
A study of scalability performance for hybrid mode

computation and asynchronous MPI transpose

operation in DSTAR

Lucian Anton, Ning Li, NAG,
and Kai H. Luo, University of Southampton

May 9, 2011

ABSTRACT: A necessary condition for good scalability of parallel computation at large core counts is
to minimise data communication and overlap it as much as possible with computation. Along these ideas
we study the parallel performance of the code DSTAR which computes properties of reactive turbulent flows
using direct numerical simulation. The studied algorithm uses a one-dimensional domain decomposition
with OpenMP threads inside each local domain for numerical intensive kernels and asynchronous MPI or a
specialised OpenMP thread for the transpose operation between domain decompositions. The new algorithm
allows DSTAR to use around 10000 cores with good scalability, a significant improvement from hundreds of
cores used by the initial algorithm.

KEYWORDS: mixed mode parallelism, MPI, OpenMP, reactive flow, DSTAR.

1 Introduction

The latest supercomputer generation, as the Cray
XE6 used by UK national service HECtoR [1], pro-
vides unprecedented parallel computational capac-
ity harnessed from thousands or ten of thousands of
shared memory nodes linked together by a fast and
large bandwidth network.

The rapidly increasing number of cores per
shared memory node in the current hardware opens
the possibility for algorithms with a larger degree of
concurrency and which can avoid in the same time,
to a certain extend, the penalty for data commu-
nication. This advantage can be used in scientific
applications if the parallel programming model is
extended beyond pure MPI, one of the most ap-
pealing solution being mixed mode programming
(MPI+OpenMP) [2].

In this paper we present the implementation and
performance results of the mixed mode program-
ming model for the application DSTAR which has
received six months of support from HECToR Com-
puter Science and Engineering service.

DSTAR simulates, for example, multiphase reac-
tive flows in which complex interactions exist among

vortex dynamics, entrainment, mixing, turbulence,
combustion and evaporating droplets. The macro-
scopic turbulent behaviour and thermodynamical
properties are obtained using direct numerical simu-
lation from the original governing equations. This
method captures the energy transfer and interac-
tions between chemical reactions and fluid dynam-
ics over vastly disparate scales at the cost of refined
grids for the spatial domain and a large number of
time integration steps.

The system of partial differential equations that
sets the mathematical frame for DSTAR and the nu-
merical algorithms for their solution are described
in detail in Ref [3]. In short, implicit compact finite
difference schemes are employed for spatial discreti-
sation with sixth-, fourth- and third-order schemes
for internal, near-boundary and boundary points,
respectively. A fourth-order Lagrangian interpola-
tion scheme is utilised to obtain gas properties at
droplet locations. A third-order explicit Runge–
Kutta scheme is used for temporal advancement of
flow variables, while a semi-analytical scheme is em-
ployed for droplet marching, with the consideration
of numerical accuracy, stability and efficiency.

DSTAR parallel computations start with a

1

Cartesian grid partitioned uniformly to the MPI
ranks along y axis. Because the spatial derivatives
are computed with an implicit rule each MPI rank
needs also a local grid which spans the whole do-
main along the y axis, hence a partition along z axis
is also needed. Data between the two partitions are
exchanged with transpose operations among all MPI
ranks, see Figure 1 a).

The largest part of numerical intensive work done
in DSTAR is concentrated in the subroutine which
computes the right hand side terms (RHS) for the
set of differential equations in time that describe the
evolution of the flow variables after space discretisa-
tion of the continuum fields equations. RHS subrou-
tine contains mainly loops that update the flow vari-
ables and derived quantities inside the domain and
at the boundaries, calls to subroutines that compute
the spatial derivatives, and calls to communication
subroutines for the transpose operations described
earlier.

This section of the code has a large degree of
parallelism due to locality of the update rule and
the multicomponent nature of the discretised flow
variables. On the other hand, for a global grid with
dimensions Nx, Nz, Ny the number of processors
that can be used in a pure MPI parallel computation
with 1D domain partition is limited by min(Ny, Nz),
which could be significantly smaller than the num-
ber of processing elements available on today’s top
supercomputers.

In our work we have explored two main ap-
proaches aimed at increasing DSTAR parallel scal-
ability: i) 1D domain decomposition with OpenMP
threads to accelerate the computation in each local
domain, ii) 2D domain decomposition of the compu-
tational grid, with the help of the 2DECOMP library
[4], which grants a larger number of MPI tasks, see
Figure 1 b). In this paper we describe in detail the
results obtained for the first approach and use the
second approach as a reference point.

The paper is organised as follow: In Section 2 we
describe the main features and the scaling behaviour
of the four variations of mixed mode algorithm stud-
ied in for RHS subroutine. In Section 3 we discuss
the MPI and OpenMP solutions for computation-
communication overlap and present the timing re-
sults for each of them.

2 Mixed mode scaling

In order to reduce overheads we have chosen to use
one OpenMP parallel region in RHS subroutine that
includes almost all of its code lines. This choice
implies that the MPI calls for the transpose oper-
ations are situated inside OpenMP parallel region
which leads to three ways of doing MPI calls with re-
spect to OpenMP threads: i) funneled, in which only
the master thread calls MPI communication, ii) se-
rialised, in which any OpenMP thread can call MPI
communication, but one at a time, and iii) multiple,
in which any OpenMP thread can call independently
MPI communications.

As the RHS computation is done over uniform
domains the simplest mixed mode algorithm would
be to use ”multiple” mode for MPI communication.
In this way the OpenMP threads mimic the work of
MPI tasks but with the advantage of shared mem-
ory. The transpose operation can be done with
non-blocking send-receive operations, which also of-
fers the possibility to investigate communication-
computation overlap. The only technical challeng-
ing part of this algorithm is to organise the layout of
tag and request variables needed by each OpenMP
thread in its MPI communication.

It is not easy to predict which communication
mode is the most efficient for DSTAR but we do
not expect good performance from the ”multiple”
as it needs the threaded version of the Cray com-
munication library which is not optimised [5]. For
an overall picture we decided to explore all of the
above variants by writing a general implementation
in which one can select between various MPI com-
munication modes. We have included also a version
that uses 2DECOMP library in funneled mode in
order to compare its efficiency with respect to non-
blocking send receives.

Table 1 presents timing results for the
MPI/OpenMP communication modes discussed pre-
viously for a cubic grid with 7683 points, each grid
point stores 8 field components. The runs were
done with 768 MPI tasks and 1, 2, 3, 6, 12 OpenMP
threads. PGI compiler version 11.0.0 was used, a
couple of tests with other available compilers have
shown similar behaviour. Each measurement was
repeated at least three times to ensure that data are
representative. A significant improvement in per-
formance was noticed when the MPI environment
variable MPICH GNI MAX EAGER MSG SIZE was set to
maximum allowed value.

The timing data show that the funneled com-

2

munication model is the fastest. The ”multiple”
communication model, which is more straightfor-
ward to implement, loses scalability if the number
of threads is larger than 3, presumably due to the
non-optimised MPI threaded library.

We found somewhat unexpected the significantly
slower computation when using 2DECOMP library
with more that 1 OpenMP thread. We think
that the explanation of this result is two-folded: i)
2DECOMP spends time to fill an internal buffer
with contiguous data blocks for a more efficient
MPI data transfer in the case of y → z transpose
(see Figure 1) whereas in send-receive implementa-
tion of y → z transpose we made the observation
that data reassembly in the internal buffer is not
needed if the size of the local domain in y direction
is 1; ii) 2DECOMP uses internally MPI ALLTOALL
for the transpose operation which is about 3 times
faster than a transpose done with non-blocking send-
receive when the nodes are fully populated but the
speed gain levels out as the number of MPI tasks
per NUMA node decreases, see Table 2. In the
mixed mode version OpenMP threads are used to
speed data copy to the internal buffer when this is
needed. These two optimisations can be ported eas-
ily to 2DECOMP library for the special case of 1D
decomposition.

Figure 2 presents the values from Table 1 and
the scaling result for the algorithm that uses 2D do-
main decomposition with 24 processor rows. This
algorithm has good scaling but it pays a signifi-
cant penalty for the extra transpose operations it
has to do in order to compute derivatives along x
axis. Nevertheless, the scalability of this algorithm
is not bounded by the maximum available number
of OpenMP threads and it might be useful in cases
in which more than 12 ×min(Nz, Ny) cores can be
used (for XE6 nodes).

3 Overlapping computation
with communication

Computation-communication overlap (CCO) in
DSTAR is an interesting possibility because the
transpose operation implies exchange of large
amounts of data which takes approximately 30% of
the time spent in RHS subroutine for the grid sizes
used in this study. Besides that, the multicompo-
nent nature of the flow variable makes the computa-
tional algorithm flexible enough to allow reordering

of the code lines, which might be needed in order to
achieve CCO.

Initially we have tried to achieve CCO using the
non-blocking send receive MPI communication in
the transpose subroutines. The initialisation and
finalisation of communication is done in separated
subroutines which can be called at convenient posi-
tions in the code in order to allow the progress of
independent computation, if there is any available.
CCO is achieved if data communication is done also
between the initialisation and finalisation calls.

In this experiment we have measured the com-
munication and computation time for two situations:
i) the subroutines that initiate and finalise commu-
nication are consecutive in the source code or ii) a
block of independent computation is placed between
the two subroutines. The same model and grid size
were employed as in Section 2 but this time the mea-
surement was repeated on the XT4 component of
HECToR service [1].

Data presented in Table 3 show that there is no
significant progress of communication during com-
putation in the case of XE6 system and a marginal
one on XT4 system. These results are in agreement
with other studies [6] which have found that various
MPI implementation do not offer at present CCO
when using non-blocking MPI communication.

The alternative solution for CCO is to use a
mixed mode algorithm with one OpenMP thread
for communication while the other threads are busy
with computation.

There are several ways to implement this idea
[6], of which we have selected for this study to use
the master thread for MPI communication and to di-
vide the computational work by splitting manually
the loop trips to the remaining threads in the over-
lapped parallel loops. The code fragment for CCO
with OpenMP has the following general structure:

!$OMP BARRIER ! Not always needed
if (omp_get_thread_num() == 0) then

!
! master thread handles mpi communication
!

call transpose_y_to_z(q1,p1)
else

!
! the rest of the team does computational work
!

do i=isx,iex ! isx, iex specify the
! loop trip for each thread

3

...

enddo
endif

Following this pattern we have introduced CCO
in the sector of RHS subroutine that covers all
y → z transpose operations. Data were collected
for two cubic grids with linear sizes 768 and 1536,
the executable was produced by GNU compiler ver-
sion 4.5.2. The runs were done with 768 or 1536
MPI tasks, respectively, and 1, 2, 3, 6, 12 OpenMP
threads.

We have measured the total time spent in CCO
region and the sum of communication times in this
region. Shown in Table 4 is the difference between
these two quantities, that is, the time spent in com-
putation which is not covered by communication,
and the communication time. One can see that that
the non-overlapped computation is reduced by ap-
proximately half if the number of OpenMP threads
is 6 or 12. The total attainable speed up for RHS
subroutine by using CCO can be estimated with the
following argument: The sector in which CCO was
applied takes approximately 1/3 of RHS time and
CCO procedure yields a speed up marginally larger
than 20% for 6 OpenMP threads. RHS subroutine
contains a similar sector in which the reverse trans-
pose operations, y → z, are mixed with computa-
tions for which we assume a similar speedup from
CCO, hence the overall speed up for RHS should be
in the 10− 15% range.

We close with the observation that the scalabil-
ity of the mixed mode is helped also by the fact
that the time for transpose operation decreases with
the number of OpenMP threads, see Tables: (2, 4),
most probably due to less intra-node communica-
tion contention. This result is somewhat counterin-
tuitive because the amount of data transferred per
MPI rank is independent of the number of OpenMP
threads and the ratio between inter-node, intra-node
connections increases with the number of threads.

4 Conclusion

We have studied a mixed mode (MPI+OpenMP) im-
plementation for the main computational subroutine

of DSTAR focused on the performance of funneled,
serialised and multiple communication modes and
the computation-communication overlap using non
blocking MPI or OpenMP threads.

Data analysis shows a good scalability of the
mixed mode code up to 12 OpenMP threads (ef-
ficiency larger than 50%). The funneled MPI com-
munication offers best performance on Cray XE6
architecture. With a moderate code change fur-
ther 10 − 15% speed improvement can be obtained
from the computation-communication overlap im-
plemented with the help of OpenMP threads.

This study provides guidance for a 1D mixed
mode specialisation of 2DECOMP library which
should be useful for communication bound applica-
tions running on current hardware architectures.

Acknowledgements

The authors gratefully acknowledge HECToR -
a Research Councils UK High End Computing
Service and funding from the Engineering and
Physical Sciences Research Council for Grant No.
EP/I000801/1. LA thanks Kevin Roy for useful dis-
cussions.

About the authors

Lucian Anton is technical consultant at Numerical
Algorithms Group (NAG). He is a member of the
HECToR CSE team involved in user application sup-
port and training. He can be reached at NAG Ltd,
Peter House, Oxford Street, Manchester, M1 5AN,
United Kingdom, E-mail: lucian.anton@nag.co.uk.

Ning Li is a technical consultant at Numer-
ical Algorithms Group (NAG). He is a member
of the HECToR CSE team and he is the au-
thor of the 2DECOMP&FFT library. He can be
reached at NAG Ltd, Wilkinson House, Jordan Hill
Road, Oxford, OX2 8DR, United Kingdom, E-mail:
ning.li@nag.co.uk.

Kai H. Luo is Professor of Energy Sys-
tems at School of Engineering Sciences,
and Head of Energy Technology Research
Group, University of Southampton, Univer-
sity Road, Southampton, SO17 1BJ, UK;
http://www.soton.ac.uk/ses/people/staff/LuoK.html.

4

References

[1] http://www.hector.ac.uk . The test were done mainly on phase2b of HECToR service which has
shared memory nodes with two AMD Magny-Cours 12 core processor (2.1 GHz clock rate, 16 GB
of RAM on 2 NUMA nodes, 64KB L1 cache, 512 KB L2 cache, 6 MB L3 shared cache) and Gemini
interconnect. In the period when this work was done a section of phase2a service was also available. This
has single CPU nodes with AMD Barcelona quadcore processor (2.3 GHz clock rate, 8 GB of RAM,
64KB L1 cache, 512 KB L2 cache, 2 MB L3 shared cache) and SeaStar interconnect.

[2] E.g. at CUG 2010 the following papers addressed MPI+OpenMP mixed mode: Alice Koniges et al,
Application Acceleration on Current and Future Cray Platforms; Lucian Anton et al, Mixed Mode Com-
putation in CASINO; Mark Richardson et al, Combining Open MP and MPI within GLOMAP Mode
...; Vicenzo Fico et al, A Hybrid MPI/OpenMP Code Employing a High-Order Compact Scheme for
the Simulation of Hypersonic Aerodynamics ; Iain Bethune Improving the Performance of CP2K on the
Cray XT; Hongzhang Shan et al, Analyzing the Effect of Different Programming Models Upon Perfor-
mance and Memory Usage on Cray XT5 Platforms; Glenn Luecke et al, Performance Analysis of Pure
MPI Versus MPI+OpenMP for Jacobi Iteration and a 3D FFT on the Cray XT5

[3] J. Xia and K. H. Luo, Conditional statistics of inert droplet effects on turbulent combustion in reacting
mixing layers, Combustion Theory and Modelling, 13:5, 901–920 (2009), and the references therein.

[4] N. Li and S. Laizet, 2DECOMP&FFT – A highly scalable 2D decomposition li-
brary and FFT interface, Cray User Group 2010 conference, Edinburgh, 2010;
http://www.hector.ac.uk/cse/distributedcse/reports/incompact3d/incompact3d/index.html

[5] mpi intro man page, Cray MPT version 5.1.4 .

[6] Georg Hager et al, http://www.speedup.ch/workshops/w39 2010/slides/hager.pdf; G. Schubert,
G. Hager, H. Fehske and G. Wellein arXiv:1101.0091v1

5

model threads

1 2 3 6 12

funneled 232 127 98 58 39
serialized 233 128 97 58 42
multiple 232 136 104 106 172
2DECOMP 229 144 103 65 52

Table 1: Average computing time in sec-
onds in RHS subroutine for each mixed
mode model described in text.

ranks per NUMA node

6 3 2 1

all to all 0.832 0.353 0.366 0.208
send-recv 2.44 0.824 0.480 0.244

Table 2: Maximum time in seconds for a transpose
operation from a 768× 768× 1 grid to a 768× 1× 768
over 768 MPI ranks placed on NUMA nodes as in the
case of mixed mode computations with 1, 2, 3 and 6
OpenMP threads. Placement done using -S flag of
aprun command.

x z

ya)

b)

Figure 1: Schematic representation of domain decompositions: a) 1D with 3 MPI ranks along z and y
directions, b) 2D with 2× 3 MPI ranks along z, y and x directions. Data exchange between decompositions
require all to all type of communication.

6

 0.001

 0.01

 0.1

768 1536 2304 3072 4608 6144 9216

1
/t

im
e

number of cores

funneled
serialized

multiple
2DECOMP(1xn)

2DECOMP(24xn)
ideal

Figure 2: Mixed mode scaling for the funneled, serialised, multiple MPI communication mode (see Table
1). Timing for 2D decomposition with 24 processor rows is also shown (filled squares).

XE6 XT4

threads ttr t̄tr tc t̄c ttr t̄tr tc t̄c

1 2.52 16.68 13.15 13.21 2.95 17.50 15.07 15.13
2 1.57 7.81 6.64 6.62 1.51 8.63 7.37 7.39
3 1.28 5.58 4.55 4.54
4 0.81 4.36 3.66 3.69

Table 3: Average time in seconds for transpose operation that is done as a compact block (ttr) and over-
lapping a computation block (t̄tr) for XE6 and XT4 machines. The respective computation times tc, t̄c is
approximately the same in both cases, as expected. t̄tr ≈ ttr + tc implies that none or little communica-
tion is done during the computation. This implies that the bulk of communication is done in the call of
MPI WAITALL.

7

threads 1 2 3 6 12

communication time

7863 grid

tno 53.80 25.32 24.61 11.08 10.21
two 27.18 25.19 11.58 10.83

15363 grid

tno 73.09 38.10
two 71.68 41.88

non-overlapped computation time

7863 grid

tno 58.97 30.70 21.40 12.62 7.01
two 30.13 15.12 6.08 3.33

15363 grid

tno 61.70 39.22
two 34.86 17.88

Table 4: Average time in seconds for transpose operations and computation time for regions that are not
covered by the communication for the initial version of the code (tno) and the code that uses CCO with
help of OpenMP threads (two). Data collected from runs on two cubic grids with linear dimensions 768 and
1536. Please note the scaling of the communication time with the number of threads, the amount of data
transferred is independent of number of threads.

8

