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Abstract: In this paper, we integrate a 3D mesh generator into the simulation, and use MPI to parallelize 
the 3D mesh generator, illustrate an element-based partitioning scheme for explicit finite element methods, 
and based on the partitioning scheme and what we learned from our previous work, we implement our 
hybrid MPI/OpenMP finite element earthquake simulation code in order to not only achieve multiple levels 
of parallelism of the code but also to reduce the communication overhead of MPI within a multicore node 
by taking advantage of the shared address space and on-chip high inter-core bandwidth and low inter-core 
latency. We evaluate the hybrid MPI/OpenMP finite element earthquake rupture simulations on quad- and 
hex-core Cray XT 4/5 systems from Oak Ridge National Laboratory using the Southern California 
Earthquake Center (SCEC) benchmark TPV 210. Our experimental results indicate that the parallel finite 
element earthquake rupture simulation obtains the accurate output results and has good scalability on these 
Cray XT systems.  
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1. Introduction 
 
Numerical modeling of dynamic earthquake rupture 
propagation and seismic wave propagation provides 
seismologists with a powerful tool to discover the 
underlying physics controlling earthquake rupture process 
and resultant near-field ground motion. Figure 1 shows an 
example of how near-field ground motion might be 
controlled by rupture propagation on the fault in the 2008 
Ms 8.0 Wenchuan earthquake [Duan10]. This devastating 
earthquake occurred in Wenchuan county, Sichuan province 
of China on May 12th, 2008, and killed more than 60,000 
people. In Figure 1, the black line is the trace of a shallow 
dipping fault in the model, and circle, triangular, plus, and 
cross signs denote the epicenter, Chengdu, Beichuan, and 
Wenchuan cities, respectively. Distribution of near-field 
ground velocity is strongly affected by the shallow dipping 
fault geometry with higher ground motion on the hanging 

wall side of the fault (below the black line in the figure). 
These numerical models are also necessary to assess 
possible rupture scenarios in future earthquakes in 
earthquake-prone areas such as California, which are critical 
for seismic hazard analysis in these regions. Due to scarcity 
of near-field strong ground motion recordings, strong 
ground motion prediction from future earthquakes largely 
depends on these numerical models.  

Most widely used numerical codes in the field of 
earthquake dynamic source models are based on the finite 
difference method (FDM) [AB03, SR08, CM08]. But it is 
difficult for FDM to deal with complex fault geometry and 
complex geological structures. Duan et al. [DO06, DO07, 
DD08] have been developing and using an explicit dynamic 
finite element method (EQdyna) to implement sequential 
simulations for modeling spontaneous earthquake rupture on 
geometrically complex faults, such as faults with bends, 
stepovers, or branches. However, a sequential simulation 
takes more than 120 hours for relatively small earthquake 
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model datasets for the Wenchuan earthquake (with ~ 46 
million elements) on a SUN server with 4 dual-core AMD 
Opteron processors. It means waiting for five days to verify 
and validate a model. Therefore, it is necessary to parallelize 
the sequential earthquake simulation code. On one hand, the 
parallel earthquake simulation can significantly shorten the 
simulation time by fully utilizing all processor cores. On the 
other hand, the parallel simulation will make it feasible to 
utilize large-scale supercomputing resources from TAMU 
supercomputing facilities and other national labs.  
 

 
    

Figure 1. Snapshots of horizontal ground velocity 
from a simplified dynamic model of the 2008 Ms 8.0 

Wenchuan earthquake [Duan10] 
 
In the finite element method, the data dependence is 

much more irregular than the finite difference method, so it 
is generally more difficult to parallelize. Ding and Ferraro 
[DF96] discussed node-based and element-based 
partitioning strategies, found that main advantage for 
element-based partitioning strategy over node-based 
partitioning strategy was its modular programming approach 
to the development of parallel applications, and developed 
an element-based concurrent partitioner for partitioning 
unstructured finite element meshes on distributed memory 
architectures.  
    Mahinthakumar and Saied [MS02] presented a hybrid 
implementation adapted for an implicit finite-element code 
developed for groundwater transport simulations based on 
the original MPI code using a domain decomposition 
strategy, and added OpenMP directives to the code to use 
multiple threads within each MPI process on SMP clusters. 
Nakajima [NK03] presented a parallel iterative method in 
GeoFEM for finite element method which was node-based 
with overlapping elements on the Earth Simulator, and 
explored a three-level hybrid parallel programming model, 
including message passing (MPI) for inter-SMP node 
communication, loop directives by OpenMP for intra-SMP 
node parallelization and vectorization for each processing 
element.  

In our previous work [WD09, WD11], we used OpenMP 
to parallelize a sequential earthquake simulation code 

EQdyna for modeling spontaneous dynamic earthquake 
rupture along geometrically complex faults, and based on 
what we learned from the OpenMP implementation, we 
developed an initial hybrid MPI/OpenMP implementation of 
the sequential earthquake simulation code EQdyna with a 
3D mesh as an input, which was generated by a 3D mesh 
generator separately before the simulation execution. In this 
paper, we integrate the 3D mesh generator into the 
simulation, and use MPI to parallelize the 3D mesh 
generator, illustrate an element-based partitioning scheme 
for explicit finite element methods, and evaluate its 
performance on Quad- and Hex-core Cray XT systems at 
Oak Ridge National Laboratory [NCCS] using the Southern 
California Earthquake Cente (SCEC) benchmark TPV 210. 
The experimental results indicate that the hybrid 
MPI/OpenMP implementation has the accurate output 
results and the good scalability on these systems.  

The remainder of this paper is organized as follows. 
Section 2 illustrates an element-based partitioning scheme, 
discusses our hybrid MPI/OpenMP parallel finite element 
Earthquake rupture simulations in detail. Section 3 describes 
the architecture and memory hierarchy of quad- and hex-
core Cray XT systems used in our experiments. Section 4 
discusses the benchmark problem TPV210 and verifies our 
simulation results. Section 5 evaluates and explores 
performance characteristics of our hybrid MPI/OpenMP 
implementation, and presents the experimental results. 
Section 6 concludes this paper. 
 
2. Hybrid MPI/OpenMP Parallel Finite 
Element Earthquake Rupture Simulations 
 
In this section, based on what we learned from our previous 
work [WD09, WD11], we integrate a 3D mesh generator 
into the simulation, and use MPI to parallelize the 3D mesh 
generator, illustrate an element-based partitioning scheme 
for explicit finite element methods, and discuss how 
efficiently to use hybrid MPI/OpenMP implementations in 
the earthquake simulations for not only achieving multiple 
levels of parallelism but also reducing the communication 
overhead of MPI within a multicore node, by taking 
advantage of the globally shared address space and on-chip 
high inter-core bandwidth and low inter-core latency on  
large-scale multicore systems.  

 
2.1 Mesh Generation and Model Domain 
Partitioning 
In our previous work [WD09, WD11], we developed an 
initial hybrid MPI/OpenMP implementation of the 
sequential earthquake simulation code EQdyna with a 3D 
mesh as an input, which was generated by a 3D mesh 
generator separately before the simulation execution. As we 
discussed in our previous work, the earthquake simulation 
code is memory bound, when the number of elements 



 CUG 2011 Proceedings 3 of 10 

increases, the required system memory for storing large 
arrays associated with the entire model domain increases 
dramatically. In order to overcome the limitation, in this 
paper, we integrate the 3D mesh generator into the 
simulation, and use MPI to parallelize the 3D mesh 
generator.  

Figure 2. Schematic diagram to show mesh and model 
domain partitioning 

 
    To parallelize the 3D mesh generator, based on the 
number of MPI processes used, we partition the entire 
model domain by the coordinate along fault strike (e.g., the 
x-coordinate in a Cartesian coordinate system) shown in 
Figure 2 so that we can define small arrays for each MPI 
process independently. Figure 2 gives a schematic diagram 
for the 3D mesh partitioning. Thus, memory requirements 
by large arrays that are associated with the entire model 
domain in a previous version of the code [WD11] 
significantly decrease.  
    To facilitate message passing between adjacent MPI 
processes, based on the partitions of the entire model 
domain by the coordinate along fault strike, during the mesh 
generation step, we create a sub-mesh for each MPI process 
and record shared boundary nodes between two adjacent 
MPI processes. This converts reading initial large input 
mesh data to computing and generating small mesh data for 
each MPI process. Note that, in this partitioning scheme, the 
maximum number of MPI processes that can be used is 
bounded by the total number of nodes along the x-
coordinate.  
 
2.2 Element-based Partitioning 
 
In our explicit finite element earthquake simulation, we 
primarily use trilinear hexahedral elements to discretize a 
3D model for computational efficiency, with wedge-shaped 
elements along the fault to characterize dipping fault 
geometry as illustrated in Figure 2. We use a large buffer 
region with increasingly coarser element sizes away from 

the fault to prevent reflections from artificial model 
boundaries from contaminating examined phenomena. 

 

 
 

Figure 3.  2D geometry for the EQdyna: 12 elements 
(boxes) and each element with 4 nodes (circles)  

 

 
 

Figure 4.  Element-based Partitioning Scheme 
 
    For simplicity, we discuss our partitioning scheme with a 
hypothetical 2D mesh shown in Figure 3, where there are 12 
elements (boxes) and each element has four nodes (circles) 
adjacent to it. We propose an element-based partitioning 
scheme because most time-consuming computation in the 
earthquake rupture simulation code is element-based. 
Within one timestep, element contribution (both internal 
force and hourglass force) to its nodes' nodal force is first 
calculated. Then, contributions to a node's nodal force from 
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all of its adjacent elements are assembled. For instance, the 
nodal force at node 1 only involves element 1, while the 
nodal force at node 5 involves elements 1, 2, 3, and 4. The 
nodal force at node 5 is the sum of contributions from all 
these four elements.  
    Figure 4 illustrates the element-based partitioning scheme 
for the finite element method, where the 2D domain is split 
into three components. In this scheme, we essentially 
partition the model domain based on element numbers. Each 
component consists of four elements and the nodes adjacent 
to them. A node that lies on the boundary between two 
components is called a boundary node. For example, nodes 
7, 8 and 9 are the boundary nodes between the first two 
components, and nodes 13, 14 and 15 are the boundary 
nodes between the last two components. To update the 
nodal force at a boundary node such as node 8, it needs 
contributions from elements 3 and 4 in the first component 
and those from elements 5 and 6 in the second component. 
This requires the data exchange between the first two 
components.  
    Similarly, the above element-based partitioning scheme 
can be extended to large 3D datasets. The element-based 
partitioning method described in this section is applicable to 
more irregular meshes as well. 
 
2.3 Hybrid Implementations 
 
Multicore clusters provide a natural programming paradigm 
for hybrid programs. Generally, MPI is considered optimal 
for process-level coarse parallelism and OpenMP is optimal 
for loop-level fine grain parallelism. Combining MPI and 
OpenMP parallelization to construct a hybrid program is not 
only to achieve multiple levels of parallelism but also to 
reduce the communication overhead of MPI at the expense 
of introducing OpenMP overhead due to thread creation and 
increased memory bandwidth contention. Therefore, we use 
hybrid MPI/OpenMP to parallelize the finite element code 
for exploring the parallelism of the code at node level 
(OpenMP) and the parallelism of the code between nodes 
(MPI) so that the parallel earthquake simulation can be run 
on most supercomputers. Note that, in the hybrid 
MPI/OpenMP implementations, we separate MPI regions 
from OpenMP regions, and OpenMP threads cannot call 
MPI subroutines.  
    Figure 5 shows the parallelism at MPI and OpenMP 
levels within one timestep for the hybrid implementation of 
the earthquake simulation. As we discussed in the previous 
section, using the element-based partitioning scheme, we 
can partition the 2D mesh geometry into three components, 
and dispatch each component to a MPI process for MPI 
level parallelism. So each MPI process is in charge of four 
elements and the nodes adjacent to them. Because the 
earthquake simulation is memory-bound, each MPI process 
is created on a different node as illustrated in Figure 5.  MPI 
process 0 is run on Node 0; process 1 is on Node 1; process 
2 is on Node2. On each node, OpenMP level parallelism can 

be achieved by using element-based partitioning scheme and 
OpenMP. Each MPI process (the master thread) forks 
several new threads to take advantage of the shared address 
space and on-chip high inter-core bandwidth and low inter-
core latency on the node. 
 

 
 

Figure 5.  Parallelism at MPI and OpenMP levels within 
one timestep 

 
    To manipulate and update nodal forces at these boundary 
nodes, it requires the data exchange between two MPI 
processes via message passing. For each boundary node 
such as node 7 shown in Figure 5, to update its nodal force 
at the end of each timestep, we sum the nodal force at node 
7 from process 0 and the nodal force at node 7 from process 
1, then use the sum to update the nodal forces at node 7 for 
the processes 0 and 1.  
    To implement updating the nodal force at each boundary 
node at the end of each timestep, we propose the following 
algorithm to deal with the problem. 
 
Algorithm: Update the nodal forces at boundary nodes: 
 
Step 1:  Partition the initial data mesh based on the number 

of MPI processes to ensure load balancing, get the 
information about shared boundary nodes between MPI 
processes i and i+1 from the mesh generator discussed in 
Section 2.1, and allocate a temporal array btmp with the 
nodal forces at the shared boundary nodes,  

Step 2: The MPI process i sends the array btmp to its 
neighbor process i+1 using MPI_Sendrecv, 
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Step 3: The MPI process i+1 receives the array from 
process i using MPI_Sendrecv. For each shared 
boundary node, it sums the nodal force from the array 
and the local nodal force at the shared boundary node, 
then assigns the summation to the nodal force at the 
shared node locally,  

Step 4: The MPI process i+1 updates the array locally, and 
sends the updated array back to the MPI process i, 

Step 5: The MPI process i receives the updated array and 
update the nodal forces at the shared nodes locally, and 
deallocates the temporal array at the end of the timestep 

Step 6:  Repeat the above Steps 1-5 for the next timestep. 
     
    The algorithm implements the straightforward data 
exchanges illustrated in Figure 5, and it is efficient because 
of sending/receiving smaller messages. This can simplify 
the programming efforts and reduce the communication 
overhead. 
 
3 Experimental Platforms 
 
In this paper, we conduct our experiments using Jaguar 
(Cray XT5 and XT4) from Oak Ridge National Laboratory 
[NCCS]. Table 1 shows their specifications and the same 
compilers used for all experiments. All systems have private 
L1 and L2 caches and shared L3 cache per node. Jaguar is 
the primary system in the ORNL Leadership Computing 
Facility (OLCF). It consists of two partitions: XT5 and XT4 
partitions shown in Figure 6. 
 

Table 1. Specifications of quad- and hex-core Cray XT 
Systems 

Configurations JaguarPF 
(XT5) 

Jaguar 
(XT4) 

Total Cores 224,256 31,328 
Total Nodes 18,688 7,832 

Cores/Socket 6 4 
Cores / Node 12 4 

CPU type AMD 
2.6GHz hex-

core 

AMD 
2.1GHz 

quad-core 
Memory/Node 16GB 8GB 

L1 Cache/Core, 
private 

64 KB 64 KB 

L2 Cache/Core, 
private 

512KB 512KB 

L3 Cache/Socket, 
shared 

6MB 2MB 

Compiler ftn ftn 
Compiler Options -O3 -

mp=nonuma 
-fastsse 

-O3 -
mp=nonuma 

-fastsse 
 
 

 
 

Figure 6. Jaguar and JaguarPF System Architecture 
[NCCS] 

 

 
Figure 7. AMD hex-core Opteron chip architecture 

[NCCS] 
 

The Jaguar XT5 partition (JaguarPF) contains 18,688 
compute nodes in addition to dedicated login/service nodes. 
Each compute node contains dual hex-core AMD Opteron 
2435 (Istanbul shown in Figure 7) processors running at 
2.6GHz, 16GB of DDR2-800 memory, and a SeaStar 2+ 
router. The resulting partition contains 224,256 processing 
cores, 300TB of memory, and a peak performance of 2.3 
petaflop/s. The Jaguar XT4 partition (Jaguar) contains 7,832 
compute nodes in addition to dedicated login/service nodes. 
Each compute node contains a quad-core AMD Opteron 
1354 (Budapest) processor running at 2.1 GHz, 8 GB of 
DDR2-800 memory, and a SeaStar2 router. The resulting 
partition contains 31,328 processing cores, more than 62 TB 
of memory, over 600 TB of disk space, and a peak 
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performance of 263 teraflop/s. The SeaStar2+ router (XT5 
partition) has a peak bandwidth of 57.6GB/s, while the 
SeaStar2 router (XT4 partition) has a peak bandwidth of 
45.6GB/s. The routers are connected in a 3D torus topology, 
which provides an interconnect with very high bandwidth, 
low latency, and extreme scalability. 
 
4. Result Verification and Benchmark 
Problems 
 
4.1 Benchmark Problem TPV210 
 
To validate the hybrid MPI/OpenMP earthquake simulation 
code, we apply it to a SCEC/USGS benchmark problem 
TPV210, which is the convergence test of the benchmark 
problem TPV10 [HB09, SUVP]. In TPV10, a normal fault 
dipping at 60° (30 km long along strike and 15 km wide 
along dip) is embedded in a homogeneous half space. Pre-
stresses are depth dependent and frictional properties are set 
to result in a subshear rupture. This benchmark problem is 
motivated by ground motion prediction at Yucca Mountain, 
Nevada, which is a potential high-level radioactive waste 
storage site [DD10]. In TPV10, modelers are asked to run 
simulations at an element size of 100 m on the fault surface. 
In TPV210, we conduct the convergence test of the solution 
by simulating the same problem at a set of element sizes, 
i.e., 200 m, 100 m, 50 m, 25 m, 12.5 m, and so on. Here, we 
work on 100 m and 50 m element sizes. Table 2 summarizes 
model parameters for the two element sizes. Because the 
number of elements with a discretization varies a little bit 
with the number of MPI processes used, Table 2 only gives 
a rough estimate of this number. In the table, nxt is the node 
number along the x-coordinate in a sequential simulation, 
which limits how many MPI processes one can use in a 
hybrid parallel simulation. 
 

Table 2. Model parameters for two element sizes 
 

Parameters TPV210-100m TPV210-50m 
Element	  size	   100	  m	   50	  m	  
Total	  elements	  	   ~	  25,000,000	   ~100,000,000	  
Time	  step	  (sec)	   0.008	   0.004	  

Termination	  Time	  
(seconds)	  

15	   15	  

nxt	   477	   829	  
 

4.2 Result Verifications 

Figure 8 show the rupture time (in seconds) contours on the 
60° dipping fault plane. Red star denotes the hypocenter of 
simulated earthquakes. Results from two simulations are 
plotted in the figure. One (black) is the result from a 
previous run with 50 m element size that was verified in the 

SCEC/USGS code validation exercise [SUVP]. The other is 
the result from a run performed in this study on JaguarXT5 
with 50 m element size using 256 MPI processes. These two 
results essentially overlap, indicating our current hybrid 
implementation gives accurate results. 
 

 
 

Figure 8. Rupture time contours on the dipping fault 
plane for TPV210 with 50m 

 
Figure 9. The dip-slip component of slip velocity on a 

fault station for TPV210 with 50m 

 
Figure 10. The vertical component of particle velocity at 

an off-fault station for TPV210 with 50m 



 CUG 2011 Proceedings 7 of 10 

 
    Figures 9 and 10 compares time histories of the dip-slip 
component of slip velocity at an on-fault station and the 
vertical component of particle velocity at an off-fault station 
from the two simulations with 50m discussed above. The 
locations of the stations are in the figures. The result from 
the current hybrid implementation matches that from the 
verified one very well. This indicates that our hybrid 
MPI/OpenMP implementation is validated and has the 
accurate output results of fault movement and ground 
shaking. 
 
5. Performance Analysis and Comparison 
      
In this section, we analyze and compare the performance of 
the hybrid MPI/OpenMP finite element earthquake 
simulation on quad- and hex-core Cray XT systems. Note 
that TPN stands for Threads Per Node.  
 

 
 

Figure 8. Function-level performance for TPV210 with 
50m on Cray XT4 

 

 
 

Figure 9. Function-level performance for TPV210 with 
50m on Cray XT5 

 
    Figures 8 and 9 presents the function-level performance 
of the hybrid MPI/OpenMP finite element earthquake 
simulation with 50m on Cray XT4 and XT5 systems, where 

there are seven main functions in the code; the functions 
Input and qdct2 are called once, and the functions updatedv, 
qdct3, hourglass, faulting and communication are within the 
main timestep loop. The function communication means the 
MPI communication, and the MPI communication overhead 
was measured on each master MPI process for all hybrid 
executions.  
 

 
 

Figure 10. Relative Speedup for TPV 210 with 50m 
 
Figure 10 shows the relative speedup for TPV210 with 50 m 
on Cray XT4 and XT5 systems from Figures 8 and 9, where 
we assume that the relative speedup for TPV210 with 50 m 
executed on 256 nodes is 256, then calculate the relative 
speedup for 384 to 800 nodes. In fact, for 256 nodes, the 
hybrid execution on Cray XT4 utilizes 256 MPI processes 
with 1 MPI process per node and 4 OpenMP TPN; the 
hybrid execution on Cray XT5 utilizes 256 MPI processes 
with 1 MPI process per node and 12 OpenMP TPN. We 
observe that the hybrid execution on Cray XT4 has better 
scalability than that on Cray XT5. From Table 1, Cray XT5 
is much faster than Cray XT4. As shown in Figures 8 and 9, 
the MPI communication overhead was similar on Cray XT4 
and XT5 systems. What really caused the performance 
degradation on the Cray XT5 system? 
 

 
 

Figure 11. Function-level Performance Comparison for 
TPV210 with 50m 
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Table 3. Percentage difference for updatedv (of TPV210 
with 50m) on Cray XT4 and XT5 

 
Number 
of Nodes 

updatedv-
XT4 (s) 

updatedv-
XT5 (s) 

% 
difference 

256 176.87 339.29 91.83 
384 145.91 321.53 120.36 
512 133.83 313.45 134.22 
640 128.82 308.36 139.37 
768 125.97 305.27 142.34 
800 125.89 305.13 142.38 

 
    Figure 11 indicates that four main functions updatadv, 
qdct3, hourglass and faulting are the primary source of 
performance degradation, where updatadv-XT4 means the 
performance of updatedv on Cray XT4, and updatedv-XT5 
means the performance of updatedv on Cray XT5, and so 
on. The hybrid executions on Cray XT4 and Cray XT5 are 
the same except the difference in number of OpenMP 
threads per node. We used 4 OpenMP threads per node for 
Cray XT4, and 12 OpenMP threads per node for Cray XT5. 
How did this impact the performance? From Figure 11, the 
function updatedv has the biggest percentage difference up 
to 142.38%  shown in Table 3. The function updatedv 
entails updating velocity and displacement at each time step. 
Its code segment is as follows: 
 
   !$omp parallel do default(shared) private(l,j,k) 
      do l=1,numnp 
        do j=1,ndof 
          k=id(j,l) 
          if(k > 0) then        !only non-boundary,update 
            v(j,l) = v(j,l) + brhs(k) * dt 
            d(j,l) = d(j,l) + v(j,l) * dt 
          endif 
        enddo 
      enddo 
     !$omp end parallel do 
 
    Where numnp is the total number of nodes assigned to 
each MPI process. Because we use element-based 
partitioning, the total number of nodes are assocated with 
the number of elements assigned to each MPI process. From 
Table 3,  we can observe that using 12 OpenMP threads per 
MPI process on Cray XT5 has more OpenMP overhead than 
using 4 OpenMP threads per MPI process on Cray XT4. 
The similar performance trend occurs for other functions.  
This is similar to what we found in [WT11], the number of 
OpenMP threads per node for hybrid programs is limited by 
number of cores per node in the underlying system, the 
underlying system software, as well as the loop size to 
which OpenMP parallelization is applied. For strong scaling 
scientific applications like our hybrid earthquake simulation, 
with increasing number of cores, some parallelization loop 

sizes become very small, which may cause more OpenMP 
overhead.  
    The other reason is related to memory subsystems and 
how efficiently they support OpenMP programming. In the 
function updatedv, we use the default OpenMP scheduling, 
i.e, static scheduling without chunck, which distributes 
iterations in blocks of size approximately numnp/12 for 
Cray XT5 and numnp/4 for Cray XT4 over all threads in a 
round-robin fashion, thus, using 12 OpenMP threads per 
MPI process on Cray XT5 caused more OpenMP load 
imbalance than using 4 OpenMP threads per MPI process 
on Cray XT4.  
 

 
 

Figure 12. Relative Speedup for TPV 210 with 100m 
 
 

 
 

Figure 13. Function-level Performance Comparison for 
TPV210 with 100m 

 
    Similarly, we find the same performance trend for 
TPV210 with 100m on Cray XT4 and XT5 systems shown 
in Figures 12 and 13. 
 
6. Conclusions 
 
In this paper, we integrated a 3D mesh generator into the 
simulation, and used MPI to parallelize the 3D mesh 
generator, illustrated an element-based partitioning scheme 
for explicit finite element methods, and based on the 
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partitioning scheme and what we learned from our previous 
work, we implemented our hybrid MPI/OpenMP finite 
element earthquake simulation code to achieve multiple 
levels of parallelism of the code. The experimental results 
demonstrated that the hybrid MPI/OpenMP implementation 
has the accurate output results and the good scalability on 
Cray XT4 and XT5 systems. However, for the benchmark 
problem TPV 210, it is interesting to observe that using 12 
OpenMP threads per MPI process  on Cray XT5 has more 
OpenMP overhead than using 4 OpenMP threads per MPI 
process on Cray XT4 for the hybrid executions on the same 
number of nodes with 1 MPI process per node although 
Cray XT5 is much faster than Cray XT4. 
    Because we partitioned the entire model domain by the 
coordinate along fault strike (e.g., the x-coordinate in a 
Cartesian coordinate system), the maximum number of MPI 
processes that can be used is bounded by the total number of 
nodes along the x-coordinate. This limits the scalability of 
the hybrid simulation. We also found that we could not use 
any number of MPI processes for the hybrid execution 
because load imbalance could cause large MPI 
communication overhead. For the future work, we plan to 
further improve the memory requirements of the hybrid 
simulation code by partitioning the entire model domain in 
X-, Y- and Z-dimensions, and consider some load balancing 
strategies discussed in [TS01]. 
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