’96, 1996.

[DO06] B. Duan and D. D. Oglesby, Heterogeneous Fault
Stresses From Previous Earthquakes and the Effect on
Dynamics of Parallel Strike-slip Faults, J. Geophys.
Res., 111, 2006.

[DO07] B. Duan and D. D. Oglesby, Nonuniform Prestress
From Prior Earthquakes and the effect on Dynamics of
Branched Fault Systems, J. Geophys. Res., 112, 2007.

[Duan10] B. Duan, Role of initial stress rotations in rupture
dynamics and ground motion: A case study with
Implications for the Wenchuan earthquake, J. Geophys.
Res., 115, 2010.

[HB09] R. A. Harris, M. Barall, et al., The SCEC/USGS
Dynamic Earthquake-rupture Code Verification
Exercise, Seismol. Res. Letts., Vol. 80, No. 1, 2009.

[NCCS] NCCS Jaguar and JaguarPF, Oak Ridge National
Laboratory, http://www.nccs.gov/computing-resources
/jaguar/

[MS02] G. Mahinthakumar and F. Saied, A Hybrid MPI-
OpenMP Implementation of An Implicit Finite-Element
Code on Parallel Architectures, the International

 CUG 2011 Proceedings 10 of 10

Journal of High Performance Computing Applications,
Vol. 16, No. 4, 2002.

[NK03] K. Nakajima, OpenMP/MPI Hybrid vs. Flat MPI
On the Earth Simulator: Parallel Iterative Solvers for
Finite Element Method, ISHPC2003, LNCS 2858, 2003.

[SR08] S. Schlosser, M. Ryan, R. Taborda, J. Lopez, D.
O’Hallaron and J. Bielak, Materialized Community
Groud Models for Large-scale Earthquake Simulation,
SC08, 2008.

[SUVP] The SCEC/USGS Spontanous Rupture Code
Verification Project, http://scecdata.usc.edu/cvws.

[TS01] Valerie Taylor, E. Schwabe, B. Holmer, and M.
Hribar, Balancing Load versus Decreasing
Communication: Parameterizing the Tradeoff, Journal
of Parallel and Distributed Computing, Vol. 61, 567-
580, 2001.

[WD09] Xingfu Wu, Benchun Duan and Valerie Taylor, An
OpenMP Approach to Modeling Dynamic Earthquake
Rupture Along Geometrically Complex Faults on CMP
Systems, ICPP2009 SMECS Workshop, September 22-
25, 2009, Vienna, Austria.

[WD11] Xingfu Wu, Benchun Duan and Valerie Taylor,
Parallel simulations of dynamic earthquake rupture
along geometrically complex faults on CMP systems, J.
Algorithm and Computational Technology, 5 (2), 313-
340, 2011.

[WT09] Xingfu Wu, Valerie Taylor, Charles Lively and
Sameh Sharkawi, Performance Analysis and
Optimization of Parallel Scientific Applications on
CMP Clusters, Scalable Computing: Practice and
Experience, Vol. 10, No. 1, 2009.

[WT11] Xingfu Wu and Valerie Taylor, Performance
Characteristics of Hybrid MPI/OpenMP
Implementations of NAS Parallel Benchmarks SP and
BT on Large-Scale Multicore Supercomputers, ACM
SIGMETRICS Performance Evaluation Review, Vol.
38, Issue 4, March 2011.

