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ABSTRACT: AMD and Intel are releasing new microprocessors in 2011 with extended 

AVX support. In this paper we show examples of compiler code generation and new library 

and tools capabilities which support these new processors. We also discuss performance 

issues, comparing the new platforms versus previous generations. 
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1. Introduction 

At CUG 2007 co-authors of this paper presented the 

characteristics and performance of the first and second 

generation x64 processors from AMD and Intel [1].   In 

particular, these second generation micro-architectures, 

the AMD “Barcelona” and the Intel “Woodcrest”, were 

the first to use 128-bit wide data paths and floating point 

units.  For the first time on the x86 architecture, 

vectorization of double-precision codes could enable a 2x 

speedup over non-vectorized, a.k.a. scalar, codes.   

Vectorization [2] for x64 processors is used to 

identify and transform loops to take advantage of packed 

SSE instructions, which are wide operations on data from 

multiple iterations of a loop.  PGI produced the first 

x86/SSE automatic vectorizing compiler in 1999.  At that 

time, Intel was providing and promoting a set of SSE 

intrinsics.  Today, there are 9 different header files of 

intrinsics in the latest Intel compiler distribution, covering 

each generation of hardware updates going back to the 

MMX days.  In total, they define 781 different routines.  

Unlike these intrinsics, vectorization is a technology 

which provides both code and performance portability. 

In the CUG 2007 paper it was shown how loop-

carried redundancy elimination (LRE), the restrict 

type qualifier for C and C++, ordering data sequentially in 

memory, and coding reductions so that they can be 

vectorized by the compiler resulted in an 1.80x speedup 

on a Sandia benchmark kernel. 

 

 

The next year, at CUG 2008, we presented a paper 

that studied the ratio of data bandwidth to peak floating 

point performance on x64 processors [3]. That year, the 

first quad-core chips were beginning to show up from 

AMD and Intel.  Most importantly, we showed that the 

peak transfer rate to and from memory divided by the 

peak floating point performance had trended dramatically 

downward over the generations of x64 processors, 

beginning in 2003.  Also in  2008, both Intel and AMD 

announced future chips, and it was feared that the trend 

would continue.  In May of 2008, we expected these new 

chips to show up in roughly 12 to 18 months, before the 

end of 2009. Diagram 1 is a slide from that presentation.   

 

 
Diagram 1.  The decline of peak rate of data transfer 

compared to peak floating point performance, from a 

presentation in 2008. 
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This year, 2011, a new generation of x64 processors 

containing Advanced Vector Extensions (AVX) [4] are 

being released by Intel and AMD.  Intel has named its 

micro-architecture “Sandy Bridge” and AMD is using the 

name “Bulldozer” for their design. While by some 

accounts these chips may be two years late in arriving, the 

good news for the High Performance Computing (HPC) 

community is that the memory hierarchy has had a chance 

to “catch up” in that time.  In our recent tests, all new 

Intel and AMD memory operation rates divided by the 

peak floating point performance of the new chips have 

stayed above the 1% mark.  This is an impressive result 

given the increasing number of cores and wider floating 

point units in the new chips, and can easily be measured 

using a benchmark such as Stream [5]. 

2.  The VEX Prefix, 256-bit SIMD Support 

 Both new processor architectures, the Sandy Bridge 

from Intel and the Bulldozer from AMD, support the new 

instruction encoding format called VEX.  This instruction 

prefix allows a set of extensions to the traditional x86 

instruction set architecture (ISA) that enable most of the 

new chip features that are important to compiler 

implementers,  library developers, and applications staff 

who care about performance at the micro-architecture 

level. 

The VEX prefix enables three and four operand 

syntax.  As we will explain later, even if your code does 

not take advantage of the wider SIMD floating point 

units, you can still possibly see performance gains due to 

the flexibility of these new operations.  Traditional x86 

instructions contain two operands, where one operand 

usually plays the role of both a source and destination, 

thus the operation is destructive to one of the sources.  In 

complicated floating point loops, the compiler may have 

to insert many register-to-register copy operations, which 

take slots in the pipelines and increase code size. 

For instance, if you need to keep two inputs x and y 

in xmm0 and xmm1, while adding x+y, up to this point 

the compiler might generate: 

 
movsd  %xmm1, %xmm2 

addsd  %xmm0, %xmm2  

 
and now with VEX enablement it can generate one 

instruction: 

 
vaddsd %xmm0, %xmm1, %xmm2 

 

But probably the most anticipated feature of the new 

chips for scientists and engineers is the doubling of the 

SIMD vector width and the width of the floating point 

pipeline.  The new floating point units from both AMD 

and Intel are now capable of performing four double 

precision floating-point multiplies and four double 

precision floating-point adds every cycle.   If you use 

single precision data, you can get twice that.  In rough 

terms, using tuned libraries such as MKL from Intel and 

ACML from AMD, users could see 20 or more 

GFlops/core in double precision routines such as dgemm, 

and 40 or more GFlops/core single precision, depending 

on the clock frequency. 

A new set of registers have been introduced, the 

ymm registers, which overlay the SSE xmm registers that 

were introduced with the Pentium III.  Instructions 

operating on these registers are enabled by the VEX 

prefix.  Diagram 2 shows how they are mapped onto the 

existing hardware. 

 

 
Diagram 2. 16 256-bit wide ymm registers overlay 

and  extend the current 128-bit wide xmm registers. 

 

 

A complicating factor for compiler writers is that the 

new instructions available for manipulating ymm registers 

are somewhat limited.  The 256-bit SIMD units are more 

or less divided into two separate lanes of 128-bits each.  

There are only four instructions which can move data 

across lane boundaries, and three of the four only operate 

on 128-bit chunks: 
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Diagram 3. The four operations which transfer data 

across AVX lanes.  The vbroadcast source must be a 

memory location, but can be 32, 64, or 128 bits wide. 

 

As an example of how this can become complicated, 

consider the following simple Fortran subroutine: 

 
subroutine sum5(a, c, n) 

real*8 a(n+4), c(n) 

do i = 1, n 

 c(i)=a(i)+a(i+1)+a(i+2)*2.d0+a(i+3)+a(i+4) 

end do 

end 

 

Compiling this for execution on a second generation 

x64 processor yields this CCFF [6] message: 

 

sum5: 

3, 2 loop-carried redundant expressions removed with 

2 operations and 4 arrays 

            Generated 4 alternate versions of the loop 

     Generated vector sse code for the loop 

     Generated a prefetch instruction for the loop 

 

Using LRE optimization, the compiler finds 

redundant expressions in the intermediate sums and 

carries those around to the next iteration.  When using 

xmm registers, the generated code for this loop requires 

one shuffle, but then produces two results for every three 

packed add operations: 

 
 

Diagram 4. XMM-based sum5 loop.  LC labeled 

values are loop-carried between iterations. 

 

Now with AVX and the dual-lane nature of the 

floating point units, the processor can perform twice as 

many additions per cycle, but the staging and 

manipulation of the data is more complex.  To enable the 

same operation-reducing strategy requires the new VEX 

vperm2f128 instruction to move data between lanes. 

 

 
 

Diagram 5. YMM-based sum5 loop. 
 
With the latest generation processors, we can produce 

four results for every three packed add operations, at the 

cost of one cross-lane transfer and one shuffle within 

lanes.  Contrast this with the scalar, straight-forward 

method which requires five scalar adds (or four adds and 

one multiply) for every element, and you can begin to see 

the gains that are possible with an optimizing compiler.  

Of course, with an uncountable number of loop construct 

possibilities, heuristics and strategies need to be 

developed into our compilers for optimal code generation, 

and that work is well underway. 

 

Another complicating factor for AVX code 

generation is the difficulty in generating aligned loads and 

stores.  For ymm registers, the most optimal alignment is 
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32 bytes.  Using current toolchains, 32 byte alignment can 

be forced for static data, but is not produced by most 

malloc() implementations, nor required of the stack by the 

ABIs.  Thus it is not easy to force 32 byte alignment for 

local variables.  We showed in our 2007 CUG paper that 

unaligned loads and stores, even when the data resides in 

L1 cache, run substantially slower than aligned loads, and 

that is still true with today’s processors.  While it would 

be an easy fallback position for the compiler to generate a 

loop schedule for the sum5 subroutine similar to what is 

shown in Diagram 6, we’ve found on both Intel and AMD 

processors that this runs slower than the original, non-

AVX code.  In fact, we’ve verified that in some cases 

breaking up a single 256-bit unaligned load or store (a 

movupd operation) into two 128-bit unaligned operations 

can actually run faster. 

 

 
Diagram 6. Straight-forward implementation 

performs poorly due to unaligned memory accesses.   

 

Finally we should mention the new AVX masked 

move instruction.  While we’ve made some use of this 

capability in our new hand-coded AVX-enabled library 

routines, because the vmaskmov load operation loads a 

zero if the mask is zero, and there is no corresponding 

way to mask the exception generation, another level of 

compiler analysis (or recklessness) would be needed for 

the compiler to make use of this generally for residual 

loops.  Performance issues currently make it unappealing 

for commonly executed code paths. 

3.  AMD-Specific Code Generation 

The AMD Bulldozer chip not only implements the 

AVX instruction set, but extends it by adding FMA4 

instructions as well.  FMA, which stands for fused 

multiply-add, has not, up to this point, been a part of the 

x86 instruction set, but has long been an instrumental part 

of traditional embedded processors.   In an FMA 

operation, the result of the multiplier directly feeds the 

adder, without being rounded or moved to a register.  This 

results in a shorter total pipeline for common multiply-

followed-by-add operations found in signal and image 

processing, matrix multiplication, dot products, and other 

BLAS routines, and in FFTs.  The FMA4 instructions use 

four operands total, three for sources, and one destination. 

On the Bulldozer chips, the only way to get peak 

floating-point performance is to use FMA4 instructions.  

It is easiest to model the performance by thinking of a 

single pipelined floating-point unit with three inputs, and 

on each cycle it can initiate some variant of an add, a 

multiply, or a multiply-add.  The results may come out of 

the unit at different points (cycles) in the pipe, but the 

input ports basically control the rate of execution. 

Because of this design, legacy objects and executables 

written or compiled using a style of vector packed adds 

and packed multiply operations will never run at peak 

performance on a Bulldozer chip.  It is important to 

recompile using the proper target processor flags, and use 

Bulldozer-tuned math libraries, for best performance. 

 

As an added wrinkle, the floating point unit on a 

Bulldozer chip is shared between two integer cores.  The 

two integer cores can perform address generation support 

and sequencer control for the floating-point operations 

independently, of course. 

 

 
 

Diagram 7. Block diagram of a Bulldozer module 

containing two integer cores and a shared floating-

point unit. 

 

What is interesting about the Bulldozer chip is that 

you can compile and tune your floating-point codes to run 

in 256-bit wide “AVX Mode”, where each thread  

assumes control of, and schedules ymm-based operations 
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over, the entire floating point unit.  Or, you can compile 

for a “Shared Mode”, where each thread uses either 

traditional SSE code generation, or newer VEX-based 

operations on xmm registers, and utilizes just one lane of 

the shared floating point resource.  There are VEX-based 

FMA4 opcodes which work on xmm registers and these 

can be used to achieve peak performance on multi-

threaded codes. 

Diagram 8 shows two versions of the generated code 

for a daxpy routine and the FMA4 operations that are 

used.  The PGI compiler can produce either mode based 

on compiler command-line options.  At this point, it is 

still too early to determine which mode should be default. 

 
.LB1_427: 

  vmovapd  (%rax,%r9), %xmm1 

  vfmaddpd %xmm1,(%rax,%r10),%xmm0,%xmm3 

  vmovapd  %xmm3, (%rax,%r9) 

  vmovapd  16(%rax,%r9), %xmm2 

  vfmaddpd %xmm2,16(%rax,%r10),%xmm0,%xmm3 

  vmovapd  %xmm3, 16(%rax,%r9) 

  . . . 

  addq     $64, %rax 

  subl     $8, %edi 

  testl    %edi, %edi 

  jg       .LB1_427 

------------------------------ 
.LB1_427: 

  vmovapd  (%rax,%r9), %ymm2 

  vfmaddpd %ymm2,(%rax,%r10),%ymm0,%ymm3 

  vmovapd  %ymm3, (%rax,%r9) 

  vmovapd  32(%rax,%r9), %ymm4 

  vfmaddpd %ymm4,32(%rax,%r10),%ymm0,%ymm3 

  vmovapd  %ymm3, 32(%rax,%r9) 

  . . . 

  addq     $128, %rax 

  subl     $16, %edi 

  testl    %edi, %edi 

  jg       .LB1_427 

 
Diagram 8. Partial assembly output for two versions 

of daxpy(), the top using 128-bit xmm registers and 

the bottom using 256-bit ymm registers.  Each is 

unrolled to perform four vfmaddpd operations per 

loop iteration. 

 

Given the discussions in the previous section 

concerning the difficulties manipulating data between 

lanes, and guaranteeing aligned loads and stores of 256-

bit data, it might turn out that for Bulldozer targets, 128-

bit VEX enabled code is the best approach.  Also given 

the graph in the introduction, for codes where the data is 

not all in registers or the lowest level caches, the floating 

point unit might be idle for many cycles. Tighter code 

might run more efficiently than wider-vector code, 

especially when it is multi-threaded.  We will continue 

our experiments in this area. 

 
Users should be aware that results obtained using 

FMA operations may differ in the lowest bits from results 

obtained on other X64 processors.  The intermediate 

result fed from the multiplier to the adder is not rounded 

to 64 bits. 

Bulldozer code generation is enabled in the PGI 

compiler suite by using the –tp=bulldozer command line 

option. 

4. Intel-Specific Code Generation 

Of course if you run either of the above loops on a 

Sandy Bridge machine, or any Intel-based processor for 

that matter, you get this result: 

 
    bash-4.1$ ./a.out 

    Illegal instruction (core dumped) 

 
There seems to be no question that on a Sandy Bridge 

processor it is best to run simple, cache-based loops using 

256-bit wide AVX enabled code.  The optimal code that 

we’ve generated for the same daxpy operation is shown in 

Diagram 9. 

 
.LB1_485: 

  vmulpd  (%rdi,%r10), %ymm0, %ymm1 

  vaddpd  (%rdi,%r9), %ymm1, %ymm2 

  vmovapd %ymm2, (%rdi,%r9) 

  vmulpd  32(%rdi,%r10), %ymm0, %ymm1 

  vaddpd  32(%rdi,%r9), %ymm1, %ymm2 

  vmovapd %ymm2, 32(%rdi,%r9) 

  . . . 

  addq    $128, %rdi 

  subl    $16, %eax 

  testl   %eax, %eax 

  jg      .LB1_485 

 

Diagram 9. Partial assembly output for a version of 

daxpy() targeting Sandy Bridge. 
 

This version runs fairly well on an AMD Bulldozer 

system, but it is not optimal.  On both chips, loops like 

this are limited by the L1 bandwidth.  For instance, the 

Sandy Bridge has two 128-bit ports for loading data from 

L1 cache, and so it is capable of loading four double 

precision floating-point values every cycle.  This daxpy 

operation using ymm registers could consume eight inputs 

each cycle: four for the multiplier and four for the adder.  

And on Sandy Bridge, as is typical of many x64 

processors, the bandwidth storing to L1 cache is half of 

that for loads. 
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One final issue worth mentioning concerning Sandy 

Bridge code generation is the need for the vzeroupper 

instruction.  This instruction zeroes out the upper 128 bits 

of all of the ymm registers and marks them as clean.  If 

you mix 256-bit AVX instructions with legacy SSE 

instructions that use xmm registers, you will incur 

performance penalties of roughly one hundred cycles at 

each transition between legacy code and AVX code.  This 

is because the processor must save the state of the upper 

128-bits of the ymm registers at the first legacy 

instruction so that they can be restored upon issuing 

another AVX instruction.  To avoid this problem, use the 

vzeroupper before the transition between these two code 

sequences can occur.  This instruction seems to have 

minimal overhead. 

In the PGI compiler, if we are generating AVX 

instruction sequences, we will generate the vzeroupper 

instruction right before a call is made.  This is because we 

cannot be sure how the callee has been compiled.  Also, 

when writing library routines or compiling functions that 

perform AVX instruction sequences, we generate a 

vzeroupper instruction right before returning, again 

because we cannot make assumptions about how the 

caller was compiled.  This is always safe because the ABI 

never specifies that parameters are passed to, or returned 

in, the high half of the ymm registers. 

Sandy Bridge code generation is enabled in the PGI 

compiler suite by using the –tp=sandybridge command 

line option. 

 

5. Libraries and Tools  

PGI is well on the way to finishing their port of the 

runtime libraries for these two new architectures.  We 

have added VEX encoding and FMA4 instructions where 

appropriate to produce new scalar transcendental and 

other functions for single and double precision.  We are 

also working on new 128-bit and 256-bit wide vector 

versions, which can produce up to 4 double precision and 

8 single precision results per invocation.  The port to the 

new architectures has not been necessarily straight-

forward, as there are decisions and tradeoffs made in the 

balance of integer, table lookup address generation, and 

floating point operations that must be tuned for optimal 

performance. 

 

PGI’s GUI-based development tools, PGDBG and 

PGPROF, have been updated to support AVX.  Both tools 

utilize a disassembler which has been updated to properly 

handle AVX and FMA4 code sequences.  PGDBG has 

been recently enhanced to show ymm register contents in 

a variety of formats: 32 bit floats, 64 bit floats, and 

hexadecimal.  The GUI-based tools are both capable of 

debugging and profiling OpenMP and MPI parallel 

programs.   

 

 
 

Diagram 10. PGDBG, the PGI debugger showing 

debugging support for AVX code and viewing ymm 

register contents. 

 

6. Concluding Remarks and Future Work 

We’ve shown that the new AVX-enabled processors 

require substantial changes in the compiler generated 

code to achieve optimal performance.  The major points 

of difference are well understood, but we expect tuning to 

continue for the foreseeable future, and continue to evolve 

as new revisions of these architectures are released.  

There is not only compiler work to do; we rely on 

changes to the entire software stack, from the OS which 

has to save and restore the new registers, down to new 

runtime libraries for math, i/o, and memcpy-type 

operations, some of which PGI provides ourselves.  

We’ve shown an example where an incompatible mix of 

code can lead to disastrous performance penalties.  This 

leads to increased burdens (or opportunities) for support 

and training. 

Despite these changes to the underlying hardware, 

vectorizing compilers allow code and performance 

portability throughout the processor generations.  There is 

no need for programmers to perform tedious manual 

unrolling of their loops, or for them to insert SSE intrinsic 

calls, to take advantage of the latest hardware features. 

The PGI Unified Binary technology [7] can assist 

ISVs and other users who need to produce optimal code 

paths for all possible x64 architectures in a single 

executable.  Though the need for this capability has 
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waned in the last few years, with the release of the 

Bulldozer processor and its use of the FMA4 instruction, 

care must be taken in choosing a set of target processors 

to avoid instruction faults. 
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