Authoring User-Defined Domain Maps in Chapel*

Bradford L. Chamberlain Sung-Eun Choi

Steven J. Deitz David Iten Vassily Litvinov

Cray Inc.
chapel_info@cray.com

Abstract

One of the most promising features of the Chapel parallel programming language from Cray Inc. is its support for user-defined
domain maps, which give advanced users control over how arrays are implemented. In this way, parallel programming experts
can focus on details such as how array data and loop iterations are mapped to a target architecture’s nodes, while end-users can
benefit from their efforts when using Chapel’s high-level global array operations. Chapel’s domain maps also support control over
finer-grained decisions like what memory layout to use when storing an array’s elements on each node. In this paper, we provide
an introduction to Chapel’s user-defined domain maps and summarize the framework for specifying them.

1 Introduction

Chapel [13, 7] is a parallel programming language being
developed by Cray Inc. with the goal of improving pro-
grammer productivity compared to conventional program-
ming notations for HPC, like MPI, OpenMP, UPC, and
CAF. Chapel’s goal is to greatly improve upon the degree of
programmability and generality provided by current tech-
nologies, while supporting performance and portability that
is similar or better. Chapel has a portable implementation
that is available under the BSD license and is being devel-
oped as an open-source project at SourceForge'.

One of Chapel’s most attractive features for improving
productivity is its support for global-view arrays, which
permit programmers to apply natural operations to an array
even though its implementation may potentially span mul-
tiple distributed memory nodes. Unlike previous languages
that have supported global-view arrays (e.g., HPF, ZPL,
UPC), Chapel allows advanced users to author their own
parallel array implementations. This permits them to spec-
ify the array’s distribution across nodes, its layout within
a node’s memory, its parallelization strategy, and other im-
portant details.

In Chapel, these user-defined array implementations are
known as domain maps because they map a domain—
Chapel’s representation of an array’s index set—down to
the target machine. Domain maps that target a single shared
memory segment are known as layouts while those that
target multiple distinct memory segments are referred to
as distributions. All of Chapel’s domain maps are writ-
ten within Chapel itself. As a result, they can be imple-

*This material is based upon work supported by the Defense Advanced
Research Projects Agency under its Agreement No. HR0011-07-9-0001.
Thttp://sourceforge.net/projects/chapel/

mented using Chapel’s control-oriented productivity fea-
tures, including task parallelism, locality control, iterator
functions, type inference, object-orientation, and generic
programming.

In previous work, we introduced Chapel’s philosophy for
user-defined distributions and provided a very high-level
view of the software framework used to specify them [10].
In this paper, we describe the framework at the next level
of detail in order to provide a better picture of what is in-
volved in authoring a domain map. For even more detail,
the reader is referred to the documentation for domain maps
within the Chapel release itself.

This paper is organized as follows: The next section pro-
vides a brief summary of our goals for supporting user-
defined domain maps. Following that, we provide a sum-
mary of related work, contrasting our approach with previ-
ous efforts to support global-view arrays and user-defined
distributions. Section 4 provides a brief introduction of
Chapel to support and motivate the domain map frame-
work. The detailed description of our framework for defin-
ing user-defined domain maps is given in Section 5. Sec-
tion 6 describes our implementation status while Section 7
summarizes and lists future work.

2 Goals of This Work

The overarching goal of this work is for the Chapel lan-
guage to support a very general and powerful set of dis-
tributed global-view array types, while also providing ad-
vanced users with the ability to implement those arrays in
whatever ways they see fit. We adopt a language-based
solution both for the improved syntax it supports and to ex-
pose optimization opportunities to the compiler.

A well-written domain map should support a plug-and-
play quality in which one distribution or layout can be sub-
stituted for another in a line or two of declaration code.
Meanwhile, any global-view operations on the arrays them-
selves can remain unchanged, thereby insulating the spec-
ification of the parallel algorithm from its implementation
details. As a simple motivating example, consider the fol-
lowing STREAM Triad kernel, which computes a scaled
vector addition:

const D = [1..n]; // the problem space

var A, B, C: [D] real; // the three vectors

A = B + alpha * C; // the computation

As written here, the domain D representing the problem
space is declared without any domain map specification.
As a result, it is implemented using Chapel’s default lay-
out. This causes arrays A, B, and C to be allocated using
memory local to the current node. Moreover, the parallel
computation itself will be implemented using the processor
cores of that node. Thus, we have written a Chapel program
suitable for desktop multicore programming.

To target a large-scale distributed-memory system, we
can simply change the domain’s value to include a distribu-
tion:

const D = [l..n] dmapped Cyclic(startIdx=1);
var A, B, C: [D] real; // the three vectors

A = B + alpha * C; // the computation

Here, we specify that the domain’s indices should
be mapped to the target architecture (dmapped) using
Chapel’s standard Cyclic distribution. This will deal its
indices out to the nodes on which the program is execut-
ing in a round-robin manner, starting from the specified in-
dex, 1. The array declaration and computation lines need
not change since they are independent of the implemen-
tation details. Finally, we can switch to another distribu-
tion simply by changing the domain map. For example, a
Block distribution could be specified as follows:

const D = [1l..n] dmapped Block([1l..n]);
var A, B, C: [D] real; // the three vectors

A = B + alpha * C; // the computation

Because of this plug-and-play characteristic, Chapel
supports a separation of roles: Expert HPC programmers
can wrestle with the details of implementing efficient paral-
lel data structures within the domain map framework itself.
Meanwhile, parallel-aware end-users benefit from their
efforts by writing parallel computations using Chapel’s
high-level notation, without having to understand (or even
look at) the low-level implementation details. While this
STREAM Triad example is quite simple, the same prin-

ciple applies to more complex parallel operations as well,
such as loops, stencil computations, reductions, etc.

Another important theme in this work is that all of
Chapel’s standard distributions and layouts will be imple-
mented using the same framework that a typical Chapel
programmer would use. We take this approach as a means
of ensuring that users can write user-defined domain maps
with good performance. It also safeguards against creating
a performance cliff when moving from the set of standard
domain maps to a user-defined one.

Finally, whereas previous distributed array capabilities
have been fairly dimensional and static in nature, we want
to ensure that our framework can support very general,
holistic, and dynamic implementations of distributed index
sets and arrays. Motivating examples include multidimen-
sional recursive bisections, graph partitioning algorithms,
and arrays supporting dynamic load balancing.

For a more detailed description of our motivating
themes, as well as samples of distributions that our frame-
work was designed to support, please refer to our previous
paper [10].

3 Related Work

Chapel’s global-view arrays are most closely related to
those provided by ZPL [28, 29] and the High Performance
Fortran family of languages [22, 23, 18, 11, 1]. Each of
these languages supports the concept of an array type that
is declared and operated upon as though it is a single log-
ical array even though its implementation may distribute
the elements among the disparate memories of multiple
distributed-memory nodes. Chapel extends the support for
dense and sparse rectangular arrays in HPF/ZPL to include
associative arrays that map from arbitrary value types to
array elements. Chapel also supports unstructured arrays
that are designed for compactly computing over pointer-
based data structures. Chapel supports a language concept
for representing first-class index sets like ZPL’s region but
calls it a domain. As in ZPL, domains serve as the founda-
tion for defining and operating on global-view arrays.

HPF and ZPL were both fairly restricted in terms of
the distributions they supported. HPF supported a small
set of regular, per-dimension distributions—Block, Cyclic,
and Block-Cyclic—while ZPL traditionally supported only
multidimensional Block distributions. In both cases, the
distributions were defined by the language and imple-
mented directly in its compiler and runtime. This permitted
the language implementors to optimize for their distribu-
tions, yet did not provide any means of specifying more
general distributions or data structures. In contrast, Chapel
provides a general framework for defining distributed ar-
rays and implements all of its standard distributions using
the same framework that is available to end-users.

Subsequent work in both HPF and ZPL sought to im-
prove upon their limitations. HPF-2 added support for in-
direct distributions that could support arbitrary mappings
of data to processors [35, 20], though arguably at great cost
in space and efficiency. Other extensions to HPF proposed
support for distributed compressed sparse row (CSR) ar-
rays by having the programmer write code in terms of dis-
tributed versions of the underlying 1D data vectors [32].
Late in the ZPL project, a lattice of distribution types was
designed to extend ZPL’s generality [15]; however, only a
few of these distributions were ever implemented. None of
these efforts provide as much generality and flexibility as
Chapel’s user-defined domain map framework, which is de-
signed to support extremely general array implementations
via a functional interface rather than a predefined mapping
interface within the language itself.

Unified Parallel C (UPC), a parallel dialect of C, also
supports language-based global-view arrays [17], yet it is
limited to 1D arrays distributed in a block-cyclic manner.
Unlike HPF and ZPL, UPC also supports global pointers
that give users the ability to build their own general dis-
tributed data structures. This is similar to Chapel’s sup-
port for programming at lower levels of the language [6],
yet without the ability to build up global-view abstractions
supported by the language’s syntax and compiler. UPC also
has the disadvantage of only supporting SPMD-style paral-
lelism compared to Chapel’s general multithreaded paral-
lelism.

Unlike UPC, the two other traditional partitioned global
address space (PGAS) languages, Co-Array Fortran (CAF)
and Titanium, provide multidimensional arrays [25, 34].
However, by our definition their arrays are not global-view
since users work with distributed arrays as an array of local
per-process arrays rather than a single logical whole. Re-
cent work by Numrich focuses on creating better abstrac-
tions for global arrays in CAF by building abstract data
types that wrap co-arrays, providing a more global-view
abstraction [26]. While this approach bears some similar-
ity to ours, our distributions differ in that they are defined
by the Chapel language and therefore known to the com-
piler and runtime, supporting analysis and optimization.
We consider this knowledge key for providing very general
operations on global-view arrays without severely compro-
mising performance.

Within the HPC community, a number of interesting
data distributions and partitioning schemes have been im-
plemented throughout the years, the most successful of
which have typically been libraries or standalone sys-
tems [3, 4, 21, 19, 14, 33]. Our goal is not to supplant such
technologies, but rather to provide a framework in which
they can be used to implement global-view data structures
supporting language-based operations. If our approach is
successful, not only should the domain map framework
be rich enough to support all of these data structures, but

@ Domain Maps D
Data Parallelism

Task Parallelism

Base Language

Locality Control

Target Machine

Figure 1: A notional diagram of Chapel’s multiresolution
design.

Chapel itself should serve as an ideal language for imple-
menting next-generation versions of these technologies.

4 Chapel Overview

This section provides a brief overview of Chapel as context
for this work. For further information on Chapel, the reader
is referred to other language overviews [13, 31, 7].

4.1 Language Overview

Chapel was designed with a multiresolution approach in
which higher-level features such as parallel arrays and do-
main maps are built in terms of lower-level features that
support task parallelism, locality control, iteration, and tra-
ditional language concepts [6]. The goal of this approach
is to permit programmers to use high-level abstractions
for productivity while also permitting them to drop down
closer to the machine when required for reasons of con-
trol or performance. This is in stark contrast to previous
global-view languages like HPF and ZPL in which users
had little recourse if the supported set of arrays and distri-
butions failed them. In particular, these languages did not
provide any lower-level capabilities for dynamically creat-
ing new parallel tasks, nor for having the existing parallel
tasks take divergent code paths, create arbitrary per-node
data structures, and so forth.

In contrast, Chapel has been designed and implemented
in a layered manner in which the higher-level features are
implemented in terms of the lower-level ones. Figure 1
provides a notional view of Chapel’s language layers, each
of which is summarized in the following paragraphs.

Locality Features At the lowest level of Chapel’s con-
cept stack are locality-oriented features. Their goal is to
permit users to reason about the placement and affinity
of data and tasks on a large-scale distributed-memory ma-
chine. The central concept in this area is the locale type.

A locale abstractly represents a unit of the target architec-
ture that supports processing and storage. On conventional
machines, a locale is typically defined to be a single node,
its memory, and its multicore/SMP processors. Chapel pro-
grammers can reference a built-in array of locales that rep-
resents the compute resources on which their program is
running. They can make queries about the compute re-
sources via a number of methods on the locale type. In
addition, they can control the placement of variables and
tasks on the machine’s nodes using on-clauses, either in an
explicit or data-driven manner.

Base Language On top of the locality layer sits the se-
quential base language with support for generic program-
ming, static type inference, ranges, tuple types, CLU-style
iterators [24], and a rich compile-time language for meta-
programming. The base language supports object-oriented
programming (OOP), function overloading, and rich argu-
ment passing capabilities including name-based argument
matching and default values. All of these features are em-
bedded in an imperative, block-structured language with
support for fairly standard data types, expressions, and
statements. Although our user-defined domain map frame-
work could be implemented using existing OOP languages
such as Java, C#, or C++, we believe that Chapel’s base
language features support the complexity of implementing
domain maps far more productively.

Task Parallelism The next level contains features for
task parallelism to support the creation and synchronization
of parallel tasks. Chapel tasks can be created in an unstruc-
tured manner using the begin keyword. Common cases
for supporting groups of tasks are supported by structured
cobegin and coforall statements. Chapel tasks syn-
chronize in a data-oriented manner, either using synchro-
nization variables that support full/empty semantics [2] or
using transactional sections that can be implemented using
hardware or software techniques [30]. Unlike most conven-
tional parallel programming models that rely on a cooperat-
ing executables model of parallelism, Chapel tasks are very
flexible, supporting dynamic and nested parallelism.

Data Parallelism and Domain Maps Toward the top of
Chapel’s feature stack are data parallel concepts, which are
based on Chapel’s arrays (described in detail in the fol-
lowing subsection). Chapel’s data parallel operations in-
clude parallel loops over arrays and iteration spaces, re-
duction and scan operations, and whole-array computations
through the promotion of scalar functions and operators.
The arrows in Figure 1 indicate an interdependent relation-
ship between Chapel’s domain maps and arrays in that all
Chapel arrays are implemented in terms of domain maps,
most of which are themselves implemented using simpler

domains and arrays. To break this cycle, Chapel supports
a default array layout that is implemented in terms of a C-
style primitive data buffer.

4.2 Arrays, Domains, and Domain Maps

A Chapel array is a one-to-one mapping from an index set
to a set of variables of arbitrary but homogeneous type.
Chapel supports dense or strided rectangular arrays that
provide capabilities like those of Fortran 90. It also sup-
ports associative arrays, whose indices are arbitrary values,
in order to support dictionary or key-value collections. A
third class of array supports unstructured data aggregates
such as sets and unstructured graphs. All of these array
types are designed to support sparse varieties in which a
large subset of the indices map to an implicitly replicated
value (often zero in practice).

Chapel arrays are defined using a domain—a first-class
language concept representing an index set. Chapel’s do-
mains are a generalization of the region concept pioneered
by the ZPL language [5]. In Chapel, domains can be
named, assigned, and passed between functions. Domains
support iteration, intersection, set-oriented queries, and op-
erations for creating other domains. They are also used
to declare, slice, and reallocate arrays. We refer to dense
rectangular domains as regular due to the fact that their in-
dex sets can be represented using O(1) storage via bounds,
striding, and alignment values per dimension. In contrast,
other domain types are considered irregular since they typ-
ically require storage proportional to the number of indices.

The main benefit of introducing a domain-like concept
into a parallel language is that it simplifies reasoning about
the implementation and relative alignment of groups of ar-
rays, both for the compiler and for users. Domains also
support the amortization of overheads associated with stor-
ing and operating on arrays since multiple arrays can share
a single domain.

Chapel domain maps specify the implementation of do-
mains and their associated arrays in the Chapel language. If
a domain map targets a single locale’s memory, it is called
a layout. If the domain map targets a number of locales we
refer to it as a distribution.

Layouts tend to focus on details like how a domain’s in-
dices or array’s elements are stored in memory; or how a
parallel iteration over the domain or array should be im-
plemented using local processor resources. Distributions
specify those details as well, but also map the indices and
elements to distinct locales. In particular, a distribution
maps a complete index space—such as the set of all 2D
64-bit integer indices—to a user-specified set of target lo-
cales. When multiple domains share a single distribution,
they are considered to be aligned since a given index will
map to the same locale for each domain. Just as domains
permit the amortization of overheads associated with index

sets across multiple arrays, distributions support the amor-
tization of overheads associated with distributing aligned
index sets.

An array’s elements are mapped to locales according to
its defining domain’s domain map. In this way, a single
domain map can be used to declare several domains, while
each domain can in turn define multiple arrays. Chapel also
supports subdomain declarations, which support semantic
reasoning about index subsets.

As an example, the following Chapel code declares a
Cyclic distribution named M followed by a pair of aligned
domains DI and D2 followed by a pair of arrays for each
domain:

const M = new dmap (new Cyclic(...));

const D1 = [0..n+l] dmapped M,
D2 [1..n] dmapped VM;

var Al, Bl: [D1l] int,
A2, B2: [D2] real;

Chapel’s domain maps do more than simply map in-
dices and array elements to locales, however. They also
specify how indices and array elements should be stored
within each locale, and how to implement Chapel’s array
and domain operations on the data structures. In this sense,
Chapel domain maps are recipes for implementing parallel,
distributed, global-view arrays. The next section provides
more detail on how our framework supports user-defined
domain maps.

S Domain Map Framework

Creating a user-defined domain map in Chapel involves
writing a set of three descriptors that collectively imple-
ment Chapel’s Domain map Standard Interface (or DSI for
short). These DSI routines are invoked from the code gen-
erated by the Chapel compiler to implement an end-user’s
operations on global-view domains and arrays. The de-
scriptors and DSI routines can be viewed as the recipe for
implementing parallel and distributed arrays in Chapel. As
such, they define how to map high-level operations like
Chapel’s forall loops down to the per-processor data
structures and methods that are required to implement them
on a distributed memory architecture.

In practice, these descriptors are implemented using
Chapel classes. Their methods implement the DSI rou-
tines using lower-level Chapel features such as iterators,
task parallelism, and locality-oriented features. The classes
themselves are generic with respect to characteristics like
the domain’s index type, the rank of the domain, and the
array’s element type.

The three descriptors are used to represent the Chapel
concepts of (1) domain map, (2) domain, and (3) array, re-
spectively. The descriptors can store whatever state they re-

quire to represent the corresponding Chapel-level concepts
accurately and to implement the semantics of the DSI rou-
tines correctly.

In practice, domain maps that represent distributions
tend to allocate additional descriptors on a per-locale basis
in order to store state describing that locale’s portion of the
larger data structure. This helps make the domain map scal-
able by avoiding the need for O(numlIndices) storage in
any single descriptor. To distinguish these descriptors, we
refer to the three primary descriptors as global descriptors
and any additional per-locale descriptors as local descrip-
tors. It is worth noting that the Chapel compiler only knows
about the global descriptors; any local descriptors are sim-
ply a specific type of state that a developer may choose to
help represent the descriptor’s state.

The following three sections describe these descriptors,
their state, and their primary DSI routines in more detail.
Following that, Section 5.4 describes other descriptor inter-
faces beyond the required set. For a more detailed technical
description of the descriptors and current DSI routines, the
interested reader is referred to technotes/README.dsi
in Chapel release’s documentation.

5.1 Domain Map Descriptors

The domain map descriptor stores any state required to
characterize the domain map as a whole. Examples might
include whether the domain map uses a row- or column-
major-order storage layout; the indices to be blocked be-
tween locales for a block distribution; the start index for a
cyclic or block-cyclic distribution; the block size to be used
in a tiled layout or block-cyclic distribution; or the tree of
cutting planes used for a multidimensional recursive bisec-
tion. For distributions, the global domain map descriptor
will also typically store the set of locales that is being tar-
geted.

Since domain maps may be represented using arbitrary
characteristics, the constructors for domain map descrip-
tors are invoked explicitly by end-users in their Chapel
programs. In our current implementation, this construc-
tor must be wrapped in a new instance of the built-in dmap
type, representing a domain map value.

In practice, global distribution descriptors use local de-
scriptors to store values that are specific to the correspond-
ing locale. For example, local descriptors may store the
subset of the index space owned by that locale; for irreg-
ular distributions like graph partitioning algorithms, they
may store a subset of the complete distribution’s state for
the purposes of scalability.

Figure 2 illustrates sample distribution descriptors. It
shows a Chapel declaration that creates a new 1D instance
of the Cyclic distribution, specifying the starting index as 1
and targeting locales 0, 1, and 2 (denoted in the example as
L0, L1, and L2). The left column shows a conceptual view

const M = new dmap (new Cyclic(startIdx = 1, targetLocales = Locales[0..2]));
local descriptors
_ _ local indices = ..., -2, 1,4, ... | LO
conceptual view global descriptor
local indices = ..., -1,2, 5, ... | L1
|-1]o|1]2]3]4a|5]|6]7]| startldx = 1 - L2
|Li|L2|Lo|L1|L2|Lo|L1|[L2|LO| targetLocales = LO, L1, L2 local indices = ..., 0, 3, 6, ...

dsiIndexToLocale (index) - owner locale
dsiNewRectangularDom(domain rank, index type, stridability)

- global domain descriptor

Figure 2: An illustration of the distribution descriptors for an instance of the Cyclic distribution.

of this distribution, illustrating that index 1 is mapped to
L0 while all other 1D indices are cyclically mapped to the
locales in both directions. The middle column shows the
global descriptor’s state, which stores the start index and
the set of target locales. The right column shows the local
descriptors corresponding to the three target locales, each
of which stores the index subset owned by that locale.

The key DSI routines required from a domain map de-
scriptor are as follows:

Index Ownership The domain map descriptor must sup-
port a method, dsiIndexToLocale () which takes an in-
dex as an argument and returns the locale that owns the
index. This is used to implement the idxToLocale query
that Chapel users can make to determine where a specific
index is stored. It is also used to implement other operators
on domains and arrays.

Create Domain Descriptors A domain map descriptor
also serves as a factory class that creates new domain de-
scriptors for each domain value created using its domain
map. For example, for each rectangular domain variable in
a Chapel program, the compiler will generate an invocation
of dsiNewRectangularDom () on the corresponding do-
main map descriptor, passing it the rank, index type, and
stridability parameters for the domain value. Similar calls
are used to create new associative, unstructured, or sparse
domains. Each routine returns a domain descriptor that
serves as the runtime representation of that domain value.
They also allocate any local domain descriptors, if appli-
cable. Typically, each domain map descriptor will only
support the creation of a single type of domain, such as
rectangular or associative.

5.2 Domain Descriptors

A domain descriptor is used to represent each domain value
in a Chapel program. As such, its main responsibility is to

store a representation of the domain’s index set. For layouts
and regular domains, the complete index set representation
is typically stored directly within the descriptor. For distri-
butions of irregular domains that require O (numlIndices)
storage to represent the index set, a distribution will typi-
cally store only summarizing information in its global de-
scriptor. The representation of the complete index set is
spread between its associated local descriptors in order to
achieve scalability.

For both regular and irregular distributions, local domain
descriptors are often used to store the locale’s local index
subset. These local indices are often represented using a
non-distributed domain field of a matching type.

Figure 3 shows a domain declaration that is mapped us-
ing the Cyclic distribution created in Figure 2. The left
column illustrates that the domain value conceptually rep-
resents the indices 0 through 6. The center column shows
that the global descriptor stores the complete index set as
0...6. Since this is a regular domain, the global descrip-
tor can afford to store the complete index set since it only
requires O(1) space. Finally, the local descriptors store the
subset of indices owned by each locale, as defined by the
distribution M. In practice, these descriptors use a domain
field to represent the strided 1D index set locally using the
default layout.

The key DSI routines required of the domain descriptors
are as follows:

Query/Modify Index Set A domain descriptor must
support certain methods that permit its index set to be
queried and modified. To implement assignment of rect-
angular domains, the Chapel compiler generates a call to
dsiGetIndices () on the source domain descriptor, pass-
ing the result to dsiSetIndices () on the target domain.
These routines return and accept a tuple of ranges to rep-
resent the index set in an implementation-independent rep-
resentation. This supports assignments between domains
with distinct distributions or layouts.

const D = [0..6] dmapped M;

conceptual view

global descriptor

local descriptors

local indices = 1, 4 LO

local indices =2, 5 L1

L2

indices = 0..6

regular domains

t—dsiGetIndices () - domain dimensions
r—dsiSetIndices (new_domain dimensions)
irregular domains

—dsiAdd (index)

—dsiRemove (index)

—dsiClear ()

all domains

—dsiMember (index) - boolean
t—dsiNumIndices - integer
—dsiBuildArray(element type) - global array descriptor
I—iterators

local indices =0, 3, 6

Figure 3: An illustration of the domain descriptors for a domain D defining an index set that is mapped using the Cyclic

distribution M from Figure 2.

Irregular domains support more general dsiAdd () and
dsiRemove () methods that can be used to add or remove
indices from the sets they represent. They also support a
dsiClear () method that empties the index set.

When a distribution uses local domain descriptors, these
routines must also partition the new indices between the
target locales and update the local representations appro-
priately.

Query Index Set Properties Domain descriptors also
support a number of methods that implement queries on the
domain’s index set. For example, dsiMember () queries
whether or not its argument index is a member of the do-
main’s index set. It is used for operations like array bounds
checking and user membership queries. Another routine,
dsiNumIndices (), is used to query the size of a domain’s
index set. Rectangular domains support additional queries
to determine the bounds and strides of their dimensions.

Iterators Domain descriptors must provide serial and
parallel iterators that generate all of the indices described
by their index set. The compiler generates invocations of
these iterators to implement serial and parallel loops over
domain values. Parallel iterators for distributions will typ-
ically be written such that each locale generates the local
indices that it owns. Parallel iteration is a fairly advanced
topic in Chapel due to its use of a novel leader/follower it-
erator strategy to support zippered parallel iteration, which
is beyond the scope of this paper.

Create Array Descriptors Domain descriptors serve as
factories for array descriptors via the dsiBuildArray ()
method. This call takes the array’s element type as its ar-
gument and is generated by the compiler whenever a new
array variable is created. The dsiBuildArray () routine
allocates storage for the array elements and returns the ar-
ray descriptor that will serve as the runtime representation
of the array. If applicable, dsiBuildArray () also allo-
cates the local array descriptors which, in turn, allocate lo-
cal array storage.

5.3 Array Descriptors

Each array value in a Chapel program is represented by an
array descriptor at runtime. As such, its state must repre-
sent the collection of variables representing the array’s ele-
ments. Since arrays require O(numFElements) storage by
definition, distributions will typically farm the storage for
these variables out to the local descriptors, while layouts
will typically store the array elements directly within the
descriptor. The actual array elements are typically stored
within a descriptor using a non-distributed array declared
over a domain field from the corresponding domain de-
scriptor.

Figure 4 shows a Chapel array of integer values defined
over the domain from Figure 3. The left column illustrates
that an integer variable is allocated for each index in the
domain. The middle column shows the global descriptor
which represents the array’s element type, but no data val-
ues. Instead, the array elements are stored in the local ar-
ray descriptors. Each one allocates storage corresponding
to the indices it owns according to the domain descriptors.

var A: [D] int;

conceptual view

0O 1 2 3 4 5 o6
ﬁnﬂinﬂintﬁnﬂinﬂinﬂinﬂ

global descriptor

element type =

iterators

local descriptors

local st - Lt ¢ |10
ocal storage = il’lt

5 L1

2
local storage = Entl
intfing

3 e L2

0
local storage =

dsiAccess (index) - array element
dsiSlice(slice_domain) - global array descriptor
dsiReindex (reindex domain) - global array descriptor
dsiRankChange (reindex domain, new rank, ...)

- global array descriptor

Figure 4: An illustration of the array descriptors for an array A of integers defined in terms of the domain D from Figure 3.

Though not shown in these figures, a single distribution
can support multiple domain descriptors, and each domain
descriptor can in turn support multiple arrays. In this way,
the overhead of representing an index set or domain map
can be amortized across multiple data structures. This or-
ganization also gives the user and compiler a clear picture
of the relationship and relative alignment between logically
related data structures in a Chapel program.

The following DSI routines must be implemented for ar-
ray descriptors:

Array indexing The dsiAccess () method implements
random access into the array, taking an index as its argu-
ment. It determines which array element variable the index
corresponds to and returns a reference to it. In the most
general case, this operation may require consulting the do-
main and/or domain map descriptors to locate the array el-
ement’s locale and memory location.

Iterators The array descriptor must provide serial and
parallel iterators to generate references to its array ele-
ments. Invocations of these iterators are generated by the
compiler to implement serial and parallel loops over the
corresponding array. As with domains, the parallel iterator
will typically yield each array element from the locale on
which it is stored.

Slicing, Reindexing, and Rank Change Chapel sup-
ports array slicing, reindexing, and rank change operators
that can be used to refer to a subarray of values, poten-
tially using a new index set. These are supported on array
descriptors using the dsiSlice (), dsiReindex () and
dsiRankChange () methods, respectively. Each of these
methods returns a new array descriptor whose variables

alias the elements stored by the original array descriptor. In
the case of reindexing and rank change, new domain and/or
domain map descriptors may also need to be created to de-
scribe the new index sets and mappings.

5.4 Non-Required Descriptor Interfaces

In addition to the required DSI routines outlined in the pre-
ceding sections, Chapel’s domain map descriptors can sup-
port two additional classes of routines, optional and user-
oriented. Optional interface routines implement descriptor
capabilities that are not required from a domain map im-
plementation, but which, if supplied, can be used by the
Chapel compiler to generate optimized code.

User-oriented interface routines are ones that an end-user
can manually invoke on any domains or arrays that they
create using the domain map. These permit the domain
map author to expose additional operations on a domain
or array implementation that are not inherently supported
by the Chapel language. The downside of relying on such
routines, of course, is that they make client programs brit-
tle with respect to changes in their domain maps since the
methods are not part of the standard DSI interface. This
is counter to the goal of having domain maps support a
plug-and-play characteristic; however it also provides an
important way for advanced users to extend Chapel’s stan-
dard operations on domains and arrays. By definition, the
Chapel compiler does not know about these interfaces and
therefore will not generate implicit calls to them.

We give some examples of optional interfaces in the
paragraphs that follow. We anticipate that this list of op-
tional interfaces will grow over time.

Privatization Interface Most user-level domain and ar-
ray operations are implemented via a method call on the

global descriptor. By default, the global descriptor is allo-
cated on the locale where the task that encounters its decla-
ration is running. If a DSI routine is subsequently invoked
from a different locale than the one on which the descrip-
tor is stored, communication will be inserted by the com-
piler. As an example, indexing into an array whose global
descriptor is on a remote locale will typically require com-
munication, even if the index in question is owned by the
current locale.

To reduce or eliminate such communications, Chapel’s
domain map framework supports an optional privatization
interface on the global descriptors. If the interface is imple-
mented, the Chapel compiler will allocate a privatized copy
of the global descriptor on each locale and redirect any DSI
invocations on that descriptor to the privatized copy on the
current locale.

Each of the global descriptor classes can support pri-
vatization independently of the others. A descriptor in-
dicates whether it supports privatization by defining the
compile-time method dsiSupportsPrivatization()
to return true or false. If a descriptor supports priva-
tization, it must provide the method dsiPrivatize () to
create a copy of the original descriptor and the method
dsiReprivatize () to update a copy when the original
descriptor (or its privatized copy) changes. The Chapel im-
plementation invokes these methods at appropriate times;
for example when a domain is assigned, its descriptors will
be re-privatized.

Fast Follower Interface A second optional interface in
our current implementation is the fast follower interface.
This interface supports optimized iteration over domains
and arrays by eliminating overheads related to unnecessar-
ily conservative runtime communication checks. To im-
plement this interface, a domain map needs to support the
ability to perform a quick alignment check before starting
a loop to see whether or not it is aligned with the other
data structures in question. As with any optional routines,
failing to provide the interface does not impact the domain
map’s correctness or completeness, only the performance
that may be achieved.

Other Optional Interfaces As the Chapel compiler ma-
tures in terms of its communication optimizations, we an-
ticipate that a number of other optional interfaces will be
added. One important class of anticipated interfaces will
support common communication patterns such as halo ex-
changes, partial reductions, and gather/scatter idioms. At
present, these patterns are all implemented by the com-
piler in terms of the required DSI routines. In practice,
this tends to result in very fine-grain, demand-driven com-
munication which is suboptimal for most conventional ar-
chitectures. As we train the Chapel compiler to optimize
such communication idioms in a user’s code, it will target

these optional interfaces when provided by the domain map
author. In this manner we anticipate supporting communi-
cation optimizations similar to those in our previous work
with ZPL [12, 9, 16].

6 Implementation Status

Our open-source Chapel compiler implements the domain
map framework described in this paper and uses it exten-
sively. As stated in Section 2, all of the standard layouts
and distributions in our implementation have been written
using this framework to avoid creating an unfair distinction
between “built-in” and user-defined array implementations.
This section describes our current uses of the domain map
framework within the Chapel code base. Most of these
distributions can be browsed within the current Chapel
release in the modules/internal, modules/layouts,
and modules/dists directories.

6.1 Default and Standard Layouts

Each of Chapel’s domain types—rectangular, sparse, asso-
ciative, and unstructured—has a default domain map that is
used whenever the programmer does not specify one. By
convention, these domain maps are layouts that target the
locale on which the task evaluating the declaration is run-
ning. Our default rectangular layout stores array elements
using a dense contiguous block of memory, arranging el-
ements in row-major order. Its sparse counterpart stores
domains using Coordinate list format (COQO), and it stores
arrays using a dense vector of elements. The default as-
sociative layout stores domains using an open addressing
hash table with quadratic probing and rehashing to deal
with collisions. As with the sparse layout, arrays are stored
using a dense vector of values. Our unstructured domain
map builds on the associative case by hashing on internal
addresses of dynamically-allocated elements. Operations
on these default layouts are parallelized using the proces-
sor cores of the current locale.

In addition to our default layouts, we have implemented
some standard layouts that are included in the Chapel code
base and can be selected by a programmer. One is an al-
ternative to the default sparse layout that uses Compressed
Sparse Row (CSR) format to store a sparse domain’s in-
dices. Another is an experimental layout for rectangular
arrays that targets a GPU’s memory [27]. Over time, we
plan to expand this set to include additional layouts for rect-
angular arrays (e.g., column-major order and tiled storage
layouts) as well as additional sparse formats and hashing
strategies for irregular domains and arrays.

6.2 Standard Distributions

For mapping to multiple locales, Chapel currently sup-
ports full-featured multidimensional Block, Cyclic, and
Replicated distributions for rectangular domains and ar-
rays. The Block and Cyclic distributions decompose the
domain’s index set using traditional blocking and round-
robin schemes per dimension, similar to HPF. The Repli-
cated distribution maps the domain’s complete index set to
every target locale so that an array declared over the do-
main will be stored redundantly across the locales.

We also have some other standard distributions that are
currently under development. We have a multidimensional
block-cyclic distribution that implements the basic DSI
functionality, but is lacking some of the more advanced
reindexing/remapping functions and doesn’t yet take ad-
vantage of parallelism within a locale, only across locales.
We are also working on a dimensional distribution that
takes other distributions as its constructor arguments and
applies them to the dimensions of a rectangular domain. In
this way, one dimension might be mapped to the locales us-
ing the Block distribution while another is mapped using
Replicated. Both of these distributions are being imple-
mented to support global-view dense linear algebra algo-
rithms in a scalable manner.

For irregular distributions, we have prototyped an asso-
ciative distribution to support global-view distributed hash
tables. Our approach applies a user-supplied hash function
to map indices to locales and then stores indices within
each locale using the default associative layout. We have
also planned for a variation on the Block distribution that
uses the CSR layout on each locale in order to support
distributed sparse arrays for use in the NAS CG and MG
benchmarks.

Over time, we anticipate expanding this set of initial dis-
tributions to store increasingly dynamic and holistic dis-
tributions such as multilevel recursive bisection, dynami-
cally load balanced distributions, and graph partitioning al-
gorithms.

7 Summary

This paper describes Chapel’s framework for user-defined
domain maps to support a very flexible means for users
to implement their own parallel data structures that sup-
port Chapel’s global-view operations. We are currently us-
ing this domain map framework extensively, not only to
implement standard distributions like Block and Cyclic,
but also for our shared memory parallel implementations
of regular and irregular arrays. While this paper does not
contain performance results, our domain map framework
was used to obtain our 2009 HPC Challenge performance
results which demonstrated performance that was com-
petitive with MPI and scaled reasonably for some simple

10

benchmarks [8]. Since that time we have made additional
performance and capability improvements that we plan to
showcase at SC11.

At present, our team’s main focus is to expand Chapel’s
standard set of domain maps while improving the perfor-
mance and scalability of our current ones. As alluded to
in Section 5.4, some of our performance optimization work
will involve expanding our set of optional DSI routines to
reduce overheads for common communication patterns via
latency hiding and coarser data transfers. In other cases
we simply need to improve the Chapel compiler and do-
main map code to eliminate communication that is overly
conservative or semantically unnecessary. We also plan
to continue improving our documentation of the domain
map framework so that general Chapel users can start writ-
ing domain maps independently. Finally, we need to im-
prove the robustness and scalability of our descriptor priva-
tization machinery which is currently too global and syn-
chronous to support loosely-coupled computations as well
as it should.

Acknowledgments

The authors would like to thank David Callahan, Hans
Zima, and Roxana Diaconescu for their early contributions
to Chapel and their role in helping refine our user-defined
domain map philosophy. We would also like to thank all
current and past Chapel contributors and users for their help
in developing the language foundations that have permitted
us to reach this stage.

References

[1] Eugene Albert, Kathleen Knobe, Joan D. Lukas, and
Guy L. Steele, Jr. Compiling Fortran 8x array fea-
tures for the Connection Machine computer system.
In PPEALS ’88: Proceedings of the ACM/SIGPLAN
conference on Parallel Programming: experience
with applications, languages, and systems, pages 42—
56. ACM Press, 1988.

[2] Robert Alverson, David Callahan, Daniel Cummings,
Brian Koblenz, Allan Porterfield, and Burton Smith.
The Tera computer system. In Proceedings of the
4th international conference on Supercomputing, ICS
’90, pages 1-6, New York, NY, USA, 1990. ACM.

[3] G. Bikshandi, J. Guo, D. Hoeflinger, G. Almasi, B. B.
Fraguela, M.J. Garzaran, D. Padua, and C. von Praun.
Programming for parallelism and locality with hier-
archically tiled arrays. In PPoPP ’06: Proceedings
of the eleventh ACM SIGPLAN symposium on Prin-
ciples and Practice of parallel programming, pages
48-57. ACM Press, March 2006.

(4]

(5]

(6]

(7]

(8]

(9]

E. Boman, K. Devine, L. A. Fisk, R. Heaphy, B. Hen-
drickson, C. Vaughan, U. Catalyurek, D. Bozdag,
W. Mitchell, and J. Teresco. Zoltan 3.0: Parallel par-
titioning, load balancing and data-management ser-
vices; user’s guide. Technical Report SAND2007-
4748W, Sandia National Laboratories, Albuquerque,
NM, 2007.

Bradford L. Chamberlain. The Design and Implemen-
tation of a Region-Based Parallel Language. PhD the-
sis, University of Washington, November 2001.

Bradford L. Chamberlain. = Multiresolution lan-
guages for portable yet efficient parallel program-
ming. http://chapel.cray.com/papers/DARPA-RFI-
Chapel-web.pdf, October 2007.

Bradford L. Chamberlain, David Callahan, and
Hans P. Zima. Parallel programmability and the
Chapel language. International Journal of High Per-
formance Computing Applications, 21(3):291-312,
August 2007.

Bradford L. Chamberlain, Sung-Eun Choi, Steven J.
Deitz, and David Iten. HPC Challenge benchmarks
in Chapel. (available from http://chapel.cray.com),
November 2009.

Bradford L. Chamberlain, Sung-Eun Choi, and
Lawrence Snyder. A compiler abstraction for ma-
chine independent parallel communication genera-
tion. In Proceedings of the Workshop on Languages
and Compilers for Parallel Computing, 1997.

Bradford L. Chamberlain, Steven J. Deitz, David Iten,
and Sung-Eun Choi. User-defined distributions and
layouts in Chapel: Philosophy and framework. In
HotPAR ‘10: Proceedings of the 2nd USENIX Work-
shop on Hot Topics, June 2010.

Barbara M. Chapman, Piyush Mehrotra, and Hans P.
Zima. Programming in Vienna Fortran. Scientific Pro-
gramming, 1(1):31-50, 1992.

Sung-Eun Choi and Lawrence Snyder. Quantifying
the effects of communication optimizations. In Pro-
ceedings of the IEEE International Conference on
Farallel Processing, 1997.

Cray Inc., Seattle, WA. Chapel language specifica-
tion. (Available at http://chapel.cray.com/).

Alain Darte, John Mellor-Crummey, Robert Fowler,
and Daniel Chavarria-Miranda. Generalized multipar-
titioning of multi-dimensional arrays for paralleliz-
ing line-sweep computations. Journal of Parallel and
Distributed Computing, 63(9):887-911, 2003.

11

[15]

[22]

Steven J. Deitz. High-Level Programming Lan-
guage Abstractions for Advanced and Dynamic Par-
allel Computations. PhD thesis, University of Wash-
ington, 2005.

Steven J. Deitz, Bradford L. Chamberlain, Sung-Eun
Choi, and Lawrence Snyder. The design and imple-
mentation of a parallel array operator for the arbitrary
remapping of data. In Proceedings of the ACM Con-
ference on Principles and Practice of Parallel Pro-
gramming, 2003.

Tarek El-Ghazawi, William Carlson, Thomas Ster-
ling, and Katherine Yelick. UPC: Distributed Shared-
Memory Programming. Wiley-Interscience, June
2005.

Geoffrey Fox, Seema Hiranandani, Ken Kennedy,
Charles Koelbel, Ulrich Kremer, Chau-Wen Tseng,
and Min-You Wu. Fortran D language specification.
Technical Report CRPC-TR 90079, Rice University,
Center for Research on Parallel Computation, De-
cember 1990.

Michael A. Heroux, Roscoe A. Bartlett, Vicki E.
Howle, Robert J. Hoekstra, Jonathan J. Hu, Tamara G.
Kolda, Richard B. Lehoucq, Kevin R. Long, Roger P.
Pawlowski, Eric T. Phipps, Andrew G. Salinger,
Heidi K. Thornquist, Ray S. Tuminaro, James M. Wil-
lenbring, Alan Williams, and Kendall S. Stanley. An
overview of the Trilinos project. ACM Trans. Math.
Softw., 31(3):397—-423, 2005.

High Performance Fortran Forum. High Performance
Fortran Language Specification Version 2.0, January
1997.

George Karypis and Vipin Kumar. A fast and high
quality multilevel scheme for partitioning irregular
graphs. SIAM Journal on Scientific Computing,
20(1):359-392, 1999.

Charles Koelbel and Piyush Mehrotra. Programming
data parallel algorithms on distributed memory us-
ing Kali. In ICS ’91: Proceedings of the 5th inter-
national conference on Supercomputing, pages 414—

423. ACM, 1991.

Charles H. Koelbel, David B. Loveman, Robert S.
Schreiber, Guy L. Steele, Jr., and Mary E. Zosel.
The High Performance Fortran Handbook. Scientific
and Engineering Computation. MIT Press, September
1996.

B. Liskov, A. Snyder, R. Atkinson, and C. Schaffert.
Abstraction mechanisms in CLU. Communications of
the ACM, 20(8):564-576, August 1977.

[27]

Robert W. Numerich and John Reid. Co-array fortran
for parallel programming. SIGPLAN Fortran Forum,
17(2):1-31, 1998.

Robert W. Numrich. A parallel numerical library for
co-array fortran. Springer Lecture Notes in Computer
Science, LNCS 3911:960-969, 2005.

Albert Sidelnik, Bradford L. Chamberlain, Maria J.
Garzaran, and David Padua. Using the high pro-
ductivity language Chapel to target GPGPU architec-
tures. Technical report, Department of Computer Sci-
ence, University of Illinois Urbana-Champaign, April
2011. http://hdl.handle.net/2142/18874.

Lawrence Snyder. Programming Guide to ZPL. MIT
Press, Cambridge, MA, 1999.

Lawrence Snyder. The design and development of
ZPL. In HOPL III: Proceedings of the third ACM
SIGPLAN conference on History of programming lan-
guages, pages 8—1-8-37, New York, NY, USA, 2007.
ACM.

Srinivas Sridharan, Jeffrey S. Vetter, Peter M. Kogge,
and Steven J. Deitz. A scalable implementation
of language-based software transactional memory
for distributed memory systems. Technical Report
FTGTR-2011-02, Oak Ridge National Laboratory,
May 2011. http://ft.ornl.gov/pubs-archive/chplstm1-
2011-tr.pdf.

12

[35]

Chapel Team. Parallel programming in Chapel:
The Cascade High-Productivity = Language.
http://chapel.cray.com/tutorials.html, November
2010.

Manuel Ujaldon, Emilio L. Zapata, Barbara M. Chap-
man, and Hans P. Zima. Vienna-Fortran/HPF ex-
tensions for sparse and irregular problems and their
compilation. IEEE Transactions on Parallel and Dis-
tributed Systems, 8(10), October 1997.

David S. Wise, Jeremy D. Frens, Yuhong Gu, and
Gregory A. Alexander. Language support for Morton-
order matrices. In PPoPP ’0l: Proceedings of
the eighth ACM SIGPLAN symposium on Principles
and practice of parallel programming, pages 24-33.
ACM, 2001.

Kathy Yelick, Luigi Semenzato, Geoff Pike, Carleton
Miyamato, Ben Liblit, Arvind Krishnamurthy, Paul
Hilfinger, Susan Graham, David Gay, Phil Colella,
and Alex Aiken. Titanium: A high-performance
Java dialect. Concurrency: Practice and Experience,
10(11-13):825-836, September 1998.

Hans Zima, Peter Brezany, Barbara Chapman, Piyush
Mehrotra, and Andreas Schwald. Vienna Fortran —
a language specification version 1.1. Technical Re-
port NASA-CR-189629/ICASE-IR-21, Institute for
Computer Applications in Science and Engineering,
March 1992.

