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Outline 



•  Challenges from the multi-core trend 
–  Address reduced per core memory,  
–  Make use of faster intra node memory access  

•  Recommended path forward is to use 
threads/OpenMP 
•  Majority of the NERSC application 
codes are still in flat MPI 
•  Exam the performance implications  
from the use of threads in real user 
applications 

Motivation 



•  Materials and Chemistry applications 
account for 1/3 of NERSC workflow. 
•  75% of them run various DFT codes. 
•  Among 500 application code 
instances at NERSC, VASP consumes 
the most computing cycles (~8%). 
•  VASP is in pure MPI, current status 
of majority user codes 
•  Quantum Espresso, an OpenMP/MPI 
hybrid codes, top #8 code at NERSC. 

Why DFT codes 



•  What it solves 
–  Kohn-sham equation 

Density Functional Theory 
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Local Density Approximation: 



N electrons 
N wave functions 

     H!,  2 FFTs  
(CG, RMM-DIIS,Davison) 

Orthogonalization 

Subspace diagonalization 

Potential generation 
solve poission equation 
using density functional formula 

Flow chart of DFT codes 
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Parallelization in DFT codes 
Level 1: Parallel over k-points 

! 

{" i,k},i =1,...,N;k =1,nktot

•  The number of processors, Ntot, is divided 
into nkg group, each group has Nk number of 
processors (Ntot=nkg*Nk) 

•  Each group of processors deal with nktot/nkg 
number of k points 
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{" i,k}i=1,..,N

! 

{" i,k}i=1,m

! 

{" i,k}i=m+1,2m

! 

{" i,k}i=m*(Ng#1)+1,N; ; ……       ; 

Processors 
1 - Np 

Processors 
Np+1 - 2Np 

Processors 
N - Np+1 - N 

Group 1 Group 2 Group Ng 

… 

•  The number of processors, Nk, is divided into Ng group,  
each group has Np number of processors (Ntot=Ng*Np) 
•  N wavefunctions are also divided into Ng groups, each 
with m wavefunctions 
•  One group of processors deal with one group of 
wavefunctions 

Parallelization in DFT codes 
Level 2: Parallel over bands 



Within each group of processors, the planewave basis is 
divided among the Np number of processors: 

FFT 

Divide the G-space 
into columns, and 
distribute them to the 
Np processors 

Real space 

Figures from http://hpcrd.lbl.gov/~linwang/PEtot/PEtot_parallel.html 

Parallelization in DFT codes 
Level 3: Parallel over planewave basis set 

! 

" i,k (r) = Ci,Ge
[i(k+G ).r]

G
#



•  A planewave pseudopotential code 
–   A commercial code from Univ. of Vienna 

•  Libraries used 
–  BLAS, fft 

•  Parallel implementations 
–  Over planewave basis set and bands 
–  >1proc/atom scale 
–  Flops  20-50% of peak (in real calculations) 

•  VASP use at NERSC 
–  Used by 83 projects, 200 active users 

VASP 

http://cmp.univie.ac.at/vasp 
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VASP: Performance vs threads 

•  When the number of threads increases, a little or no 
performance gain. Code runs slower. 

•  But in comparison to the flat MPI, at threads=3, VASP runs 
faster than the flat MPI on unpacked nodes by 20-25%  
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Test case A154: 

154 atoms  
998 electrons 
Zn48O48C22S2H34 
80x70x140 real-space 

grids; 
160x140x280 FFT 

grids 
4 kpoints 
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VASP: Memory usage vs threads 

•  Memory usage is reduced when the number of 
threads increases 

•  At threads=3, the memory usage is reduced by 
10% compared to that of threads=2 

Test case A154: 
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VASP: VASP runs slower when 
the number of threads increases 

Threaded VASP at best (threads=2) is slightly 
slower (~12%) than the flat MPI 
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Test case A660: 

660 atoms  
2220 electrons 
C200H230N70Na20O120P20 
240x240x486 real-

space grids; 
480x380x972 FFT grids 
1 kpoint (Gamma point) 
Gamma kpoint only 

VASP 
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VASP: Memory usage vs threads 

Compare the memory usage for threads=2 and the flat MPI: 
For RMM-DIIS: there is a slight memory saving 
For Davidson: no memory saving at threads=2, slightly more 

use of memory (<3%)  
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Test case A660: 



•  A planewave pseudopotential code 
–  An open software DEMOCRITOS National 
Simulation Center and SISSA with collaboration with 
many other institutes 

•  Libraries used 
–  BLAS, fft 

•  Parallel implementations 
–  Over k-points, planewave basis and bands 
–  >1proc/atom scale 

•  QE use at NERSC 
–  Used by 21 projects 

Quantum Espresso 

http://www.quantum-espresso.org 
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QE: The Hybrid OpenMP+MPI 
code runs faster than the flat MPI 

At threads=2, QE runs faster than the flat MPI on half-
packed nodes by 38% 
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Test case GRIR686: 

686 atoms  
5174 electrons 
C200Ir486 
180x180x216  FFT 

grids 
2 kpoints 
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At threads=2, the memory usage is reduced by 64% 
when compared to the flat MPI  
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Test case GRIR686: 

686 atoms  
5174 electrons 
C200Ir486 
180x180x216  FFT 

grids 
2 kpoints 

QE: The OpenMP+MPI code uses 
less memory than the flat MPI 
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At threads=2, QE runs faster than the flat MPI on half-
packed nodes by 28% 
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Test case 
CNT10POR8: 

1532 atoms  
5232 electrons 
C200Ir486 
540x540x540   FFT 

grids 
1 kpoint (Gamma point) 

QE: The Hybrid OpenMP+MPI 
code runs faster than the flat MPI 
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At threads=2, the memory usage is reduced by 30%  
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Test case 
CNT10POR8: 

QE: The OpenMP+MPI code uses 
less memory than the flat MPI 
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At threads=2, QE runs faster than the flat MPI on half-
packed nodes by 22% 
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Test case 
AUSURF112: 

112 atoms  
5232 electrons 
C200Ir486 
125x64x200 FFT grids 
80x90x288 smooth 

grids  
2 k-points 

QE: The Hybrid OpenMP+MPI 
code runs faster than the flat MPI 
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At threads=2, QE runs faster than the flat MPI on half-
packed nodes by 38% 
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Test case 
AUSURF112: 

QE: The OpenMP+MPI code uses 
less memory than the flat MPI 



•  Performance of VASP from using MPI
+OpenMP programming model   

–  A low-effort thread implementation - linked 
with the multi-threaded BLAS libraries 
–  Slight performance gains in the order of 
20-25% 
–  Addition of OpenMP directives in the 
source code should help this situation. 
–  Slight memory savings 
–  Many optional parameters that affect the 
performance of VASP, our results are not all. 

Conclusions 



•  Performance of QE from using MPI
+OpenMP programming model  

–  OpenMP directives in the source code + 
linking to the multi-threaded libraries  
–  Performance gains in the order of 40% in 
comparison to flat MPI, best performance 
achieved at threads=2 
–  Significant memory savings, 20-40% per 
core when compared to the flat MPI. 

Conclusions               --continued 



•  OpenMP+MPI is a promising  
programming model on Hopper 

–  Other DFT and other MPI codes which can 
make use of multi-threaded BLAS routines. 

Conclusions               --continued 
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