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ABSTRACT: Scientists studying the structure and behavior of the atomic nucleus require immense high-
performance computing resources to gain scientific insights. Several nuclear physics codes are capable of
scaling to more than 100,000 cores on Oak Ridge National Laboratory’s petaflop Cray XT5 system, Jaguar.
In this paper, we present our work on optimizing codes in the nuclear physics domain.
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1 Introduction

Nuclear physicists have been consistent users of lead-
ership high-performance computing resources over
the last decade, with several nuclear physics codes
capable of scaling to more than 100,000 cores on Oak
Ridge National Laboratory’s petaflop Cray XT5 sys-
tem, Jaguar. Under the Universal Nuclear Energy
Density Functional (UNEDF) SciDAC collaboration
[2], nuclear physicists, working with applied math-
ematicians, computer scientists, and computational
scientists, have developed and scaled their compu-
tational tools on leadership-class systems. Through
the Innovative and Novel Computational Impact on
Theory and Experiment (INCITE) program, 1 nu-
clear physics research has received sizable allocations
on leadership class computing resources and earned
early access to Jaguar with a Petascale Early Science
project.

At the frontier of discovery, nuclear physics the-
ory aims to explain the nature of nuclei, an under-
standing of which is fundamental to energy, medi-
cal, and biological research, and national security.
The constituent nuclear particles, protons and neu-
trons, interact through the very complex strong nu-
clear force, which is governed by quantum chromo-
dynamics (QCD), the theory describing quarks, glu-
ons, and the strong force. Theorists are working to-
ward a fundamental, unified, predictive description

1http://www.doeleadershipcomputing.org/incite-program/

of nuclei based on the underlying theory of QCD.
To accomplish these objectives entails considering

nuclei that span the entire chart of nuclides, and re-
quires the use of a variety of theoretical and com-
putational methods, such as those shown in Fig-
ure 1. Central to these theoretical approaches is
solving the nuclear quantum many-body problem,
Schrödinger’s equation, for many interacting parti-
cles. Schrödinger’s equation for an A-body system
is given by

HΨ(r1, r2, ..., rA) = λΨ(r1, r2, ..., rA) (1)

where H is the many-body Hamiltonian constructed
from a given interaction and kinetic energy of the
system, and Ψ is the many-body wavefunction with
corresponding eigenvalue λ. The complexity of solv-
ing Schrödinger’s equation increases exponentially
with increasing numbers of particles and states that
the system can access. There are only a few analyt-
ically solvable problems, and virtually exact numer-
ical solutions are available for systems with at most
three or four particles. To address systems with
more particles requires the development of stable al-
gorithms and reliable numerical many-body approx-
imation methods, and high-performance computing
resources upon which to perform the computations.

Each of the computational approaches is best ap-
plied to a specific mass region, as shown in Fig-
ure 1. Ab initio methods, including Green’s Func-
tion Monte Carlo (GFMC), No-Core Shell Model
(NCSM) and coupled-cluster (CC) methods, are
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Figure 1: Theoretical methods and computational techniques to solve the nuclear many-body problem.
The red vertical and horizontal lines show the magic numbers, reflecting regions where nuclei are expected
to be more tightly bound and have longer half-lives. The anticipated path of the astrophysical r-process
responsible for nucleosynthesis of heavy elements is also shown (purple line). The thick dotted lines indicate
domains of major theoretical approaches to the nuclear many-body problem. For the lightest nuclei, ab
initio calculations (GFMC, NCSM and the CC method), based on the bare nucleon-nucleon and three-
nucleon interactions, are possible (red). Medium-mass nuclei can be treated by configuration interaction
(CI) and coupled-cluster (CC) techniques (green). For heavy nuclei, the density functional theory, based on
self-consistent/mean-field theory (blue), is the tool of choice. By investigating the intersections and overlaps
of these regions we aim to establish a robust theory with high-quality predictive power and to solve the
aforementioned physics problems. Adapted from Ref. [5].
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Nucleus Four major shells Seven major shells
4He 4× 104 9× 106

8Be 4× 108 4× 1013

12C 6× 1011 4× 1019

16O 3× 1014 4× 1024

Table 1: Examples of shell model dimensions for
selected nuclei and given number of major shells.
Taken from [6].

practical for light nuclei. Medium-mass nuclei are
studied using configuration interaction (CI) or CC,
and heavy nuclei using density functional theory
(DFT). The algorithms underlying these methods
employ a broad range of mathematical methods,
from linear algebra to Monte Carlo.

Solving the nuclear many-body problem requires
immense high-performance computing resources be-
cause of the enormity of the problem size. Model-
space dimensions for configuration interaction, com-
monly known as shell model, calculations are given
in Table 1. Shells are defined by harmonic oscillator
single-particle orbits and shell model dimensions are
given by all allowed single-particle product states for
a given number of shells and a given nucleus. Cur-
rent shell model applications can reach dimensions
of 1010.

To efficiently use allocated and limited comput-
ing hours and further scale applications to address
larger problem sizes, domain scientists must aug-
ment with their daily research activities with code
optimization. This paper describes profiling studies
and optimizations to two representative codes run-
ning on Jaguar XT5, NUCCOR and Bigstick. The
Nuclear Coupled-Cluster Oak Ridge (NUCCOR) ap-
plication solves the nuclear many-body problem us-
ing the coupled-cluster approximation which scales
only polynomially with the number of particles and
single-particle states. NUCCOR was developed by
David Dean and collaborators at ORNL where the
single and double excitations of the protons and neu-
trons are computed, along with a third-order correc-
tion, to produce the energy of the system. Bigstick
is a shell-model code developed by Calvin Johnson
at San Diego State University and Erich Ormand
at Lawrence Livermore National Laboratory, which
performs an on-the-fly recalculation of the large,
sparse Hamiltonian matrix and utilizes Lanczos di-
agonalization to solve for the lowest eigenvalues and
eigenvectors to describe the ground- and excited-

states of the system.
This paper is organized as follows. In section 2,

we present performance profiling results using Cray-
PAT and VampirTrace on NUCCOR and Bigstick.
Section 3 presents continued improvements to NUC-
COR using compiler optimizations and Cray com-
piler feedback. Section 4 describes identifying high-
impact regions of the code and the necessity and
outcome of hand-tuning the application. Conclu-
sions and future work are discussed in section 5.

2 Performance Profiling

Performance profiling can be performed with a vari-
ety of tools that do not require modifying the appli-
cation and take varying levels of overhead depending
on the depth of profiling desired. This highly use-
ful first step provides application performance data
that can be used to identify bottlenecks and plan for
actionable steps to improve the code. Profilers com-
monly used on Jaguar include CrayPAT and Vam-
pirTrace.

2.1 CrayPAT

We profiled NUCCOR with CrayPAT[1]. CrayPAT
is a package for instrumenting and tracing codes on
Cray systems. It is part of the larger Cray per-
formance tools package, which includes Apprentice
2 for visualizing the results of CrayPAT profiling.
First the user code is profiled to get an overview of
its behavior. Then CrayPAT can be used to further
refine the profiling of the code, to trace the most im-
portant subroutines and ignore the minor ones, and
further statistics can be gathered with another run
of the instrumented code.

Information that can be gathered with CrayPAT
includes time spent in subroutines (including the line
numbers at which significant time is spent), perfor-
mance imbalance, and hardware counter informa-
tion. With Apprentice 2, this information can be
visualized, and in addition a call tree can be viewed.

2.1.1 Analysis of NUCCOR

NUCCOR is written in Fortran and consists of ap-
proximately 16,000 lines of code across 14 files. All
but one file are written in Fortran 90, and use ad-
vanced language features such as modules and user-
defined types. Parallelization is implemented with
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MPI. Communication within NUCCOR is exclu-
sively collective.

We performed a CrayPAT analysis on the j-
coupled version of NUCCOR, a code that takes ad-
vantage of symmetries in certain nuclear configura-
tions to perform energy calculations on larger nuclei.
From this analysis we observed that on the small test
problem, the code spent more than half its time in
a subroutine called sort. Examining this code, we
found that it was a sorting algorithm reminiscent of
bubble sort, with a computational complexity pro-
portional to the square of the number of items to be
sorted. We implemented a heap sort instead, and
reduced sorting to about 3% of the total runtime.
Upon consultation with the authors of this code, we
learned that no sorting was necessary, and removed
the sorting subroutine altogether, resulting in a 30%
speedup on the full problem.

We also profiled the standard version of NUCCOR
with CrayPAT, and found that it spends nearly 70%
of its time in the subroutine t2_eqn_store_p_or_n.
In this subroutine, partial sums in the coupled-
cluster approximation are summed. It is a very large
subroutine, consisting of more than 2000 lines of
code, full of multiply nested loops and memory al-
locations and deallocations. This subroutine is the
primary focus of our optimization efforts in NUC-
COR.

2.2 VampirTrace

We profiled Bigstick with the VampirTrace [4] and
Vampir [3] tools. VampirTrace instruments a code
and produces trace files when run. The trace files are
then loaded into Vampir, which is used to visualize
the trace.

VampirTrace outputs a timeline trace of the work-
ings of an application. Along the x-axis is the time-
line of the code, and along the y-axis are the proces-
sor numbers. From this visualization of the trace, we
can easily pick out the interesting and anomalous be-
haviors of the program. Subroutines or functions of
particular interest can be color-coded to make them
stand out. See Table 2 for the color coding used in
the output reproduced here.

The instrumented code was run on 100 processors
with three different inputs: 1. The standard li4_7hw
input that comes with the code; 2. The previous in-
put modified so that Nexcite=6; and 3. The sec-
ond input modified to allow 500 Lanczos iterations.
From these runs, we were able to make some inter-
esting observations and provide some suggestions for

Subroutine Color
Bigstick subroutines:
reorthogonalize Orange
Other Bigstick Green

MPI subroutines:
MPI_Barrier Yellow
MPI_Allreduce Blue
MPI_File_Read_at Magenta
MPI_File_Write_at Cyan
Other MPI Red

VampirTrace overhead White

Table 2: Colors of functions in Vampir visualization
of Bigstick.

improvements.

2.2.1 Analysis of Bigstick

The top-level Vampir visualization of Bigstick is il-
lustrated in Figure 2. It resembles the patterns seen
in algorithms that are applied sequentially across
processes. This triangular processor pattern is seen
in the orthogonalization of the Lanczos vectors at
each iteration. One processor, p, writes to the Lanc-
zos vector file, and then all processors 0 to p−1 read
from the file and orthogonalize (See Figure 3).

We observe an unusually large number of
MPI_Allreduces, seen in blue, on Figure 3. Vam-
pir allows the developer to drill-down by looking at
smaller time intervals. Zooming in, we find that
these MPI calls originate in the Bigstick subroutine
block_reduce (the green portions between the blue
parts in Figure 4). Bigstick spends more time in
MPI_Allreduce than in any other MPI function ex-
cept MPI_Barrier.

Bigstick spends a disproportionate amount of time
in MPI_Barriers. This indicates work imbalance.
Interestingly, most of the time spent in barriers oc-
cur within the clocker subroutine, used for produc-
ing timings to measure the performance of the code.
Putting MPI_Barriers in clocker results in all pro-
cessors reporting (nearly) the same timings for every
subroutine, hiding evidence of load imbalance.

Using Vampir, we see anomalous behavior at the
start of the application run, reproduced in Fig-
ure 5. All processors appear to be performing
write_wfn_header, but all processors are writing
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Figure 2: Overview of Bigstick with Vampir. Note the triangle that begins at the 180-second mark.
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(a)

(b)

Figure 3: (a) Closeup of three steps within the triangle. Observe the global reorthogonalization followed
by the reading by processors 0–3, followed by another reorthogonalization performed locally, then a series
of MPI Allreduces, and P4 writing to the file. In the next step, P0–4 read and P5 writes, etc. until all
processors read and write. (b) One iteration within the triangle.
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Figure 4: Closeup of block reduce phase. Most of
the time is spent in MPI Allreduce. White portion
(including portions labeled sync) represents Vampir-
Trace overhead.

the exact same data into the file, and simply over-
writing one another. Fixing this could drastically
reduce the time spent in the initialization phase, es-
pecially as the processor count grows and the con-
tention for the file also grows.

2.2.2 Suggested Improvements

A lot of time is spent in MPI_Barrier because of the
way the Lanczos method is implemented. The bar-
riers are found primarily in the clocker subroutine,
so removing them from clocker would simply cause
processes to spend more time within the actual sub-
routines that clocker is bracketing. The net effect
would be that processors would still spend a lot of
time waiting, just not in a barrier. But this could
allow clocker to be used as a first-order measure of
the load imbalance, which could prove useful.

The bottleneck in the iterative stage is the way
that the Lanczos vectors are written and read. This
creates a sequentiality that results in many processes
being idle while they are waiting for a few others to
complete their work. Even if we run more iterations
and every process is reading (as they were in the last
400 iterations of Run 3), there is still a delay as all
processes wait for a single process to write.

Reducing the amount of orthogonalization per-
formed would speed up the code. It is not usu-
ally necessary to orthogonalize at every step — in a
worst-case scenario, this will result in some duplicate
eigenvalues, but the extreme eigenvalues and eigen-

Figure 5: Time spent at beginning in
write wfn header and other subroutines. Timeline
is zoomed in to view the culprit processor that
is causing all the others to delay. White repre-
sents VampirTrace overhead, which is primarily
responsible for delay (probably slow writing to
trace file due to file system issue), but note the
drastically different times across processors spent in
write wfn header.

vectors should still be fairly accurate. Depending on
the conditioning of the operator applyh, performing
less frequent orthogonalization might not result in
any significant loss of accuracy.

Another way to speed up the code is to combine
collectives. In the block_reduce phase, if it were
possible to combine MPI_Allreduce calls, it could
result in some improvement in performance. The
overhead in initializing collective operations could
be partially eliminated. For small messages such
as these, the time spent setting up the data trans-
fer overshadows the time spent actually transferring
data. Bundling these calls together could save some
overhead.

If all the processors are writing different output to
the file at the beginning of the code, then we suggest
looking into ways to stage that writing differently.
An algorithm in which processors all write to a sin-
gle file simultaneously is not scalable as the process
count rises. Scalability issues begin to show up by
the 10,000-process mark. Reducing the number of
processors accessing the file (e.g., group output so
that one processor writes on behalf of several oth-
ers), or using an I/O library such as ADIOS [7] that
will do all the hard work of optimizing I/O would
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both be good strategies to try.

3 Compiler Optimization

In the course of performance profiling, we observed
anomalous behavior in another production version of
NUCCOR using the Intel compiler on Jaguar. Addi-
tional investigation revealed this behavior to be due
to a compiler bug. Since the nuclear physics commu-
nity relies heavily upon the Intel compiler for high
precision, this bug was particularly disconcerting to
them. We were intrigued by this problem, however,
and set out to see how NUCCOR would perform
when compiled with each of the five compilers avail-
able on Jaguar, and expanded the experiments to
include multiple optimization levels with each com-
piler as well.

This work led us to examine the performance of
the code — in particular, one subroutine that occu-
pied more than half the code’s runtime — and test
improvements to the algorithms in the code.

The default programming environment is the PGI
programming environment, but other programming
environments can be loaded. We were curious to
see how the PGI compiler would compare to the
open-source GNU compiler, the Intel compiler (a
particularly interesting case because Jaguar’s chips
are manufactured by AMD), the Pathscale compiler,
and Cray’s own compiler, developed in-house for the
XT5.

To test the performance of the compilers, we
sought a problem that could be run on a moder-
ate number of processors for under an hour. We
chose a test problem that computed the energies of
the 16O (oxygen-16) nucleus. It runs on exactly 441
processors for roughly forty minutes.

3.1 Procedure

We compiled the code with all five compilers avail-
able on the machine, and at multiple optimization
levels: -O0 (no optimizations), -O1 (some optimiza-
tions), -O2 (moderate optimizations), -O3 (high op-
timizations), without any flags (default optimization
level), and at the highest optimization level (subjec-
tively chosen based on recommendations from col-
leagues and compiler experts). The compilers, their
versions, and the flags for highest optimization are
shown in Table 3. We then ran the code on the test
problem and compared timings.

Compiler Version Highest Optimization
Flags

Cray 7.1.5 -O3
GNU 4.2.2 -O2 -ffast-math

-fomit-frame-pointer
-mfpmath=sse

Intel 11.1.046 -O3
Pathscale 3.2 -Ofast
PGI 9.0.4 -fast

Table 3: Compiler version and optimization infor-
mation.

3.2 Results

We performed three runs of each compiler and op-
timization level combination, and averaged the re-
sults. In all cases the program produced identical
output (with the exception of timings). In Table
4, the winners and runners-up for each optimization
level are reproduced. Figure 6 summarizes the re-
sults at each optimization level in graphical form.

The Cray compiler is the overall champion, win-
ning or placing at all optimization levels. At the -O0
and -O1 optimization levels (where performance is
not all that important anyhow) it is only 6% slower
at the worst. At the -O2 and -O3 optimization lev-
els, it was about 25% faster than its nearest com-
petitor. The surprising result was the performance
of the Pathscale compiler with optimal flags — at
all the other optimization levels, the Pathscale com-
piler’s performance consistently ranked low, yet it
was more than 20% faster than the Cray compiler
at the highest level of optimization.

Profiling NUCCOR revealed that more than half
the total runtime of the code was spent in one sub-
routine: t2_eqn_store_p_or_n. This function is
full of deeply nested loops. While there are many
individual loops taking up small portions of the run-
time, iterative updates dominate the runtime for
NUCCOR. So, if the efficiency of these loops could
be improved, the overall runtime could be drasti-
cally reduced — a 50% reduction in time spent in
t2_eqn_store_p_or_n would translate into a 25%
reduction in total walltime. The Pathscale com-
piler’s superior performance at the -Ofast optimiza-
tion level was because it optimized these loops better
than any other compiler.

Discussing the results of the above experiments
with compiler developers at Cray, we found that
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Optimization Best Second Best % difference
Level Performer Performer in walltime
-O0 PGI Cray 3.54
-O1 Intel Cray 5.88
-O2 Cray PGI 24.9
-O3 Cray PGI 26.2
No flags Cray Intel 26.4
Optimal Pathscale Cray 20.5

Table 4: Best performance at each optimization level. The final column indicates the percent difference in
walltime of the NUCCOR runs of the best and second-best performing compilers.
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Figure 6: Performance across compilers (Cray, GNU, Intel, Pathscale, and PGI) at various optimization
levels.
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ii=0
do b=below_ef+1,tot_orbs
do j=1,below_ef
ii=ii+1
jj=0
do a=below_ef+1,tot_orbs
do i=1,below_ef
jj=jj+1
t2_ccm_eqn%f5d(a,b,i,j)= t2_ccm_eqn%f5d(a,b,i,j)

+ tmat7(ii,jj)
t2_ccm_eqn%f5d(b,a,i,j)= t2_ccm_eqn%f5d(b,a,i,j)

- tmat7(ii,jj)
t2_ccm_eqn%f5d(a,b,j,i)= t2_ccm_eqn%f5d(a,b,j,i)

- tmat7(ii,jj)
t2_ccm_eqn%f5d(b,a,j,i)= t2_ccm_eqn%f5d(b,a,j,i)

+ tmat7(ii,jj)
ops_cnt=ops_cnt+4

end do
end do

end do
end do

Figure 7: Sample loop in NUCCOR code exhibiting poor stride.

some loops did not have good performance char-
acteristics. The authors of NUCCOR were think-
ing about physics, not compilers, when they wrote
this code, and as a result have incorporated sym-
metry into their loops for ease of readability. Fig-
ure 7 illustrates this symmetric coding: we ac-
cess t2_ccm_eqn%f5d(a,b,i,j) and its symmet-
ric neighbor t2_ccm_eqn%f5d(b,a,i,j) within the
same loop. Unfortunately, this makes it challeng-
ing for the compiler to optimize the code. As the
code stood, the strides through memory were caus-
ing cache thrashing and increased bandwidth use.
So we decided to test the impact of loop reordering
and loop fission on this loop.

4 Compiler Feedback

NUCCOR spends the majority of its time per-
forming the loop updates in the subroutine
t2_eqn_store_p_or_n. This section of the code is
characterized by deeply nested loops performing up-
dates to arrays. There are many of these loops, but
they follow a similar pattern, so any optimizations
that we could apply to one loop could be applied to

most of the others. In this section, we describe the
types of loop optimizations that are relevant to our
work with NUCCOR.

To figure out how to improve the performance of
the loops in the code, we began by examining the
annotated output of the compiler. The Cray com-
piler can produce an annotated listing of the code
that details how it was able to optimize the code by
invoking the compiler with the flag -rm. This anno-
tated output file, marked with the .lst suffix, con-
tains annotated line-by-line output followed by more
detailed explanations of the compiler’s optimization
decisions. In Figure 8, we can see an example of this
annotated output. The r8 means that the compiler
unrolled the i loop eight times.

4.1 Types of Loop Optimization

There are many possible optimizations that can be
made to loops. The optimizations relevant to this
discussion are loop unrolling, vectorization, reorder-
ing, and fission.

Loop unrolling is a means of improving the speed
of executing a loop by reducing or eliminating loop
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371. ii=0
372. 1--------< do b=below_ef+1,tot_orbs
373. 1 2------< do j=1,below_ef
374. 1 2 ii=ii+1
375. 1 2 jj=0
376. 1 2 3----< do a=below_ef+1,tot_orbs
377. 1 2 3 r8-< do i=1,below_ef
378. 1 2 3 r8 jj=jj+1
379. 1 2 3 r8 t2_ccm_eqn%f5d(a,b,i,j)=... +tmat7(ii,jj)
380. 1 2 3 r8 t2_ccm_eqn%f5d(b,a,i,j)=... -tmat7(ii,jj)
381. 1 2 3 r8 t2_ccm_eqn%f5d(a,b,j,i)=... -tmat7(ii,jj)
382. 1 2 3 r8 t2_ccm_eqn%f5d(b,a,j,i)=... +tmat7(ii,jj)
383. 1 2 3 r8 ops_cnt=ops_cnt+4
384. 1 2 3 r8-> end do
385. 1 2 3----> end do
386. 1 2------> end do
387. 1--------> end do

Figure 8: Annotated output of compiler for sample loop in Figure 7.

! original loop
do i = 1,N
x(i) = i

end do

! unrolled loop
do i = 1,N,2
x(i) = i
x(i+1) = i+1

end do

Figure 9: Simple loop unrolling. Loop on right in-
crements loop index only N/2 times, at the expense
of larger executable size.

control structures. Executing control structures
(e.g., incrementing the loop index) takes up valuable
execution time that could instead be spent execut-
ing the contents of the loop. The tradeoff is that
the size of the executable is increased, because in-
structions are explicitly written into the binary. For
example, the loop in Figure 9, when unrolled, in-
crements the index half the number of times as the
original loop, but requires additional instructions be
explicitly written into the binary.

Vectorization is the process of changing the
loop to process one operation on multiple pairs of
operands at once, rather than on only a single pair
of operands. Vectorization can improve performance
by several orders of magnitude, if it is done properly

! original loop
do i = 1,N
do j = 1,M
x(i,j) = i*j

end do
end do

! reordered loop
do j = 1,M
do i = 1,N
x(i,j) = i*j

end do
end do

Figure 10: Simple loop reordering. Loop on right
has better stride in column-oriented Fortran.

and the data sets are sufficiently large. Vectorization
is possible only for loops without data dependence
within the loop (e.g., x(i+1) must be independent
of x(i)).

Reordering is the process of rearranging the index-
ing of a loop or multiply-nested loop to improve per-
formance. Some looping arrangements access mem-
ory in an inefficient manner, requiring the loading
and reloading of sections of an array into cache more
frequently than necessary. Loop reordering, e.g., in-
terchanging the inner and outer loop indices, can fix
this problem. Figure 10 has an example of simple
loop reordering, and Figure 11 shows the effect of
incrementing column-wise or row-wise on the mem-
ory stride.
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L=i+jI
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L=i+jI

... ...

(b)

Figure 11: Memory stride when accessing an array
(a) row-wise versus (b) column-wise. L represents
address in memory space of element (i, j) in array.

Fission is the process of splitting one loop into
multiple loops over the same index range, with the
goal of improving the locality of reference. Reorder-
ing the loop can often fix problems with locality
of reference, but if there are two arrays being in-
cremented within the loop, one of which has good
stride, it might make more sense to split the loop
into two separate loops, each of which can be or-
dered to take advantage of locality of reference.

5 Hand Tuning

While the compiler can often perform some of the
loop optimizations described above, for maximum
performance, human intervention is required. We
identified some loops from the NUCCOR subrou-
tine t2_eqn_store_p_or_n that were good candi-
dates for hand tuning. To test the efficacy of hand
tuning, we created a test code comprised of a driver
plus the code fragments in Figures 12, 13, and 14,
representing the original loop, a reordering to im-
prove memory stride, and loop fission, respectively,
and compiled it under all five compilers at the high-
est optimization level. In addition, to gauge the im-
pact of the Pathscale -Ofast flag, we compiled with

Wall time for two iterations (s)
Compiler Original Reordered Fissioned
Cray 16.982 9.522 2.527
GNU 16.744 9.351 4.208
Intel 17.046 9.558 4.523
Pathscale
-O3 13.391 11.659 4.076
-Ofast 1.713 1.414 4.094

PGI 24.869 8.879 4.363

Table 5: Performance of reconfigured loops. Test
program was compiled using optimal flags from Fig-
ure 3, except Pathscale as noted in table.

both -O3 and -Ofast for Pathscale.

5.1 Results

With the exception of Pathscale compiled with
-Ofast, the reordered loop took less time than the
original loop, and the fissioned loop took less time
than the reordered loop. For the Cray compiler, the
reordering reduced the runtime of the loop by nearly
a factor of 2, and the fissioning reduced the runtime
by a factor of 8. In the case of Pathscale compiled
with -Ofast, the fissioned loop had the worst per-
formance, and the reordered loop improved perfor-
mance slightly. The secret to the Pathscale com-
piler’s success is not clear; the fact that it performed
worse on the fissioned loop suggests that fission is
not the technique used by the compiler.

6 Future Work

We have demonstrated the need for optimization in
nuclear physics codes, and the potential for large
performance gains. We are in the process of im-
plementing what we have learned from these pro-
files, compiler feedback, and the testing of loop re-
structuring in NUCCOR. Preliminary results look
promising.

For nuclear physicists to remain competitive users
of leadership high-performance computing resources,
their codes must continue to evolve. As we demon-
strated with NUCCOR and Bigstick, there are a
number of relatively simple changes that can be ap-
plied to improve performance.

Further performance gains can be made through
more in-depth measures. Many nuclear physics
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ii = 0
do b = abmin, abmax

do j = ijmin, ijmax
ii = ii+1
jj = 0
do a = abmin, abmax

do i = ijmin, ijmax
jj = jj+1
f5d(a,b,i,j) = f5d(a,b,i,j) + tmat7(ii,jj)
f5d(b,a,i,j) = f5d(b,a,i,j) - tmat7(ii,jj)
f5d(a,b,j,i) = f5d(a,b,j,i) - tmat7(ii,jj)
f5d(b,a,j,i) = f5d(b,a,j,i) + tmat7(ii,jj)

end do
end do

end do
end do

Figure 12: Sample NUCCOR loop from Figure 7 as translated into test code.

do i = ijmin, ijmax
jj = 0
do a = abmin, abmax

do j=ijmin, ijmax
jj = jj+1
ii = 0
do b = abmin, abmax

ii = ii+1
f5d(a,b,i,j) = f5d(a,b,i,j) + tmat7(ii,jj)
f5d(b,a,i,j) = f5d(b,a,i,j) - tmat7(ii,jj)
f5d(a,b,j,i) = f5d(a,b,j,i) - tmat7(ii,jj)
f5d(b,a,j,i) = f5d(b,a,j,i) + tmat7(ii,jj)

end do
end do

end do
end do

Figure 13: Loop from Figure 12 reordered for better stride in tmat7 variable.
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ii = 0
do j = ijmin, ijmax

do b = abmin, abmax
ii = ii+1
jj = 0
do i = ijmin, ijmax

do a = abmin, abmax
jj = jj+1
f5d(a,b,i,j) =
f5d(a,b,i,j) +
tmat7(ii,jj)

f5d(a,b,j,i) =
f5d(a,b,j,i) -
tmat7(ii,jj)

end do
end do

end do
end do

jj = 0
do i = ijmin, ijmax

do a = abmin, abmax
jj = jj+1
ii = 0
do j = ijmin, ijmax

do b = abmin, abmax
ii = ii+1
f5d(b,a,i,j) =
f5d(b,a,i,j) -
tmat7(ii,jj)

f5d(b,a,j,i) =
f5d(b,a,i,j) +
tmat7(ii,jj)

end do
end do

end do
end do

Figure 14: Loop from Figure 12 fissioned for better performance.
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Figure 15: Performance of reconfigured loops com-
piled with Cray, GNU, Intel, Pathscale -O3, Path-
scale -Ofast, and PGI compilers, respectively, on
original (blue), reordered (red), and fissioned (green)
loop.

codes use a manager-worker paradigm, with all pro-
cesses marching in lock-step and coordinated by a
central manager process, which becomes less scalable
as we approach hundreds of thousands of processes.
Rewriting the algorithms to be less centralized and
more asynchronous would improve scalability. In
many cases this would require a complete rewrite of
the code, which will require a significant investment
of person-hours that might instead be spent mak-
ing scientific discoveries with existing codes. But in
order for nuclear physicists to be able to solve large
problems that are currently out of reach, this invest-
ment will have to be made. Restructuring nuclear
physics codes to expose more parallelism would be
beneficial, especially as we move toward hybrid sys-
tems.
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