

CUG 2011 Proceedings 1 of 7

Targeting AVX-Enabled Processors Using

PGI Compilers and Tools

Brent Leback, John Merlin, and Steven Nakamoto,

The Portland Group (PGI)

ABSTRACT: AMD and Intel are releasing new microprocessors in 2011 with extended

AVX support. In this paper we show examples of compiler code generation and new library

and tools capabilities which support these new processors. We also discuss performance

issues, comparing the new platforms versus previous generations.

KEYWORDS: Compiler, Optimization, Micro-architecture

1. Introduction

At CUG 2007 co-authors of this paper presented the

characteristics and performance of the first and second

generation x64 processors from AMD and Intel [1]. In

particular, these second generation micro-architectures,

the AMD “Barcelona” and the Intel “Woodcrest”, were

the first to use 128-bit wide data paths and floating point

units. For the first time on the x86 architecture,

vectorization of double-precision codes could enable a 2x

speedup over non-vectorized, a.k.a. scalar, codes.

Vectorization [2] for x64 processors is used to

identify and transform loops to take advantage of packed

SSE instructions, which are wide operations on data from

multiple iterations of a loop. PGI produced the first

x86/SSE automatic vectorizing compiler in 1999. At that

time, Intel was providing and promoting a set of SSE

intrinsics. Today, there are 9 different header files of

intrinsics in the latest Intel compiler distribution, covering

each generation of hardware updates going back to the

MMX days. In total, they define 781 different routines.

Unlike these intrinsics, vectorization is a technology

which provides both code and performance portability.

In the CUG 2007 paper it was shown how loop-

carried redundancy elimination (LRE), the restrict

type qualifier for C and C++, ordering data sequentially in

memory, and coding reductions so that they can be

vectorized by the compiler resulted in an 1.80x speedup

on a Sandia benchmark kernel.

The next year, at CUG 2008, we presented a paper

that studied the ratio of data bandwidth to peak floating

point performance on x64 processors [3]. That year, the

first quad-core chips were beginning to show up from

AMD and Intel. Most importantly, we showed that the

peak transfer rate to and from memory divided by the

peak floating point performance had trended dramatically

downward over the generations of x64 processors,

beginning in 2003. Also in 2008, both Intel and AMD

announced future chips, and it was feared that the trend

would continue. In May of 2008, we expected these new

chips to show up in roughly 12 to 18 months, before the

end of 2009. Diagram 1 is a slide from that presentation.

Diagram 1. The decline of peak rate of data transfer

compared to peak floating point performance, from a

presentation in 2008.

Peak Transfer Rate vs. Peak FP Performance

0.1%

1.0%

10.0%

100.0%

FP

Registers

L1 Loads L1 Stores L2 Loads L2 Stores Memory

Loads

Memory NT

Stores

Memory

Stores

Athlon 64 Q1 '03

1.6 GHz

Opteron Q4 '03

1.6 GHz

Athlon 64 Q3 '04

2.2 GHz

Opteron Q3 '04

2.2 GHz

EM64T Q4 '05

3.6 GHz

Opteron Q1 '05

2.2 GHz

Pentium D Q2

'05 3.2 GHz

Woodcrest Q3

'06 3.0 GHz

Core2 Duo Q4

'06 2.0 GHz

Opteron Q2 '07

2.4 GHz

Penryn Q4 '07

3.0 GHz

Barcelona Q4

'07 2.0 GHz

Future-1 Q4 '08

2.5 GHz

Future-2 Q4 '09

2.5 GHz

CUG 2011 Proceedings 2 of 7

This year, 2011, a new generation of x64 processors

containing Advanced Vector Extensions (AVX) [4] are

being released by Intel and AMD. Intel has named its

micro-architecture “Sandy Bridge” and AMD is using the

name “Bulldozer” for their design. While by some

accounts these chips may be two years late in arriving, the

good news for the High Performance Computing (HPC)

community is that the memory hierarchy has had a chance

to “catch up” in that time. In our recent tests, all new

Intel and AMD memory operation rates divided by the

peak floating point performance of the new chips have

stayed above the 1% mark. This is an impressive result

given the increasing number of cores and wider floating

point units in the new chips, and can easily be measured

using a benchmark such as Stream [5].

2. The VEX Prefix, 256-bit SIMD Support

 Both new processor architectures, the Sandy Bridge

from Intel and the Bulldozer from AMD, support the new

instruction encoding format called VEX. This instruction

prefix allows a set of extensions to the traditional x86

instruction set architecture (ISA) that enable most of the

new chip features that are important to compiler

implementers, library developers, and applications staff

who care about performance at the micro-architecture

level.

The VEX prefix enables three and four operand

syntax. As we will explain later, even if your code does

not take advantage of the wider SIMD floating point

units, you can still possibly see performance gains due to

the flexibility of these new operations. Traditional x86

instructions contain two operands, where one operand

usually plays the role of both a source and destination,

thus the operation is destructive to one of the sources. In

complicated floating point loops, the compiler may have

to insert many register-to-register copy operations, which

take slots in the pipelines and increase code size.

For instance, if you need to keep two inputs x and y

in xmm0 and xmm1, while adding x+y, up to this point

the compiler might generate:

movsd %xmm1, %xmm2

addsd %xmm0, %xmm2

and now with VEX enablement it can generate one

instruction:

vaddsd %xmm0, %xmm1, %xmm2

But probably the most anticipated feature of the new

chips for scientists and engineers is the doubling of the

SIMD vector width and the width of the floating point

pipeline. The new floating point units from both AMD

and Intel are now capable of performing four double

precision floating-point multiplies and four double

precision floating-point adds every cycle. If you use

single precision data, you can get twice that. In rough

terms, using tuned libraries such as MKL from Intel and

ACML from AMD, users could see 20 or more

GFlops/core in double precision routines such as dgemm,

and 40 or more GFlops/core single precision, depending

on the clock frequency.

A new set of registers have been introduced, the

ymm registers, which overlay the SSE xmm registers that

were introduced with the Pentium III. Instructions

operating on these registers are enabled by the VEX

prefix. Diagram 2 shows how they are mapped onto the

existing hardware.

Diagram 2. 16 256-bit wide ymm registers overlay

and extend the current 128-bit wide xmm registers.

A complicating factor for compiler writers is that the

new instructions available for manipulating ymm registers

are somewhat limited. The 256-bit SIMD units are more

or less divided into two separate lanes of 128-bits each.

There are only four instructions which can move data

across lane boundaries, and three of the four only operate

on 128-bit chunks:

255 ... 128 127 ... 0

0.0 xmm0

ymm0

0.0 xmm1

ymm1

... ...

...

0.0 xmm14

ymm14

0.0 xmm15

ymm15

CUG 2011 Proceedings 3 of 7

Diagram 3. The four operations which transfer data

across AVX lanes. The vbroadcast source must be a

memory location, but can be 32, 64, or 128 bits wide.

As an example of how this can become complicated,

consider the following simple Fortran subroutine:

subroutine sum5(a, c, n)

real*8 a(n+4), c(n)

do i = 1, n

 c(i)=a(i)+a(i+1)+a(i+2)*2.d0+a(i+3)+a(i+4)

end do

end

Compiling this for execution on a second generation

x64 processor yields this CCFF [6] message:

sum5:

3, 2 loop-carried redundant expressions removed with

2 operations and 4 arrays

 Generated 4 alternate versions of the loop

 Generated vector sse code for the loop

 Generated a prefetch instruction for the loop

Using LRE optimization, the compiler finds

redundant expressions in the intermediate sums and

carries those around to the next iteration. When using

xmm registers, the generated code for this loop requires

one shuffle, but then produces two results for every three

packed add operations:

Diagram 4. XMM-based sum5 loop. LC labeled

values are loop-carried between iterations.

Now with AVX and the dual-lane nature of the

floating point units, the processor can perform twice as

many additions per cycle, but the staging and

manipulation of the data is more complex. To enable the

same operation-reducing strategy requires the new VEX

vperm2f128 instruction to move data between lanes.

Diagram 5. YMM-based sum5 loop.

With the latest generation processors, we can produce

four results for every three packed add operations, at the

cost of one cross-lane transfer and one shuffle within

lanes. Contrast this with the scalar, straight-forward

method which requires five scalar adds (or four adds and

one multiply) for every element, and you can begin to see

the gains that are possible with an optimizing compiler.

Of course, with an uncountable number of loop construct

possibilities, heuristics and strategies need to be

developed into our compilers for optimal code generation,

and that work is well underway.

Another complicating factor for AVX code

generation is the difficulty in generating aligned loads and

stores. For ymm registers, the most optimal alignment is

CUG 2011 Proceedings 4 of 7

32 bytes. Using current toolchains, 32 byte alignment can

be forced for static data, but is not produced by most

malloc() implementations, nor required of the stack by the

ABIs. Thus it is not easy to force 32 byte alignment for

local variables. We showed in our 2007 CUG paper that

unaligned loads and stores, even when the data resides in

L1 cache, run substantially slower than aligned loads, and

that is still true with today’s processors. While it would

be an easy fallback position for the compiler to generate a

loop schedule for the sum5 subroutine similar to what is

shown in Diagram 6, we’ve found on both Intel and AMD

processors that this runs slower than the original, non-

AVX code. In fact, we’ve verified that in some cases

breaking up a single 256-bit unaligned load or store (a

movupd operation) into two 128-bit unaligned operations

can actually run faster.

Diagram 6. Straight-forward implementation

performs poorly due to unaligned memory accesses.

Finally we should mention the new AVX masked

move instruction. While we’ve made some use of this

capability in our new hand-coded AVX-enabled library

routines, because the vmaskmov load operation loads a

zero if the mask is zero, and there is no corresponding

way to mask the exception generation, another level of

compiler analysis (or recklessness) would be needed for

the compiler to make use of this generally for residual

loops. Performance issues currently make it unappealing

for commonly executed code paths.

3. AMD-Specific Code Generation

The AMD Bulldozer chip not only implements the

AVX instruction set, but extends it by adding FMA4

instructions as well. FMA, which stands for fused

multiply-add, has not, up to this point, been a part of the

x86 instruction set, but has long been an instrumental part

of traditional embedded processors. In an FMA

operation, the result of the multiplier directly feeds the

adder, without being rounded or moved to a register. This

results in a shorter total pipeline for common multiply-

followed-by-add operations found in signal and image

processing, matrix multiplication, dot products, and other

BLAS routines, and in FFTs. The FMA4 instructions use

four operands total, three for sources, and one destination.

On the Bulldozer chips, the only way to get peak

floating-point performance is to use FMA4 instructions.

It is easiest to model the performance by thinking of a

single pipelined floating-point unit with three inputs, and

on each cycle it can initiate some variant of an add, a

multiply, or a multiply-add. The results may come out of

the unit at different points (cycles) in the pipe, but the

input ports basically control the rate of execution.

Because of this design, legacy objects and executables

written or compiled using a style of vector packed adds

and packed multiply operations will never run at peak

performance on a Bulldozer chip. It is important to

recompile using the proper target processor flags, and use

Bulldozer-tuned math libraries, for best performance.

As an added wrinkle, the floating point unit on a

Bulldozer chip is shared between two integer cores. The

two integer cores can perform address generation support

and sequencer control for the floating-point operations

independently, of course.

Diagram 7. Block diagram of a Bulldozer module

containing two integer cores and a shared floating-

point unit.

What is interesting about the Bulldozer chip is that

you can compile and tune your floating-point codes to run

in 256-bit wide “AVX Mode”, where each thread

assumes control of, and schedules ymm-based operations

CUG 2011 Proceedings 5 of 7

over, the entire floating point unit. Or, you can compile

for a “Shared Mode”, where each thread uses either

traditional SSE code generation, or newer VEX-based

operations on xmm registers, and utilizes just one lane of

the shared floating point resource. There are VEX-based

FMA4 opcodes which work on xmm registers and these

can be used to achieve peak performance on multi-

threaded codes.

Diagram 8 shows two versions of the generated code

for a daxpy routine and the FMA4 operations that are

used. The PGI compiler can produce either mode based

on compiler command-line options. At this point, it is

still too early to determine which mode should be default.

.LB1_427:

 vmovapd (%rax,%r9), %xmm1

 vfmaddpd %xmm1,(%rax,%r10),%xmm0,%xmm3

 vmovapd %xmm3, (%rax,%r9)

 vmovapd 16(%rax,%r9), %xmm2

 vfmaddpd %xmm2,16(%rax,%r10),%xmm0,%xmm3

 vmovapd %xmm3, 16(%rax,%r9)

 . . .

 addq $64, %rax

 subl $8, %edi

 testl %edi, %edi

 jg .LB1_427

.LB1_427:

 vmovapd (%rax,%r9), %ymm2

 vfmaddpd %ymm2,(%rax,%r10),%ymm0,%ymm3

 vmovapd %ymm3, (%rax,%r9)

 vmovapd 32(%rax,%r9), %ymm4

 vfmaddpd %ymm4,32(%rax,%r10),%ymm0,%ymm3

 vmovapd %ymm3, 32(%rax,%r9)

 . . .

 addq $128, %rax

 subl $16, %edi

 testl %edi, %edi

 jg .LB1_427

Diagram 8. Partial assembly output for two versions

of daxpy(), the top using 128-bit xmm registers and

the bottom using 256-bit ymm registers. Each is

unrolled to perform four vfmaddpd operations per

loop iteration.

Given the discussions in the previous section

concerning the difficulties manipulating data between

lanes, and guaranteeing aligned loads and stores of 256-

bit data, it might turn out that for Bulldozer targets, 128-

bit VEX enabled code is the best approach. Also given

the graph in the introduction, for codes where the data is

not all in registers or the lowest level caches, the floating

point unit might be idle for many cycles. Tighter code

might run more efficiently than wider-vector code,

especially when it is multi-threaded. We will continue

our experiments in this area.

Users should be aware that results obtained using

FMA operations may differ in the lowest bits from results

obtained on other X64 processors. The intermediate

result fed from the multiplier to the adder is not rounded

to 64 bits.

Bulldozer code generation is enabled in the PGI

compiler suite by using the –tp=bulldozer command line

option.

4. Intel-Specific Code Generation

Of course if you run either of the above loops on a

Sandy Bridge machine, or any Intel-based processor for

that matter, you get this result:

 bash-4.1$./a.out

 Illegal instruction (core dumped)

There seems to be no question that on a Sandy Bridge

processor it is best to run simple, cache-based loops using

256-bit wide AVX enabled code. The optimal code that

we’ve generated for the same daxpy operation is shown in

Diagram 9.

.LB1_485:

 vmulpd (%rdi,%r10), %ymm0, %ymm1

 vaddpd (%rdi,%r9), %ymm1, %ymm2

 vmovapd %ymm2, (%rdi,%r9)

 vmulpd 32(%rdi,%r10), %ymm0, %ymm1

 vaddpd 32(%rdi,%r9), %ymm1, %ymm2

 vmovapd %ymm2, 32(%rdi,%r9)

 . . .

 addq $128, %rdi

 subl $16, %eax

 testl %eax, %eax

 jg .LB1_485

Diagram 9. Partial assembly output for a version of

daxpy() targeting Sandy Bridge.

This version runs fairly well on an AMD Bulldozer

system, but it is not optimal. On both chips, loops like

this are limited by the L1 bandwidth. For instance, the

Sandy Bridge has two 128-bit ports for loading data from

L1 cache, and so it is capable of loading four double

precision floating-point values every cycle. This daxpy

operation using ymm registers could consume eight inputs

each cycle: four for the multiplier and four for the adder.

And on Sandy Bridge, as is typical of many x64

processors, the bandwidth storing to L1 cache is half of

that for loads.

CUG 2011 Proceedings 6 of 7

One final issue worth mentioning concerning Sandy

Bridge code generation is the need for the vzeroupper

instruction. This instruction zeroes out the upper 128 bits

of all of the ymm registers and marks them as clean. If

you mix 256-bit AVX instructions with legacy SSE

instructions that use xmm registers, you will incur

performance penalties of roughly one hundred cycles at

each transition between legacy code and AVX code. This

is because the processor must save the state of the upper

128-bits of the ymm registers at the first legacy

instruction so that they can be restored upon issuing

another AVX instruction. To avoid this problem, use the

vzeroupper before the transition between these two code

sequences can occur. This instruction seems to have

minimal overhead.

In the PGI compiler, if we are generating AVX

instruction sequences, we will generate the vzeroupper

instruction right before a call is made. This is because we

cannot be sure how the callee has been compiled. Also,

when writing library routines or compiling functions that

perform AVX instruction sequences, we generate a

vzeroupper instruction right before returning, again

because we cannot make assumptions about how the

caller was compiled. This is always safe because the ABI

never specifies that parameters are passed to, or returned

in, the high half of the ymm registers.

Sandy Bridge code generation is enabled in the PGI

compiler suite by using the –tp=sandybridge command

line option.

5. Libraries and Tools

PGI is well on the way to finishing their port of the

runtime libraries for these two new architectures. We

have added VEX encoding and FMA4 instructions where

appropriate to produce new scalar transcendental and

other functions for single and double precision. We are

also working on new 128-bit and 256-bit wide vector

versions, which can produce up to 4 double precision and

8 single precision results per invocation. The port to the

new architectures has not been necessarily straight-

forward, as there are decisions and tradeoffs made in the

balance of integer, table lookup address generation, and

floating point operations that must be tuned for optimal

performance.

PGI’s GUI-based development tools, PGDBG and

PGPROF, have been updated to support AVX. Both tools

utilize a disassembler which has been updated to properly

handle AVX and FMA4 code sequences. PGDBG has

been recently enhanced to show ymm register contents in

a variety of formats: 32 bit floats, 64 bit floats, and

hexadecimal. The GUI-based tools are both capable of

debugging and profiling OpenMP and MPI parallel

programs.

Diagram 10. PGDBG, the PGI debugger showing

debugging support for AVX code and viewing ymm

register contents.

6. Concluding Remarks and Future Work

We’ve shown that the new AVX-enabled processors

require substantial changes in the compiler generated

code to achieve optimal performance. The major points

of difference are well understood, but we expect tuning to

continue for the foreseeable future, and continue to evolve

as new revisions of these architectures are released.

There is not only compiler work to do; we rely on

changes to the entire software stack, from the OS which

has to save and restore the new registers, down to new

runtime libraries for math, i/o, and memcpy-type

operations, some of which PGI provides ourselves.

We’ve shown an example where an incompatible mix of

code can lead to disastrous performance penalties. This

leads to increased burdens (or opportunities) for support

and training.

Despite these changes to the underlying hardware,

vectorizing compilers allow code and performance

portability throughout the processor generations. There is

no need for programmers to perform tedious manual

unrolling of their loops, or for them to insert SSE intrinsic

calls, to take advantage of the latest hardware features.

The PGI Unified Binary technology [7] can assist

ISVs and other users who need to produce optimal code

paths for all possible x64 architectures in a single

executable. Though the need for this capability has

CUG 2011 Proceedings 7 of 7

waned in the last few years, with the release of the

Bulldozer processor and its use of the FMA4 instruction,

care must be taken in choosing a set of target processors

to avoid instruction faults.

About the Authors

Brent Leback is the Engineering Manager at PGI. He

has worked in various positions over the last 27 years in

HPC customer support, math library development,

applications engineering and consulting at QTC, Axian,

PGI and STMicroelectronics. He can be reached by e-

mail at brent.leback@pgroup.com.

John Merlin joined The Portland Group as a compiler

engineer in 1999. From 1986 to 1999 he was a research

fellow at the University of Southampton, UK, and then at

VCPC, Vienna, Austria, with research interests including

computational physics, automatic parallelisation, parallel

programming languages and models, and compiler

technology. His e-mail address is john.merlin

@pgroup.com.

Steven Nakamoto is the Compiler Architect at PGI.

Prior to joining PGI in 1989, he worked in various

software and compiler engineering positions at Floating

Point Systems, BiiN, Mentor Graphics, and Honeywell

Information Systems. He can be reached by e-mail at

steven.nakamoto@pgroup.com.

References

[1] Doerfler, Hensinger, Miles, and Leback, Tuning C++

Applications for the Latest Generation x64 Processors

with PGI Compilers and Tools, CUG 2007

Proceedings

[2] Michael Wolfe, High Performance Compilers for

Parallel Computers, Addison-Wesley, 1996

[3] Leback, Doerfler, Heroux, Performance Analysis and

Optimization of the Trilinos Epetra Package on the

Quad-Core AMD Opteron Processor, CUG 2008

Proceedings

[4] Intel Advanced Vector Extensions Programming

Reference, http://software.intel.com/en-us/avx

[5] STREAM: Sustainable Memory Bandwidth in High

Performance Computers, www.cs.virginia.edu/stream

[6] CCFF - Common Compiler Feedback Format,

www.pgroup.com/resources/ccff.htm

[7] PGI Unified Binary, www.pgroup.com/resources/

unified_binary.htm

http://software.intel.com/en-us/avx
http://www.cs.virginia.edu/stream
http://www.pgroup.com/resources/

