

Cray User Group 2011 Proceedings 1 of 8

Performance of Density Functional
Theory Codes on Cray XE6

Zhengji Zhao, NERSC and Nicholas J. Wright, NERSC

ABSTRACT: Around one third of the computing cycles at NERSC are consumed by
materials science and chemistry users in each allocation year, and, approximately 75%
of them run various Density Functional Theory (DFT) packages, the majority of which
are pure MPI codes. In this paper, we select two representative DFT codes, VASP and
Quantum ESPRESSO, and analyze their performance on the Cray XE6. We focus upon
the use of OpenMP and/or the multi-threaded BLAS library to help to address the
reduced per-core memory on the Cray XE6 and to improve the performance of the codes.

KEYWORDS: threads, OpenMP, memory, performance, DFT codes, multicore

1. Introduction
The multicore trend in computing has brought new

challenges to application codes that currently run on High
Performance Computing (HPC) platforms. Specifically,
while Moore’s Law continues to double the number of
transistors on a chip, these extra transistors are being used
to add additional cores instead of increase clock speed as
in the past. Thus in order to achieve good performance
applications must address ever-increased amounts of
parallelism. At the same time as the number of cores is
increasing memory densities are also increasing, but not
at the same rate. Thus the amount of memory-per-core is
decreasing, and will continue to do-so. With the arrival of
our new Cray XE6, Hopper, at NERSC, our users have
been forced to deal with this multi-core challenge. The
machine has 24 cores-per-node, with 1.33 GB of memory
per node.

Since these multi-core processors are ideal for the
threaded applications, implementing OpenMP in
application codes is a possible path forward to get most
performance out of Hopper. We have seen that some
application codes already have OpenMP implemented.
Eg., a widely used density functional theory (DFT) code,
Quantum ESPRESSO has already implemented OpenMP
in the main code. However, adapting to a new
programming paradigm is not necessarily so
straightforward for many user communities. Looking at
the NERSC workload, the majority of the user

applications are still implemented using pure MPI. For
example, another DFT code, Vienna Ab-inito Simulation
Package (VASP), which consumes the most computing
cycles of any code at NERSC, is still running with flat
MPI.

Materials science and chemistry applications are an
important part of the workload at NERSC and correspond
to approximately 1/3 of total allocation hours each year at
NERSC, of which 75% corresponds to various density
functional theory (DFT) codes. Since DFT codes are an
important element in the NERSC workload, it is
interesting to see how well DFT codes perform currently
on Hopper. In this paper, we will present our performance
test results with the two representative DFT codes at
NERSC, VASP and Quantum ESPRESSO. Our tests
focus on the performance and memory requirements due
to the use of a hybrid MPI-OpenMP programming model.
As the VASP code does not currently contain OpenMP
directives we explore the use of a threaded version of the
BLAS library to examine the effect of using a threaded
programming model.

This paper is organized as follows. Following this
introduction, in section 2 we will give a brief introduction
on the Density Functional Theory. In section 3 we will
describe the configuration of Hopper and in section 4 and
5 we will discuss the performance of VASP and Quantum
ESPRESSO codes from using the threads, respectively.
And then we will conclude out our paper with a summary.

Cray User Group 2011 Proceedings 2 of 8

2. Density Functional Theory
 2.1 Khon-Sham equation

Density Functional Theory (DFT) [1] solves the
Kohn-Sham equation [2] of the wavefunctions Ψi(r), i=1,
2, …, N,

€

{− 1
2
∇2 +V (r)[ρ]}ψ i(r) = Eiψ i(r)

The N is the number of electrons in the system. The
potential V(r)[ρ] is a functional of the charge density ρ,
which is the sum of the wavefunction squared over the
occupied wavefunctions :

€

ρ(r) = |ψ i
i=1,Nocc
∑ (r) |2

Under a further approximation (local density
approximation), the potential V(r)[ρ] can be
approximated as follows,

€

V (r)[ρ] =V (r) Z R
|r−R | +

ρ(r')
|r−r'|∫

R
∑ d3r'+µ(ρ(r))

This is a non-linear eigenvalue problem, and has to be
solved iteratively.

2.2 A Flowchart of DFT codes
Figure 1 shows a typical computational flowchart of

a DFT code. A DFT code starts from a trial charge density
and a set of wavefunctions, from which the potential
V(r)[ρ] (Vin

tot(r) in Figure 1) in the Kohn-Sham equation
can be obtained.

At this point, the Kohn-Sham equation turns into a linear
eigenvalue problem, thus can be solved with one of the

available iteration schemes (usually no direct
diagonalization) for linear eigenvalue problems. Eg., the
residual minimization scheme-direct inversion in the
iterative subspace (RMM-DIIS) scheme [3,4], the blocked
Davidson iteration scheme [5,6], damped molecular
dynamics scheme, etc.. Once a new set of wavefunctions
is obtained iteratively, the new charge density (ρtot(r) in
Figure 1) can be calculated from it, so does a new
potential (Vout

tot(r) in Figure 1). If the difference between
the input and the output potentials is larger than the
required stopping criteria, then start over and repeat the
above steps until the stopping criteria meets.

2.3 Planewave DFT codes
DFT codes can be implemented with different basis

sets. Eg, the planewave basis, Gaussian basis, etc.. The
most commonly used basis in materials science, which
deals with the materials with periodicity mostly, is the
planewave basis set. The wavefunction Ψi(r) for a
periodic system can be expanded as sum of planewaves,

€

ψ i(r) = Ci,k+Ge
[i(k+G).r]

G
∑

Where the G is called the reciprocal lattice vector. The
electronic state is allowed only at a set of k points
determined by the boundary condition that apply to the
periodic system [7]. Note the partial differentiation term
(kinetic energy term) in the Kohn-Sham equation is
diagonal in the G space (or the reciprocal space), while
the potential term is diagonal in the real space. A frequent
Fourier transformation between the real space (r) and the
reciprocal space (G) is involved in the planewave code.

3. Hopper Configuration
Hopper, a Cray XE6, is the NERSC’s new petascale

machine. It is ranked number five on the November 2010
Top 500 List and has a peak performance of 1.28
Petaflops/sec. It has 212 TB of aggregate memory, and 2
Petabytes of online disk storage. Hopper consists of 6,384
compute nodes made up of two twelve-core AMD
'MagnyCours' 2.1 GHz processors. Each node has 24
cores, and two sockets. Each socket contains a Multichip
Module with two six-core processors in, as shown in
Figure 2. Thus each node essentially is a four-chip node,
and there are large NUMA penalties for crossing the chip
boundaries. The majority (6008) of the nodes have 32 GB
DDR3 1333 MHz memory per node, which is 1.33 GB
per core. Hopper compute nodes are connected via the
Gemini interconnect, with each pair of nodes is connected
to one Gemini chip and they in turn are connected
together as a 3D-torus.

Figure 1 A typical computational flowchart for a DFT
code (under the local density approximation).

J. Phys.: Condens. Matter 20 (2008) 294203 Z Zhao et al

Figure 2. The computational flow charts for the direct LDA method and the LS3DF method. In the LS3DF method, the first box corresponds
to equation (6) in the text, the second box corresponds to equation (5), and the third box corresponds to equations (2) and (3). The
self-consistent iteration potential mixing schemes in LDA and LS3DF are the same.

wavefunctions ψF,i (r) and norm conserving pseudopotentials
for the Hamiltonian. Equation (5) (the second box in the
LS3DF flow chart in figure 2) is solved using a conjugated
gradient method based on the plane-wave code, PEtot [16].
After the charge self-consistency is reached, due to the
variational principle, atomic forces can be calculated using
the Hellman–Feynman theory. Of practical importance is
the observation that the calculations of equation (5), the
computationally most expensive step in figure 2, can be carried
out independently for each fragment, which makes the overall
computation trivially parallelizable. In the above formalism,
we have used a Fermi–Dirac occupation function O(εF,i , EF)

in the summation over fragment wavefunction index i . This
is necessary if the overall system is metallic. However, if
the system is an insulator, and with proper surface passivation
each fragment is also an insulator, then O(εF,i , EF) is a sharp
step function for index i , with NF (2NF being the number of
electrons in a fragment) occupied states, and the rest of the
states unoccupied. In this case, O(εF,i , EF) does not depend
sensitively on EF, and the summation over i with O(εF,i , EF)

can be replaced by a summation over i up to NF without the
use of O(εF,i , EF).

One technical issue in our method is how to calculate
the passivation potential #VF(r) (so the resulting fragments
remain insulators). The pseudo-hydrogen atoms placed at the
surface of a fragment will make the fragment an insulator with
a fragment potential VF (r) if the fragment is calculated self-
consistently by itself. However, what we need in equation (6) is
to change the total potential Vtot(r) into the fragment potential
VF(r) by adding a surface passivation potential #VF (r).
Thus, #VF(r) is not just the hydrogen potential, it has to be
something more which can change the Vtot(r) in the buffer
region into a vacuum-like potential. To solve this problem,
we have used the sum of atomic charge densities to construct a
(non-self-consistent) ρF,atom(r), ρtot,atom(r). From these charge
densities and atomic pseudopotentials, we can calculate the

corresponding VF,atom(r) for the fragment LDA potential, and
Vtot,atom(r) for the total system LDA potential using the LDA
formula. Based on this potential, we have calculated the
surface passivation potential as

#VF (r) = VF,atom(r) − Vtot,atom(r) for r ∈ %F . (7)

Furthermore, to assure that #VF(r) at a given boundary B is
the same for all the fragments sharing this common boundary,
we have taken the average among all the fragments sharing this
boundary. A typical passivation potential #VF (r) is shown in
figure 3. Also shown in figure 3 are the fragment potential
VF(r) and the global total potential Vtot(r) as in equation (6).
Note that in an actual self-consistent calculation #VF (r) is
fixed throughout the calculation, and the generation of #VF(r)
does not take much time.

As discussed in the introduction, our approach is similar
to Yang’s divide-and-conquer method in that they both divide
the system into small pieces in three dimensions. Our LS3DF
method can also be compared to the fragment molecular
orbital (FMO) method [14]. FMO is specifically designed
for biological systems where a long molecule chain is divided
into many small segments (monomers). In the FMO method,
all monomers and monomer–monomer pairs are calculated
to take into account the artificial effects caused by breaking
the covalent bonds between the neighboring monomers. The
breaking of the chain molecule to monomers is basically an
one-dimensional event. As a result, only monomer–monomer
pairs need to be calculated. In contrast, in LS3DF we have
three-dimensional fragments with different sizes in a spatially
compact form. If we identify our smallest 1 × 1 × 1 fragment
with the monomers in FMO, then we have calculated up to
eight monomer clusters (the 2 × 2 × 2 fragments). As a result
of the spatial division (instead of focusing on molecule chains),
the LS3DF has a rigorous cancelation of the boundary effects.
As we will show, the error in LS3DF drops rapidly as the
fragment size increases.

4

Cray User Group 2011 Proceedings 3 of 8

4. Performance of VASP on the XE6
4.1 Experimental Setup

The VASP is an application for performing ab-initio
quantum-mechanical molecular dynamics (MD)
calculations using pseudopotentials and a plane wave
basis set [9]. Currently it is the most frequently used DFT
application at NERSC, and makes up approximately 8%
of the NERSC workload [10]. VASP is written in
Fortran90 and is parallelized with MPI.

The current version of VASP does not have OpenMP
implemented in the code at this time. However, it does
spend some of its runtime in Level-3 BLAS routines, thus
by linking the code to the Cray multi-threaded scientific
library 10.5.01 (-lsci_mc12_mp) we are able to get some
measure of the effects of threading upon its performance.

We used VASP v 5.2.11 (released on Jan 18, 2011).
The code was compiled with the PGI compiler 10.9.0,
with the optimization flags –fast –O3.

We tested multi-threaded VASP on two test cases
provided by NERSC users. These are real calculations
that they conducted on our systems which we modified
for our benchmarking purposes. The first case is for a
small system that contains 154 atoms (Zn48O48C22S2H34)
and 998 electrons. The calculation was done with a
80x70x140 real-space numerical grid, and the system
contains four k-points. This test case will be denoted as
A154 hereafter. The second test case is for a medium-
sized system containing 660 atoms
(C200H230N70Na20O120P20) and 2220 electrons. The number
of bands is 1456 and the calculation was done with a
240x240x486 real-space numerical grid and one k-point.
This test case will be denoted as A660 hereafter.

4.1 Results and Discussion
We tested the performance of VASP 5.2.11 on the

two selected cases. Our tests focused on the performance
implications from using a hybrid OpenMP + MPI
programming model. Therefore, for each test case, we
used a fixed number of nodes and ran an MPI-only job
and five more jobs where we varied the number of threads

whilst keeping the overall concurrency the same. We
measured the runtime and the overall memory usage in
each case. The memory measurement was done using the
NERSC profiling tool IPM [11]. IPM reports the total
memory used by the code, therefore we obtained the per-
core memory by dividing the total memory reported by
the available total number of cores, which is the number
of nodes times 24.

Figures 3 and 4 show the time spent on the first 5
electronic steps and the average per core memory for the
small test case A154 using 6 nodes, (144 total cores). The
time and memory were measured for both the residual
minimization scheme-direct inversion in the iterative
subspace (RMM-DIIS) (red bars) and the blocked
Davidson iteration schemes (blue bars) that are most
commonly used algorithms. Note that the flat MPI run on
the fully packed nodes (threads =1, MPI tasks = 144)
failed due to an out of memory (OOM) error.

Figure 3 shows that as the number of threads per MPI
task increases and the number of MPI tasks decreases the
time to complete the first five electronic steps increases
for the RMM-DIIS scheme. The code is simply not
spending enough time in the threaded BLAS routines to
realize a benefit. The time in the threading library is not
zero however; the green bar shows the performance for
VASP linked to the non-threaded version of BLAS
running on the same number of nodes. Its runtime is 20%

Figure 2 Hopper compute node [8].

Figure 3 The time spent on the first 5 electronic steps in
VASP. The stacked labels in the horizontal axis show the
number of threads per MPI task and the corresponding
number of MPI tasks. Where the red and blue bars are
the results corresponding to the two iterative schemes,
RMM-DIIS and the blocked Davidson schemes,
respectively. All tests were run on 6 nodes. The green and
purple bars at threads = 3 are the result of running the
flat MPI code on the same number of nodes but using
only 8 cores per node (threads = 1, MPI tasks = 48) using
the RMM-DIIS and Davidson schemes, respectively.

!"

#!!"

$!!!"

$#!!"

%!!!"

%#!!"

&!!!"

$" %" &" '" $%"

$((")%" (*" %(" $%"

!"
#
$%
&'
(%

)*#+$,%-.%/0,$12'3456%/1'7'%

+$#(,-./01234"

+$#(,566,-778"

9:.;"6<7,566,-778,"
=4>.?@A1"431A2"

9:.;"6<7,-./01234,
=4>.?@A1"431A2"

Cray User Group 2011 Proceedings 4 of 8

greater than in the threaded case. The results with the
Davidson scheme (blue bars) show more benefit from
using threading, the runtimes for two and three threads are
almost identical, and the increase in runtime from three to
six threads is only 35%. Again, we ran the unthreaded
version on 48 MPI tasks (purple bar), comparison with the
threaded version shows that the threaded version is about
24% faster. In every case we see that for 12 and 24
threads substantial NUMA effects are present, resulting in
substantial performance degradation.

Figure 4 shows that the memory usage is reduced in
both the RMM-DIIS and Davidson cases as the number of
the threads increases. With three threads the memory
usage is reduced by ~10% compared to two threads.

Figures 5 and 6 show results for the test case A660 using
32 nodes (768 cores). In this case we see that multi-
threading is not providing an overall performance benefit
for either the RMM-DIIS or Davidson methods. However,
the performance decrease in going from one to two
threads, for example, is only 11-13%. Therefore the
prospects seem good for implementing OpenMP in the
VASP code itself. The memory savings are comparable to
the previous case: of the order of 10% for each doubling
of the number of threads.

5. OpenMP and Performance of Quantum
ESPRESSO
5.1 MPI/OpenMP hybrid QE

Quantum ESPRESSO (QE) is an integrated suite of
computer codes for electronic-structure calculations and
materials modeling at the nanoscale. It is based on
density-functional theory, plane waves, and

Figure 4 The average per core memory during the first 5
electronic steps in VASP 5.2.11. The stacked labels in the
horizontal axis show the number of threads per MPI task
and the corresponding number of MPI tasks, respectively.
All tests were run on 6 nodes. Where the red and blue
bars are the results corresponding to the two iterative
schemes, the RMM-DIIS and the blocked Davidson
schemes, respectively.

!"

!#!$"

!#%"

!#%$"

!#&"

!#&$"

!#'"

%" &" '" (" %&" &)"

%))" *&")+" &)" %&" ("

!
"#

$%
&'
("

%'
)$
%"
'*+

,-
'

./#0"%'$1'23%"4567!89'246:6'

,%$)-.//-0112"

,%$)-34563789"

Figure 5 The time spent on the first 5 electronic steps in
VASP 5.2.11. The stacked labels in the horizontal axis
show the number of threads per MPI task and the
corresponding number of MPI tasks. Where the red
and blue bars are the results corresponding to the two
iterative schemes, RMM-DIIS and the blocked
Davidson schemes, respectively. All tests were run on 6
nodes. The green bar at threads = 3 shows the result of
running the flat MPI code on the same number of nodes
with the same number of MPI tasks (unpacked run).

!"

#!!"

$!!!"

$#!!"

%!!!"

%#!!"

&!!!"

&#!!"

'!!!"

$" %" &" (" $%" %'"

)(*" &*'" %#(" $%*" ('" &%"

!"
#
$%
&'
(%

)*#+$,%-.%/0,$12'3456%/1'7'%

+((!,-./01234"

+((!,566,-778"

Figure 6 The average per core memory during the first
5 electronic steps in VASP 5.2.11. The stacked labels in
the horizontal axis show the number of threads per
MPI task and the corresponding number of MPI tasks,
respectively. All tests were run on 6 nodes. Where the
red and blue bars are the results corresponding to the
two iterative schemes, the RMM-DIIS and the blocked
Davidson schemes, respectively.

!"

!#!$"

!#%"

!#%$"

!#&"

!#&$"

!#'"

%" &" '" (" %&" &)"

*(+" '+)" &$(" %&+" ()" '&"

!
"#

$%
&'
("

%'
)$
%"
'*+

,
-'

./#0"%'$1'23%"4567!89'246:6'

,((!-./012345"

,((!-677-.889"

Cray User Group 2011 Proceedings 5 of 8

pseudopotentials (both norm-conserving and ultrasoft)
[12].

In this work we use v 4.2.1 which already has
OpenMP implemented in the code. It uses multi-threaded
BLAS and ScaLPACK routines from the Cray scientific
library 10.5.01 (-lsci_mc12_mp) and the FFT routines
from ACML 4.4.0. The code was compiled with the PGI
compiler 10.9.0, with the optimization flags –fast –O3.

5.2 Test cases
We tested performance on the three standard

benchmark cases downloaded from [13], with the slight
modifications regarding the file IO and the number of k-
points. The first case is a small system that contains 112
gold atoms (Au112). The number of electrons in the system
is 1232 (number of bands 800). The calculation was done
over 125x64x200 (80x90x288 smooth grids) FFT grids,
and the system contains 2 k-points. This test case will be
denoted as AUSURF112 hereafter. The second test case is
for a medium-sized system containing 686 atoms
(C200Ir486). The number of electrons in the system is 5174
(number of bands 3104). The calculation was done over
180x180x216 FFT grids, and the system contains 2 k-
points. This test case will be denoted as GRIR686
hereafter. The third test case is for a large system
containing 1532 atoms (C1164O16N32H320). The number of
electrons in the system is 5232 (number of bands 2616).
The calculation was done over 540x540x540
(375x375x375 smooth grids) FFT grids, and the system
contains 1 k-point. This test case will be denoted as
CNT10POR8 hereafter. For the small and medium cases
the blocked Davidson iteration scheme was used and for
the large one the damped MD scheme was used.

5.3 Results and Discussion
In the same way as we did for VASP we report our

results for a fixed number of nodes, varying the number
of OpenMP threads and MPI tasks simultaneously.

Figures 7 and 8 are the results for the medium QE
test case GRIR686 using 60 nodes (1440 cores). The blue
bars in Figure 7 show the time to execute the first self-
consistent electronic step in QE, and the Figure 8 shows
the average per core memory during this run. Note that
the flat MPI run on the fully packed nodes (threads =1,
MPI tasks = 1440) failed due to the out of memory
(OOM) error.

From Figure 7 we can see that when the number of
threads per MPI task increases the time to complete the
first electronic step increases, especially when threads run
across the multiple NUMA nodes (threads > 6). At the
threads = 2, the code runs fastest. To see the performance
gain from using the OpenMP threads, we ran the flat MPI
QE version on the half-packed nodes, ie., running 720
MPI tasks with threads = 1 using the same number of
nodes, 60 (purple bar in Figure 5). One can see that the

hybrid version runs around 40% faster than the flat MPI
version using 2 threads. This indicates the OpenMP
implementation in QE is not as efficient as it needs to be
to achieve equivalent parallelization between OpenMP
and MPI.

Figure 7 The time spent on the first electronic step for the
blocked Davidson iteration Scheme in QE 4.2.1. The
stacked labels in the horizontal axis show the number of
threads per MPI task and the corresponding number of
MPI tasks. All tests were run on 60 nodes. The purple bar
at threads = 2 shows the result of running the flat MPI
code on the half-packed nodes (threads = 1, MPI tasks =
720).

!"

#!!"

$!!!"

$#!!"

%!!!"

%#!!"

&!!!"

$" %" &" '" $%" %("

$((!")%!" (*!" %(!" $%!" '!"

!"
#
$%
&'
(%

)*#+$,%-.%/0,$12'3456%/1'7'%

+,-,'*'"

./01"23-"45"60/78
90:;<="54=<>"

Figure 8 The average per core memory (blue bars) the
first electronic step for the blocked Davidson iteration
scheme in QE 4.2.1. The stacked labels in the horizontal
axis show the number of threads per MPI task and the
corresponding number of MPI tasks, respectively. Theses
tests were run on the 60 nodes. The red bar shows the
result of running the flat MPI version on the 120 half-
packed nodes (threads = 1, MPI tasks = 1440) for
comparison.

!"
!#$"
!#%"
!#&"
!#'"
("

(#$"
(#%"
(#&"
(#'"
$"

(" $")" &" ($" $%"

(%%!" *$!" %'!" $%!" ($!" &!"

!
"#

$%
&'
("

%'
)$
%"
'*+

,
-'

./#0"%'$1'23%"4567!89'246:"6'

+,-,&'&"

./01"23-"45"60/78
90:;<="54=<>"

Cray User Group 2011 Proceedings 6 of 8

From Figure 8 (blue bars) we see that the memory
usage reduces when the number of the threads increases.
Since the flat MPI run failed on the same number of fully
packed 60 nodes (threads = 1, MPI tasks = 1440) due to
the OOM error, we conducted a 1440 way flat MPI run on
the half-packed 120 nodes (threads = 1, MPI tasks =
1440, the red bar in Figure 6) for reference. One can see
that the memory usage is reduced to 64% of the flat MPI
run if two threads are used. And the memory is further
reduced to 24% of that of the flat MPI run if 6 threads are
used.

We see similar performance trends and memory

reductions for the other two test cases. Figures 9 and 10
show the time spent on the first two self-consistent
electronic steps and the average per core memory for the
large QE test case CNT10POR8 (1532 atoms) using 68
nodes/1632 cores, respectively; and Figures 11 and 12
show the time and memory results for the small test case
AUSURF112 (112 atoms) using 12 nodes, respectively.
The green bar in the Figure 9 and the blue bar in Figure
11 are the reference runs on the half-packed nodes. We
can see that in both test cases, in addition to the memory
requirement decreasing, the hybrid QE version
outperforms the flat MPI code at the OpenMP threads = 2.
Also, as in the medium case, the two thread case is ~40%
faster than the flat MPI one thread result running on the
same number of nodes.

From all three cases above, we consistently observed
the memory savings and performance gains when threads
are used. The memory requirement reduced by up to 10%

per core, and the execution time is reduced by ~20%-40%
when compared to the flat MPI code.

Figure 9 The time spent on the first 2 self-consistent
electronic steps in QE 4.2.1. The iteration scheme tested
was the damped MD method. The stacked labels in the
horizontal axis show the number of threads per MPI task
and the corresponding number of MPI tasks. All tests
were run on 68 nodes. The green bar at threads = 2 shows
the result of running the flat MPI code on the half-packed
nodes (threads = 1, MPI tasks = 720).

!"

#!!"

$!!!"

$#!!"

%!!!"

%#!!"

&!!!"

$" %" &" '" $%" %("

$'&%")$'" #((" %*%" $&'" ')"

!"
#
$%
&'
(%

)*#+$,%-.%/0,$12'3456%/1'7'%

+,-$!./0)"

1234"5.6"78"932:;
<3=>?@"87@?A"

Figure 10 The average per core memory during the first 2
self-consistent electronic QE 4.2.1. The iteration scheme
used was the damped MD method. The stacked labels in
the horizontal axis show the number of threads per MPI
task and the corresponding number of MPI tasks,
respectively. All tests were run on 60 nodes. The flat MPI
code failed to run on the fully packed nodes (threads = 1,
MPI tasks = 1440) due to the out of memory error.

!"!!!#

!"$!!#

!"%!!#

!"&!!#

!"'!!#

("!!!#

("$!!#

("%!!#

(# $#)# &# ($# $%#

(&)$# '(&# *%%# $+$# ()&# &'#

!
"#

$%
&'
("

%'
)$
%"
'*+

,
-'

./#0"%'$1'23%"4567!89'246:6'

,-.(!/01'#

Figure 11 The time spent on the first 2 electronic steps for
the blocked Davidson iteration Scheme in QE 4.2.1. The
stacked labels in the horizontal axis show the number of
threads per MPI task and the corresponding number of
MPI tasks. All tests were run on 12 nodes. The blue bar at
threads = 2 shows the result of running the flat MPI code
on the half-packed nodes (threads = 1, MPI tasks = 144).

!"
#!"
$!!"
$#!"
%!!"
%#!"
&!!"
&#!"
'!!"
'#!"
#!!"

$" %" &" ("

%))" $''" *(" ')"

!"
#
$%
&'
(%

)*#+$,%-.%/0,$12'3456%/1'7'%

+,-,./$$%"

/012"345"67"8109:
;1<=>?"76?>@"

Cray User Group 2011 Proceedings 7 of 8

Conclusions
We examined the performance of two popular DFT

codes, VASP and Quantum ESPRESSO on the Cray XE6
machine, Hopper, which is installed at NERSC.
Specifically we examined the performance of the codes
using the hybrid MPI+OpenMP programming model. Our
work was motivated by the decreased memory-per-core
available on Hopper as well as the likelihood that on
future machines this trend is likely to be exacerbated.

The VASP source code does not contain any
OpenMP extensions itself but as it spends a reasonable
fraction of its runtime in BLAS routines we linked with
threaded versions of those and examined the performance
effects. Our results show that VASP performance only
benefits slightly from this approach, with performance
gains of the order of 20-25% for one of our test case
(general kpoint VASP version), but there was no
performance gain for the other test case (Gamma point
only VASP version). Clearly the addition of OpenMP to
the source code could improve this situation considerably.

 In contrast the QE code does contain OpenMP
extensions. Our assessment shows that this produces
performance gains of up to 40% compared to the flat MPI
version running on the same number of cores. Also in
every case we examined the best performance was
achieved using two OpenMP threads, typically with per
core memory savings of 20 to 40%.

One advantage of using OpenMP for both these
applications is in cases where there is not enough memory
per core to run the problem of interest. In this case the
cores that would be unused will be utilized, at least
somewhat, and the time to solution will be decreased.

In future work we plan to examine the performance
of other applications as well as look at the possibility of
augmenting a few key routines in VASP with OpenMP
directives to improve performance further.

Acknowledgments
The authors would like to thank NERSC users Wai-

Yim Ching at University of Missouri - Kansas City and
Sefa Dag at Lawrence Berkeley National Laboratory for
providing us the VASP test cases. This work was
supported by the ASCR Office in the DOE, Office of
Science, under contract number DE-AC02-05CH11231. It
used the resources of National Energy Research Scientific
Computing Center (NERSC).

About the Authors
Zhengji Zhao is a HPC consultant at NERSC at

Lawrence Berkeley National Laboratory (LBNL). She
supports chemistry and materials science applications at
NERSC. She can be reached by email ZZhao@lbl.gov
and by phone 510-495-2540. Nicholas J. Wright works in
the Advanced Technologies group at NERSC, he can be
reached by email NJWright@lbl.gov and by phone 510-
486-5730.

References
[1] P. Hohenberg and W. Kohn, Phys. Rev. 136,

B864 (1964)
[2] W. Kohn and L.J. Sham, Phys. Rev. 140, A1133

(1965)
[3] D. M. Wood and A. Zunger, J. Phys. A, 1343

(1985)
[4] P. Pulay, Chem. Phys. Lett. 73, 393 (1980).
[5] E.R. Davidson, Methods in Computational

Molecular Physics edited by G.H.F. Diercksen
and S. Wilson Vol. 113 NATO Advanced Study
Institute, Series C (Plenum, New York, 1983), p.
95.

[6] B. Liu, in Report on Workshop "Numerical
Algorithms in Chemistry: Algebraic Methods"
edited by C. Moler and I. Shavitt (Lawrence
Berkley Lab. Univ. of California, 1978), p.49.

[7] M.C. Payne, M.P. Teter, D. C. Allan, T.A. Arias,
and J.D. Joannopoulos, Review of Modern
Physics, Vol.64, 1045 (1992)

[8] http://www.nersc.gov/users/computational-
systems/hopper/configuration/compute-nodes/

[9] http://cms.mpi.univie.ac.at/vasp/
[10] Francesca Verdier, Code analysis for AY2010, a

NERSC internal report
[11] http://ipm-hpc.sourceforge.net/

Figure 12 The average per core memory during the first 2
electronic steps for the blocked Davidson iteration scheme
in QE 4.2.1. The stacked labels in the horizontal axis show
the number of threads per MPI task and the
corresponding number of MPI tasks, respectively. All
tests were run on 12 nodes.

!"

!#!$"

!#%"

!#%$"

!#&"

!#&$"

%" &" '" ("

&))" %**" +(" *)"

!
"#

$%
&'
("

%'
)$
%"
'*+

,
-'

./#0"%'$1'23%"4567!89'246:6'

,-.-/0%%&"

Cray User Group 2011 Proceedings 8 of 8

[12] http://www.quantum-espresso.org/
[13] http://qe-

forge.org/frs/?group_id=10&release_id=48

