
Performance of Density Functional
Theory codes on Cray XE6

Zhengji Zhao, and Nicholas Wright
National Energy Research Scientific

Computing Center
Lawrence Berkeley National

Laboratory

•  Motivation
•  Introduction to DFT codes
•  Threads and performance of VASP
•  OpenMP threads and performance of
Qauntum Espresso
•  Conclusion

Outline

•  Challenges from the multi-core trend
–  Address reduced per core memory,
–  Make use of faster intra node memory access

•  Recommended path forward is to use
threads/OpenMP
•  Majority of the NERSC application
codes are still in flat MPI
•  Exam the performance implications
from the use of threads in real user
applications

Motivation

•  Materials and Chemistry applications
account for 1/3 of NERSC workflow.
•  75% of them run various DFT codes.
•  Among 500 application code
instances at NERSC, VASP consumes
the most computing cycles (~8%).
•  VASP is in pure MPI, current status
of majority user codes
•  Quantum Espresso, an OpenMP/MPI
hybrid codes, top #8 code at NERSC.

Why DFT codes

•  What it solves
–  Kohn-sham equation

Density Functional Theory

!

{" 1
2
#2 +V (r)[$]}% i(r) = Ei% i(r)

!

" i(r) = Ci,Ge
[i(k+G).r]

G
#!

" # i(r)# j (r)dr = $ ij,{# i}i=1,..,N

!

V (r)["] = Z R
|r#R | +

"(r')
|r#r'|$

R
% d3r'+µ("(r))

Local Density Approximation:

N electrons
N wave functions

 H!, 2 FFTs
(CG, RMM-DIIS,Davison)

Orthogonalization

Subspace diagonalization

Potential generation
solve poission equation
using density functional formula

Flow chart of DFT codes

!

{" 1
2
#2 +Vin (r)}$ i(r) = Ei$ i(r)

!

Vout (r)

!

"(r) = fn |# i
i
$ (r) |2

P
ot

en
tia

l m
ix

in
g

- V
in
, V

ou
t !

 n
ew

 V
in

!

" i |H |" j

!

{" i}i=1,..,N
trial charge density
trial wavefunctions

!

"(r) and

!

{" i}i=1,..,N

!

" i(r)" j (r)dr# = $ ij ,

!

"E < # breakno yes

!

{" i}i=1,..,N

Parallelization in DFT codes
Level 1: Parallel over k-points

!

{" i,k},i =1,...,N;k =1,nktot

•  The number of processors, Ntot, is divided
into nkg group, each group has Nk number of
processors (Ntot=nkg*Nk)

•  Each group of processors deal with nktot/nkg
number of k points

!

{" i,k}i=1,..,N

!

{" i,k}i=1,m

!

{" i,k}i=m+1,2m

!

{" i,k}i=m*(Ng#1)+1,N; ; …… ;

Processors
1 - Np

Processors
Np+1 - 2Np

Processors
N - Np+1 - N

Group 1 Group 2 Group Ng

…

•  The number of processors, Nk, is divided into Ng group,
each group has Np number of processors (Ntot=Ng*Np)
•  N wavefunctions are also divided into Ng groups, each
with m wavefunctions
•  One group of processors deal with one group of
wavefunctions

Parallelization in DFT codes
Level 2: Parallel over bands

Within each group of processors, the planewave basis is
divided among the Np number of processors:

FFT

Divide the G-space
into columns, and
distribute them to the
Np processors

Real space

Figures from http://hpcrd.lbl.gov/~linwang/PEtot/PEtot_parallel.html

Parallelization in DFT codes
Level 3: Parallel over planewave basis set

!

" i,k (r) = Ci,Ge
[i(k+G).r]

G
#

•  A planewave pseudopotential code
–  A commercial code from Univ. of Vienna

•  Libraries used
–  BLAS, fft

•  Parallel implementations
–  Over planewave basis set and bands
–  >1proc/atom scale
–  Flops 20-50% of peak (in real calculations)

•  VASP use at NERSC
–  Used by 83 projects, 200 active users

VASP

http://cmp.univie.ac.at/vasp

11

VASP: Performance vs threads

•  When the number of threads increases, a little or no
performance gain. Code runs slower.

•  But in comparison to the flat MPI, at threads=3, VASP runs
faster than the flat MPI on unpacked nodes by 20-25%

!"
#!!"
$!!!"
$#!!"
%!!!"
%#!!"
&!!!"
&#!!"
'!!!"
'#!!"

$" %" &" (" $%" %'"

$''")%" '*" %'" $%" ("

!"
#
$%
&'
(%

)*#+$,%-.%/0,$12'3456%/1'7'%

+$#',-./01234"

+$#',566,-778"

9:.;"6<7,566,-778,"
=4>.?@A1"431A2"

9:.;"6<7,-./01234,
=4>.?@A1"431A2"

Test case A154:

154 atoms
998 electrons
Zn48O48C22S2H34
80x70x140 real-space

grids;
160x140x280 FFT

grids
4 kpoints

12

VASP: Memory usage vs threads

•  Memory usage is reduced when the number of
threads increases

•  At threads=3, the memory usage is reduced by
10% compared to that of threads=2

Test case A154:

!"

!#!$"

!#%"

!#%$"

!#&"

!#&$"

!#'"

%" &" '" (" %&" &)"

%))" *&")+" &)" %&" ("

!
"#

$%
&'
("

%'
)$
%"
'*+

,-
'

./#0"%'$1'23%"4567!89'246:6'

,%$)-.//-0112"

,%$)-34563789"

13

VASP: VASP runs slower when
the number of threads increases

Threaded VASP at best (threads=2) is slightly
slower (~12%) than the flat MPI

!"

#!!"

$!!!"

$#!!"

%!!!"

%#!!"

&!!!"

&#!!"

'!!!"

$" %" &" (" $%" %'"

)(*" &*'" %#(" $%*" ('" &%"

!"
#
$%
&'
(%

)*#+$,%-.%/0,$12'3456%/1'7'%

+((!,-./01234"

+((!,566,-778"

Test case A660:

660 atoms
2220 electrons
C200H230N70Na20O120P20
240x240x486 real-

space grids;
480x380x972 FFT grids
1 kpoint (Gamma point)
Gamma kpoint only

VASP

14

VASP: Memory usage vs threads

Compare the memory usage for threads=2 and the flat MPI:
For RMM-DIIS: there is a slight memory saving
For Davidson: no memory saving at threads=2, slightly more

use of memory (<3%)

!"

!#!$"

!#%"

!#%$"

!#&"

!#&$"

!#'"

%" &" '" (" %&" &)"

*(+" '+)" &$(" %&+" ()" '&"

!
"#

$%
&'
("

%'
)$
%"
'*+

,
-'

./#0"%'$1'23%"4567!89'246:6'

,((!-./012345"

,((!-677-.889"

Test case A660:

•  A planewave pseudopotential code
–  An open software DEMOCRITOS National
Simulation Center and SISSA with collaboration with
many other institutes

•  Libraries used
–  BLAS, fft

•  Parallel implementations
–  Over k-points, planewave basis and bands
–  >1proc/atom scale

•  QE use at NERSC
–  Used by 21 projects

Quantum Espresso

http://www.quantum-espresso.org

16

QE: The Hybrid OpenMP+MPI
code runs faster than the flat MPI

At threads=2, QE runs faster than the flat MPI on half-
packed nodes by 38%

!"

#!!"

$!!!"

$#!!"

%!!!"

%#!!"

&!!!"

$" %" &" '" $%" %("

$((!")%!" (*!" %(!" $%!" '!"

!"
#
$%
&'
(%

)*#+$,%-.%/0,$12'3456%/1'7'%

+,-,'*'"

./01"23-"45"60/78
90:;<="54=<>"

Test case GRIR686:

686 atoms
5174 electrons
C200Ir486
180x180x216 FFT

grids
2 kpoints

17

At threads=2, the memory usage is reduced by 64%
when compared to the flat MPI

!"
!#$"
!#%"
!#&"
!#'"
("

(#$"
(#%"
(#&"
(#'"
$"

(" $")" &" ($" $%"

(%%!" *$!" %'!" $%!" ($!" &!"

!
"#

$%
&'
("

%'
)$
%"
'*+

,
-'

./#0"%'$1'23%"4567!89'246:"6'

+,-,&'&"

./01"23-"45"60/78
90:;<="54=<>"

Test case GRIR686:

686 atoms
5174 electrons
C200Ir486
180x180x216 FFT

grids
2 kpoints

QE: The OpenMP+MPI code uses
less memory than the flat MPI

18

At threads=2, QE runs faster than the flat MPI on half-
packed nodes by 28%

!"

#!!"

$!!!"

$#!!"

%!!!"

%#!!"

&!!!"

$" %" &" '" $%" %("

$'&%")$'" #((" %*%" $&'" ')"

!"
#
$%
&'
(%

)*#+$,%-.%/0,$12'3456%/1'7'%

+,-$!./0)"

1234"5.6"78"932:;
<3=>?@"87@?A"

Test case
CNT10POR8:

1532 atoms
5232 electrons
C200Ir486
540x540x540 FFT

grids
1 kpoint (Gamma point)

QE: The Hybrid OpenMP+MPI
code runs faster than the flat MPI

19

At threads=2, the memory usage is reduced by 30%

!"!!!#

!"$!!#

!"%!!#

!"&!!#

!"'!!#

("!!!#

("$!!#

("%!!#

(# $#)# &# ($# $%#

(&)$# '(&# *%%# $+$# ()&# &'#

!
"#

$%
&'
("

%'
)$
%"
'*+

,
-'

./#0"%'$1'23%"4567!89'246:6'

,-.(!/01'#

Test case
CNT10POR8:

QE: The OpenMP+MPI code uses
less memory than the flat MPI

20

At threads=2, QE runs faster than the flat MPI on half-
packed nodes by 22%

!"
#!"

$!!"
$#!"
%!!"
%#!"
&!!"
&#!"
'!!"
'#!"
#!!"

$" %" &" ("

%))" $''" *(" ')"

!"
#
$%
&'
(%

)*#+$,%-.%/0,$12'3456%/1'7'%

+,-,./$$%"

/012"345"67"8109:
;1<=>?"76?>@"

Test case
AUSURF112:

112 atoms
5232 electrons
C200Ir486
125x64x200 FFT grids
80x90x288 smooth

grids
2 k-points

QE: The Hybrid OpenMP+MPI
code runs faster than the flat MPI

21

At threads=2, QE runs faster than the flat MPI on half-
packed nodes by 38%

!"

!#!$"

!#%"

!#%$"

!#&"

!#&$"

%" &" '" ("

&))" %**" +(" *)"

!
"#

$%
&'
("

%'
)$
%"
'*+

,
-'

./#0"%'$1'23%"4567!89'246:6'

,-.-/0%%&"

Test case
AUSURF112:

QE: The OpenMP+MPI code uses
less memory than the flat MPI

•  Performance of VASP from using MPI
+OpenMP programming model

–  A low-effort thread implementation - linked
with the multi-threaded BLAS libraries
–  Slight performance gains in the order of
20-25%
–  Addition of OpenMP directives in the
source code should help this situation.
–  Slight memory savings
–  Many optional parameters that affect the
performance of VASP, our results are not all.

Conclusions

•  Performance of QE from using MPI
+OpenMP programming model

–  OpenMP directives in the source code +
linking to the multi-threaded libraries
–  Performance gains in the order of 40% in
comparison to flat MPI, best performance
achieved at threads=2
–  Significant memory savings, 20-40% per
core when compared to the flat MPI.

Conclusions --continued

•  OpenMP+MPI is a promising
programming model on Hopper

–  Other DFT and other MPI codes which can
make use of multi-threaded BLAS routines.

Conclusions --continued

•  NERSC user Wai-Yim Ching and Sefa
Dag for providing VASP test cases
•  NERSC resources

Acknowledgement

