

Cray User Group 2011 Proceedings 1 of 10

Automation Assisted Debugging
on the Cray with TotalView

Chris Gottbrath, Rogue Wave Software

ABSTRACT: A little bit of automation can go a long way towards streamlining and
simplifying the process of debugging scientific applications. This talk will demonstrate
using a new TotalView feature, C++View, to transform complex data structures and
automatically perform validity checks within them. C++View is an element of
TotalView's extensive scripting framework, which also includes a type transformation
facility, a fully programmable TCL-based CLI, a C and Fortran expression evaluation
system, and the scripting tools MemScript and TVScript.

KEYWORDS: XE6, Parallelism, Development Tools, Debugging, Automation

1. Introduction

Cray provides a uniquely powerful and flexible set of

environments for developing high performance
applications with the XT5, XT5m, XE6 and XE6m. These
machines provide scientists and developers with a unique
combination of familiarity and performance. Each node
uses an x86 processor and runs a version of Linux.
Individual nodes are connected with a low-latency
interconnect. The entire package has been tuned first to
provide high performance on scientific applications; both
the hardware and software provided are designed to allow
the system to be managed relatively easily. Cray systems
hold out the promise of being able to accomplish
modeling that is staggeringly computationally intensive.
Cray systems can compute physical processes that require
fine detail and the large scale processes that form the
context for those details. Cray systems can support
models that begin to introduce not just one but numerous
physical processes with different time scales and
numerical behaviors.

1.1 Developing Parallel Software

Nonetheless developing parallel software continues

to be a daunting task, one that needs to be taken in stages.

Scientists and developers typically start with an algorithm
that is initially developed in a serial context and then
analyze it to find places where the data can be distributed
and the calculation done simultaneously across multiple
separate processes that can be hosted on different nodes
of the cluster. While conceptually simple this process of
distributing the work adds significantly to the complexity
of the application. The data structures, and sometimes the
algorithm, have to be re-factored in ways that often
obscure the physical meaning of the data. Distributing the
data and computations invariably introduces numerous
new concepts such as domain decomposition, halo regions
and message passing to the application; all of which may
have little to do with the fundamental science and more
to do with simply keeping track of the data. Completely
new issues arise that are non-existent in serial
programming, such as load balancing and optimizing
inter-node communication patterns.

This process will typically only get an application to

the point where the data can be spread across dozens or
hundreds of separate processes before some factor will
limit the scaling, so that further dividing the work either
no longer increases or actually degrades the overall
application performance. If the science goals call for a
higher level of performance the developer frequently
faces a choice: either introduce multi-thread parallelism,
find another way to divide the data, or overcome the

Cray User Group 2011 Proceedings 2 of 10

factor that is currently limiting the scaling of their
application.

This decision is hardly a simple one. Threading

introduces a paradigm with very different rules and
behavior, but since recent Cray systems can have 24 cores
per node, there is quite a bit to be gained by threading.
Scaling up an application requires sophisticated analysis
to identify the factor cutting off the scalability.
Overcoming the limitation may require significant
additional data and code re-factoring.

The end result of this iterative process is an

application in which the original domain-specific code is
dwarfed by complex and arcane "work-load management"
and "parallel plumbing" routines that efficiently distribute
the work and transfer data so that each component task is
able to spend the majority of its time computing without
having to wait for data to arrive. Some estimates place the
ratio of "framework" code to "model specific" code at 4:1.

These applications are understandably hard to

develop and to maintain.

1.2 Improving Developer Productivity

What can we do to help make scientists and
developers engaged in such work more productive? What
can we do that might allow development of higher quality
applications that generate results that are more reliable?

TotalView provides a graphical environment in

which developers can examine an application, focusing on
a single process or a single thread, or synchronizing
groups of processes and threads and looking at the
behavior of the parallel application as a whole.
Developers can look at variables in a single thread or
process and easily ask the debugger to show them the
value of corresponding variables on other threads and
other processes. More detail on TotalView is available on
the webi and in previous CUG papersii,iii,iv.

Still, even with this graphical interface, parallel

programming and parallel debugging can be daunting and
overwhelming. In particular, the data structure refactoring
involved in building "parallel plumbing" can obfuscate
concepts and values that would otherwise be familiar to a
scientist troubleshooting the application. Several things
can be done to simplify this.

At the language level some of the frequently used

constructs can be made part of the language. This has
been done with thread parallelism in the form of OpenMP

and with process parallelism with UPC. Both of these
serve to reduce the volume of overhead code and
represent data in a way that more closely matches the way
the user thinks of an algorithm. The TotalView debugger
works with both of these extensions and in the case of
UPC provides a unified view of the shared array objects,
gathering individual elements from across the clusters and
showing both their global indices and originating process.

While inventing a new parallel language is always

temping the reality is that most scientific applications are
written in traditional languages such as Fortran and C or
C++. What can be done to simplify programming and
debugging for scientists working with more traditional
technologies like C++ and MPI? One possibility is to
reduce the time spent sifting through complex data
structures to find the data relevant for troubleshooting
their problems. This can improve scientific productivity
because it allows scientists to focus their effort.

1.3 Automation-Assisted Debugging

Automation can make debugging more flexible and
powerful, with a tool that can be customized to handle
tedious operations. Two new TotalView automation
features, C++View and TVScript, are outlined in this
paper.

C++View enables better interactive debugging. It

automates steps for examining and validating data
structures during interactive graphical debugging. By
eliminating tedious and perhaps error-prone operations it
allows scientists to focus on the part of the program that is
misbehaving. C++View makes it trivial to work with the
dynamic and extensible data structures used in modern
C++ programming. While the actual implementation of
the data structure may involve multiple layers of
indirection, users can instruct the debugger as to how they
want to see the data contained within.

Even better, scientists frequently work with systems

in which there are aggregate characteristics, such as the
energy and momentum in some part of the system, which
should evolve in predictable ways as the model runs.
Deviations in these aggregate characteristics can be
critical indicators of what is happening. C++View can be
used to automatically trigger diagnostic calculations and
present the results. Cray systems are generally resource-
managed through a batch queuing system. In such a
context debugging time is a critical factor. Automation
provided by C++View enables scientists to progress much
more quickly and confidently through test runs before an

Cray User Group 2011 Proceedings 3 of 10

interactive session times out and is terminated by the
batch queue environment.

The second feature, TVScript, enables scientists to do

unattended debugging within batch queue environments.
Cray systems are frequently configured with multiple
queues. Batch queues generally work most efficiently
with jobs that don't require direct user interaction. It is not
uncommon for sites to establish policies that limit
interactive access to just a small fraction of the system
resources. Such policies can become a challenge for
scientists who need to troubleshoot errors that occur at
scales larger than what can run within these interactive
queues. In such cases non-interactive batch debugging can
be an effective alternative.

Large scale jobs also manifest a variety of other

characteristics that recommend an automated approach to
debugging. First, they may be very large; the sheer
volume of data to be explored may be prohibitive,
warranting an offline analysis strategy. Scientists
frequently separate the recording of data from its analysis,
and data gathered in such sessions can be used, for
example, to narrow and refine a debugging hypothesis
that can then guide a more focused interactive debugging
session. Large scale jobs may run into problems after an
unknown, or long runtime. Scripted debugging frees the
scientist from tediously watching jobs that may or may
not fail. When the program does fail the script can gather
data that either points to the error or serves to narrow
down the parameters to set up for a more focused
interactive debugging session.

These two features provide scientists with extremely

powerful interactive and non-interactive debugging
options that simplify debugging moderate and large scale
applications on Cray systems.

2. C++View

2.1 C++View Overview

C++View is based on the premise that a user may

want to specify what is to be displayed by the debugger
for a program data object of a specific type. TotalView
provides an optional function that the user can write to
define what to print when the object is examined by the
debugger.

2.2 C++View Interface

This function has the declaration

int TV_ttf_display_type (const T *)

where T is the type of the object that the user wants to
have transformed. If such a function is present in the
target program TotalView will call it whenever it would
normally display an object of that type. The object itself is
passed into the function through the pointer argument and
the function uses a return value to indicate either success
or failure. Debuggers are generally used on programs that
are broken and a display function might return something
other than success if, for example, the pointer that gets
passed in doesn't appear to point to valid data.

Within this function the scientist can examine the

object pointed to, checking its validity, and ask the
debugger to display elements of the object, other variables
and values drawn from the program, or data derived on
the fly either from the object or from the program more
generally. Each element that the scientist wishes to
display is presented to the debugger by calling the
function provided by the debugger:

int TV_ttf_add_row(

const char * field_name,
const char * type_name,
const char * address)

This function tells the debugger about one element that
will be part of the set of information displayed for the
object in question. The function takes three simple
arguments. The first argument, field_name, is just a
string that TotalView will display as a label for this
element. The second argument defines the element type,
critical to the function, since TotalView’s powerful
display capabilities are based on object type. The third
field establishes the address of the element. The return
value of this function is used to communicate status
information. TotalView will return TV_ttf_ec_ok if
everything is successful, otherwise it will return a code
indicating an error.

These two simple functions give scientists the ability

to streamline what might otherwise be tedious parts of the
debugging process. Let’s look at several transformations.

2.3 Simplest C++View Example

The simplest possible transformation looks like this

Cray User Group 2011 Proceedings 4 of 10

struct S
{
 int X;
};

int TV_ttf_display_type(
 const struct S * item)
{
 return TV_ttf_add_row(
 "X from struct S",
 "int",
 &item->X)
}

main()
{
struct S myS;
}

If you then examine myS in TotalView you will see that it
labels the field "X from struct S", reports that it has type
int and shows you the value of the X field of struct S.

Please note that for readability this code sample as well as
those below are pseudo-code. Please consult the product
documentation and the examples that come with
TotalView for compileable examples. Contact the author
or Rogue Wave Tech Support,
tvsupport@roguewave.com, for help using the product.

2.4 Using C++View to Simplify Structures

Things get more interesting if you choose to highlight

only the most interesting or relevant information.
C++View can be used to show some of the fields while
omitting others.

struct person
{

 int age;
 char * name;
 char * title;
 float salary;

};

int TV_ttf_display_type(
 const struct person * item)
{
 TV_ttf_add_row(
 "Name",
 "$string",
 *(&item->name));

TV_ttf_add_row(
 "Age",
 "int",
 &item->age);
/*error handling logic omitted*/

}

main()
{
struct person myPerson;
}

When you dive on myPerson you will see only the two
fields that you had selected through C++View. In the CLI
if you dprint myPerson it might look like:

> dprint myPerson
myPerson = {

Name = "sample name"
Age = 23

}

C++View can be toggled on and off with a debugger

preference. Use it, for example, ir you usually want to see
just this abbreviated view but occasionally need to see the
full list of elements that make up a specific person
structure.

2.5 Using C++View with Dynamic Objects

C++View can also be used to simplify the display of

dynamic structures like linked lists. Walking a null
terminated linked list might be done with something like:

int TV_ttf_display_type(
 const struct ll * item)
{
 ll * current=item;
 while (current->next != 0)
 {
 TV_ttf_add_row(
 "member",
 "int",
 ¤t->value);
 current = current->next;
 }

TV_ttf_add_row(
 "final member",
 "int",
 ¤t->value);
/* error handling logic omitted */

}

Cray User Group 2011 Proceedings 5 of 10

2.6 Presenting Supplemental Data Using C++View

So far each of these transformations has pointed to

data that is present in the underlying data structure.
C++View can also present data that isn't present there,
which is useful for presenting the results of validation as
well as various kinds of diagnostic data. For example, in
working with vectors if you generally first compute a
vector’s length, automate that with a C++View transform
along the lines of the following:

int TV_ttf_display_type (
 const struct vector * item)
{

float length=sqrt(
 item->x*item->x
 +
 item->y*item->y);
TV_ttf_add_row(
 "X component",
 "float",
 &item->x);
TV_ttf_add_row(
 "Y component",
 "float",
 &item->y);
TV_ttf_add_row (
 "Length",
 "float",
 &length);
/* error handling logic omitted */

}

2.7 Templates and C++View

I've shown simple structures but C++View also
works with templated C++ code; transformations can be
polymorphic along with the classes they transform.

2.8 Fortran, C, and C++View

C++View can be used with Fortran or C but due to
the limitations of the way function overloading works you
are limited to just a single TV_ttf_display_type function
per object file. See the TotalView documentation or
contact support for help on using C++View with C or
Fortran.

2.9 Composition and Elision with C++View

C++View supports type composition, so if you have

objects and types that are built up of collections of other

objects you can easily write transformations for just those
objects you want to transform. Each object will be
transformed if there is a corresponding function to do the
transformation. In some cases this might result in
cumbersome data displays so C++View includes a
streamlined display mechanism called "elision". Your
TV_ttf_display_type function indicates via a
return type whether the data it is providing can be elided.
If it can be elided then if it is part of an array or other
aggregate then TotalView will display just the data and
not the structure type.

For example, if type1 doesn't support elision and

type2 does, then dprinting arrays of type1 and type2 will
look like:

> dprint type1_array_instance

type1_array_instance = {
[0] = {

 X = 0x0001 (1)
 }
 [1] = {
 X = 0x0002 (2)
 }
}

> dprint type2_instance
type2_array_instance = {
 [0] = 0x0001 (1)

[1] = 0x0002 (2)
}

Elision provides a way to work more easily with simple
arrays of transformed objects.

2.10 Important Tips for Using C++View

First, avoid type recursion. Transformed objects

cannot reference themselves either directly or indirectly.
If class A has a member of type B items and type B items
include members that are of type class A, that will cause
problems for TotalView. Pointers between types A and B
are ok because TotalView doesn't automatically display
the details of something that is merely pointed to.

Although I have omitted error handling in the

examples above for clarity, it is important. You may want
to validate that the object you are transforming is in a
consistent state. In particular, avoid following pointers
that might point to unallocated memory as this can cause
your target program to crash. If your display function
can’t validate that the data it is operating on is correct,
you can simply return TV_ttf_format_raw instead of
TV_ttf_format_ok to indicate that the debugger

Cray User Group 2011 Proceedings 6 of 10

should not format this variable but simply display it as it
would with no transform.

Be sure your TV_ttf_display_type function

doesn't change the target being debugged. It should not
increment counters, allocate memory without freeing it, or
overwrite anything within the part of the program you are
debugging. Each time it needs to refresh the window,
TotalView will call TV_ttf_display_type. This
might be more frequently than you expect.

If you need some kind of persistent storage, for

example to display previous values as part of the
transformed data structure, we recommend creating a
global buffer variable for storage.

There is really no limit to what can be performed

within a C++View. Jeff Keasler, a scientist at LLNL, has
already used it to prototype really interesting new
functionality in support of comparative debugging. In this
prototype the user runs two copies of TotalView on two
copies of the program to be debugged, Copy A and Copy
B. C++View uses network communication in the
display_type routines to make data from Copy A available
when debugging Copy B. Then the functions highlight
any differences between Copy A and Copy B at the data
level.

2.12 Using C++View in your program

C++View is distributed in the form of a c++ source

and header file pair called tv_data_display.c and
tv_data_display.h. This provides a function declaration
for TV_ttf_display_type(), various enum values for return
types, and a stub function for TV_ttf_add_row() which
wil be intercepted when TotalView is used on the target
program. These two files are licensed in such a way that
you can freely embed and distribute them.

See page 249 of the TotalView Reference Guide for

detailed instructions examples on compiling your program
with C++View.

2.12 TCL TTF, a C++View Alternative

C++View is one of two type transformation

mechanisms provided by TotalView, the other being TCL
TTF (TCL Type Transformation Facility). Describing
TCL TTF in detail is beyond the scope of this article
(information is located in the TotalView Reference
Guide) but an important trade off is worth discussing.

TCL TTF differs from C++View in that when users
define TCL TTF transformations they are defining a
series of steps that the debugger goes through to walk the
data structure to be transformed and obtain each of the
elements to be displayed. It is generally more challenging
to write transformations using TCL TTF because it
involves a detailed understanding of not just the data
structure but also low-level details like how the elements
of the data structure are laid out in memory and how the
debugger would access them.

TCL TTF transformations don't involve calling any

functions in the target process itself. Since TCL TTF
transformations just involve the debugger reading values
from memory they can be used with corefiles. C+++View
won’t work with corefiles because it involves calling
functions within a live process.

In short C++View is easier to write while TCL TTF

works with corefiles.

3. TVScript

3.1 TVScript Overview

TVScript is a framework for easily doing non-

interactive debugging with TotalView. TVScript is
conceptually very straightforward. You define a program
you want to debug and a series of events that may occur
within that target program. TVScript loads the program
you want to debug under its own control so that it can
start it and stop it as needed. TVScript may or may not set
one or more breakpoints within the program. Then
TVScript runs the program. Each time the program stops
TVScript compares its state with the list of established
breakpoints and for each breakpoint (or other reason for
stopping) TVScript can perform different operations such
as gathering data or running specific reports. It logs
output to a set of files and continues the program until it
exits.

Scientists will typically want to submit jobs that use

TVScript to the Cray as non-interactive batch queue jobs.
These jobs will run without any kind of user interaction
and the resulting logfiles can be reviewed to see the
behavior of the parallel job on the Cray.

3.2 TVScript Syntax

TVScript is run as a UNIX command line utility with

the following general syntax:

Cray User Group 2011 Proceedings 7 of 10

tvscript <tvscript-options> \
<program-to-debug> \
 -a <args-for-program-to-debug>

If you want to debug an MPI job that you would normally
start with

aprun -n 64 my_parallel_application

you might start an interactive job with TotalView using a
command like

totalview -mpi aprun \

-np 64 my_parallel_application

to start up TotalView, load my_parallel_application and
then allow you to set breakpoints, etc. Then when you hit
"go" it will use aprun to launch your parallel application
with 64 processes. If that is the case then the basic
command for using TV script with that application looks
like:

tvscript -mpi aprun \

-np 64 my_parallel_application

to which you will add command line options to define
events that you want to track and actions you want to
have happen when those events occur.

At any point you can call tvscript with no arguments and
it will respond with usage guidelines including a brief
listing of events and actions that you can specify.

3.3 TVScript Crash Reporting

The general command option you will use for looking at
errors is:

-event_action “event=>action1,action2"

The simplest thing that you might want to do with
TVScript is to get improved crash reporting. You can do
this by specifying "error" and then you might want to

perform the action "display_backtrace". So when the
program encounters any kind of error TVScript knows
that you want to look at a backtrace from the program.
That might look like:

tvscript -mpi aprun -np 64 \
-event_action \
"error=>display_backtrace" \
my_parallel_application

As specified here the backtrace will simply be a list of
functions, not too different than you might get from other
backtrace mechanisms. However TotalView can gather
much more information. You might want, for example, to
look at function call arguments and/or local variables at
the point where the program encounters an error. This can
be done with the qualifiers

-show_locals -show_arguments

which would look like:

tvscript -mpi aprun \
-np 64 \
-event_action \
"error=>display_backtrace -show_locals
-show_arguments" \
my_parallel_application

That will generate a much more verbose and potentially
helpful logfile when the program you are debugging
encounters some kind of error.

Figure 1
The output of

display_backtrace –show arguments

looks like Figure 1. Note the header information that is
presented and the fact that both the function main() and
my_create_port() each have two arguments; all those
arguments are included in full in the listing.

Cray User Group 2011 Proceedings 8 of 10

3.4 TVScript Memory Debugging

TotalView also includes MemoryScape, which .

provides heap memory debugging functionality that can
be accessed from TVScript. Explaining this is beyond the
scope of this paper (though you can see the CUG paper
from 2010 for more details). One of the things that you
might want to do is check for memory leaks when the
program encounters any events or errors or is ready to
exit.

tvscript -mpi aprun \
-np 64 -memory_debugging \
-event_action \
"any_event=>list_leaks" \
my_parallel_application

Other flags can be used to list allocations, export binary
memory reports, and perform various kinds of array
bounds checks.

3.5 Tracing your Program with TVScript

You can also use TVScript to automate gathering

more detailed information from your program. You
might, for example, want to trace the way some particular
part of the program is behaving over a long running
application. You can instruct TVScript to set a breakpoint
at a location of interest within the program and provide a
backtrace whenever that breakpoint is hit, or display the
value of particular variables. For example, in examining a

function, func1, if you want to display the value of
variable1 each time the program executes func1, do that
very simply with something like:

tvscript -mpi aprun \
 -np 64 \
-create_actionpoint \
"func1=>print variable1"
my_parallel_application

Every time any one of the 64 MPI tasks executes func1
tvscript will record an event whose record will be
accompanied by the value of the associated variable1. If
variable1 is a structure or an array all the values that make
up that structure or array will be printed.

 Printing a value in TVScript generates output like
that shown in Figure 2. Note that printing a structure
results in a display of all the fields in the structure.

Cray User Group 2011 Proceedings 9 of 10

Figure 1

The actionpoint can be associated with a conditional

expression so that it only triggers when conditions are
met. The value to be printed can be a simple variable or
an expression derived from one or more variables. The
expression can include function calls. For example, you
might set a breakpoint on a line of code in a loop,
configuring the breakpoint to stop only on certain loop
index values. Then you might use the expression
mechanism to look up elements in various different
arrays, perhaps passing those values into a function call
and reporting the result of that function call in the log.

3.6 Tips for Using TVScript

TVScript itself is based on a very general TCL

scripting mechanism and is provided to users in the form
of a user-readable and user-editable TCL script. TVScript
can be freely modified and adapted, so if you run into
limitations in TVScript you may find that you can
examine TVScript itself and find a way to extend it and
overcome those limitations.

Finally, it is worth noting that C++View (and TCL

TTF) transforms that are available to TVScript (either in
the target program for C++View or in the TV
configuration files for TCL TTF) will be applied to data
that is presented in TVScript.

4. Conclusion

This paper has introduced two extremely powerful

automation facilities that are unique to TotalView.
C++View and TVScript both allow scientists and
developers to streamline operations that might otherwise
be very cumbersome and tedious. C++View augments
and streamlines the interactive debugging experience and
allows developers to customize what data they see when
they look at objects and structures that are defined within
their programs. C++View can be used to walk complex
data structures and automatically perform validation of
data structures and data contained within those structures.
TVScript makes it possible for scientists to very easily do
non-interactive batch debugging of parallel programs on
Cray supercomputers. This frees developers from the
confines of interactive queues, which are typically rather
limited in terms of scale. It can also provide a powerful
mechanism for dealing with errors that manifest
stochastically and/or only after the program has been
running for a fairly long time.

As supercomputers and the programs that run on

them continue to scale up, the need for automation in
debugging can be expected to increase. These advanced
capabilities are part of TotalView now and will serve as a
solid foundation for features in the future that will do
even more to boost the productivity of scientists and
developers.

Acknowledgments
Thanks to Gayle Procopio for aid in preparing this

document.

About the Authors
Chris Gottbrath is Principal Product Manager

responsible for TotalView, MemoryScape and
ReplayEngine at Rogue Wave Software. He's worked
with the TotalView debugger for a decade in a range of
technical and marketing roles. Prior to that he wrote his
fair share of bugs in Linux-based numerical simulations
of galaxy dynamics and large scale structure as a graduate
student in Tucson, AZ. He has a Masters of Science in
Astronomy and Astrophysics from the University of
Arizona. He can be reached at 200 Honeysuckle Lane,
Starkville, MS 39759 or by email:
chris.gottbrath@roguewave.com.

Cray User Group 2011 Proceedings 10 of 10

i Rogue Wave Software web site, TotalView
Product Page.
http://www.roguewave.com/products/totalview-
family/totalview.aspx
ii Gottbrath, Chris. “Reverse Debugging with the
TotalView Debugger.” Proc. Cray Users
Group, 30, 2008.
iii Gottbrath, Chris. “Debugging Scalable
Applications on the Cray XT.” Proc. Cray
Users Group, 31, 2009.
iv Gottbrath, Chris. “Improving the Productivity
of Scalable Application Development with
TotalView.” Proc. Cray Users Group, 32, 2010

