
I/O Congestion Avoidance via Routing and Object Placement

David A. Dillow, Galen M. Shipman, Sarp Oral
Oak Ridge Leadership Computing Facility

Oak Ridge National Laboratory
{dillowda,gshipman,oralhs}@ornl.gov

Zhe Zhang∗

T.J. Watson Research Center
International Business Machines

zhezhang@us.ibm.com

ABSTRACT: As storage systems get larger to meet the the demands of petascale systems, careful planning must be applied
to avoid congestion points and extract the maximum performance. In addition, the large size of the data sets generated by
such systems makes it desirable for all compute resources ina center to have common access to this data without needing to
copy it to each machine. This paper describes a method of placing I/O close to the storage nodes to minimize contention on
Cray’s SeaStar2+ network, and extends it to a routed Lustre configuration to gain the same benefits when running against a
center-wide file system. Our experiments show performance improvements for both direct attached and routed file systems.

1 Introduction

The Oak Ridge Leadership Computing Facility (OLCF),
located at Oak Ridge National Laboratory, houses Jaguar,
a 200 cabinet Cray XT5. Jaguar [5] offers 18,688 com-
pute nodes, each with two hex-core AMD Opterons, pro-
viding 224,256 cores and 2.3 petaflops of compute perfor-
mance and nearly 300 terabytes of system memory. The
OLCF also hosts a number of smaller scale systems used
for analysis and visualization work, software development,
and integration of evolving storage and compute technolo-
gies such as accelerator-enhanced systems. Supporting the
I/O demands of these systems falls to Spider [9], our Lustre
based center-wide file system, designed to provide reliable
global accessibility and high performance.

Time on Jaguar is a limited resource. The majority of

∗This work was performed while Zhe Zhang was a staff member at Oak
Ridge National Laboratory.

This research used resources of the Oak Ridge Leadership Computing
Facility, located in the National Center for ComputationalSciences at Oak
Ridge National Laboratory, which is supported by the Office of Science of
the Department of Energy under Contract DE-AC05-00OR22725.

Notice: This manuscript has been authored by UT-Battelle, LLC, un-
der Contract No. DE-AC05-00OR22725 with the U.S. Department of En-
ergy. The United States Government retains and the publisher, by accept-
ing the article for publication, acknowledges that the United States Gov-
ernment retains a non-exclusive, paid-up, irrevocable, world-wide license
to publish or reproduce the published form of this manuscript, or allow
others to do so, for United States Government purposes.

compute time on Jaguar is managed as part of the US De-
partment of Energy’s Innovative and Novel Computational
Impact on Theory and Experiment (INCITE) program. For
2011, the average allocation for each accepted project was
27 million CPU-hours [1]. While this may seem to be all the
time in the world, it represents just over 120 hours (5 days)
at full scale on Jaguar. In these situations, it is desirable
to achieve as much efficiency as possible to conserve re-
sources. Much of this efficiency work is focused on improv-
ing the computational performance of the scientific codes,
as that is where they spend the bulk of their time. However,
attention should also be paid to the time spent reading the
input deck, writing out results, and performing defensive
I/O to protect against system failure during long-running
simulations. Time spent performing these operations also
represents time that could be used to more quickly perform
the science and/or improve the resolution and detail of the
study.

Our activities during the acceptance of Jaguar and Spi-
der revealed a substantial digression between the expected
and actual performance of the systems. While we had made
provisions during the design of the system to spread the I/O
load throughout the network in a manner inspired by Azeez
et al [4], congestion and the associated load imbalance de-
graded our aggregate performance. This was clearly visi-
ble when watching the bandwidth statistics on the back-end
storage. We would see impressive sustained performance at



the expected peak bandwidth numbers, only to see the aver-
age bandwidth numbers plummet as the bulk of the writes
completed their task, leaving several stragglers writing their
share of the work at a small fraction of the available aggre-
gate speed.

We identified the source of these losses and developed
techniques to avoid or reduce their impact, realizing the per-
formance of the storage system and allowing for reduced
time-to-solution for a suite of scientific applications.

2 Spider and SION

Spider is one of the world’s fastest and largest POSIX
complaint parallel file systems. Designed for high perfor-
mance in a small footprint, the systems is built from scalable
building blocks. Each block is comprised of a DataDirect
Networks (DDN) S2A9900 storage system, driven by four
Lustre Object Storage Servers (OSS). Each DDN is con-
figured with five high density drive trays, with 300 drives
housed in 20U of rack space. For Spider, we populate
those trays with 280 SATA drives, each with a capacity of
1 TB. Write-back caching is disabled to prevent unrecov-
erable data loss in the event of a controller failure. These
drives are grouped into 28 DirectRAID tiers (RAID3 with
two parity drives), with seven 7.2 TB LUNs exposed over
DDR Infiniband for each OSS. Each OSS is a Dell Pow-
erEdge 1950, with 16 GB of memory and two quad core
Xeon E5410 running at 2.3GHz. Each OSS serves seven
Object Storage Targets (OST). This building block is ca-
pable of delivering over 5.5 GB per second of raw block
storage.

There are 48 of these building blocks in the Spider sys-
tem, giving it an aggregate of 13,440 TB raw storage, or
over 10 PB of capacity after accounting for the parity over-
head of DirectRAID. There are 192 OSS servers, providing
14 teraflops of compute and 3 TB of memory dedicated to
our Lustre file systems. This aggregate capability is broken
up into three disjoint chunks to spread the metadata load.
Widow1 has half the storage – 672 OSTs – while widow2
and widow3 equally and disjointly split the other half, each
with 336 OSTs.

Metadata services are provided by three identical Meta-
Data Servers (MDS). Each MDS is a Dell R900 with 64
GB of memory and four quad core Xeon E7330 running at
2.6 GHz. The MetaData Target (MDT) for each file system
is stored on a shared Engineo 7900 (XBB2) storage sys-
tem, connected via four 4Gbps Fibre Channel connections
to each MDS. Each MDT is configured as a RAID10 vol-
ume on the XBB2 with 80 SATA 1 TB drives, short stroked
to provide an 8 TB LUN.

Spider was intended to be used as a center-wide file sys-
tem, and we designed our Scalable I/O Network (SION) to
accommodate its performance goals. SION is deployed as

a multi-stage DDR Infiniband fabric, and provides over 889
GB/s of bi-sectional bandwidth. The network infrastructure
is based on three 288-port Cisco 7024D DDR Infiniband
switches. Two core switches are dedicated to providing con-
nectivity between Jaguar and Spider, while a third is used to
tie the core switches together and provide links to the MDS
and management services. That aggregation switch also has
connectivity to the rest of the center via a fourth 7024D. Spi-
der is connected to the core switches via 48 24-port Flex-
tronic “Reindeer” switches, which allows the DDN 9900
storage systems to also be accessed over SION for test pur-
poses. In total, SION contains over 3,000 Infiniband ports
and over three miles of optical cables.

The 7024D switches each provide 288 user-facing ports
via 24 leaf modules with 12 external ports and 12 uplinks
into the internal fat-tree topology. Of the combined 48 mod-
ules in the two core switches, 32 are used to connect Jaguar
to Spider – 16 in each core switch. In each of those mod-
ules, 6 ports are connected to service nodes (SIO) on Jaguar,
and 6 are used to connect to an OSS or storage in Spider.

3 The Direct-attached Lustre File System

During the initial delivery and acceptance of the XT5
segment of Jaguar, we deployed a direct-attached Lustre
file system to address any issues in the back-end storage
and allow early users a more stable platform while we pro-
ceeded to test Lustre’s routing capabilities at an unprece-
dented scale. To this end, 96 SIO nodes on Jaguar were
configured to be OSSes. Each OSS was configured virtually
identically to the Spider system – 7 OSTs, one per exported
LUN, with one LUN per DDN 9900 tier. Using the prop-
erties of SION noted above, we carefully paired each SIO
node with storage that would be directly accessible from
the same leaf module in the 7024D switch as the SIO node.
This allowed us to avoid any potential source of congestion
on the InfiniBand network as all network traffic from the
OSS to the backend storage was isolated to the crossbar and
did not traverse the fat-tree fabric.

To establish a baseline for potential performance, we
used XDD on the XT5 SIO nodes to exercise the storage
system. XDD was configured to exercise all seven LUNs
on each OSS simultaneously. Each LUN received a steady
workload of sequential 1 MB requests, with 4 requests were
kept active at all times. In this manner, each OSS had a to-
tal of 28 I/O requests outstanding at any given point during
the testing. XDD was configured to run each test for 60
seconds, and the maximum bandwidth achieved from three
trials is presented in Figure 1. The aggregate performance
of the system scales nearly linearly as each additional OSS
is added to the test. We reach our peak bandwidth of 120
GB/s running with 96 servers, with each LUN contributing
nearly 180 MB/s. The slight ripple in the XDD results as

2



IOR Write (Default placement)
XDD Write

Number of OSSes

G
B

yt
es

p
er

se
co

n
d

100806040200

140

120

100

80

60

40

20

0

Figure 1: Baseline write performance for direct-attached Lustre filesystem

the number of OSSes increases is due to internal limits of
the DDN 9900 architecture. While each port on the couplet
is capable of 1,500 MB/s when tested in isolation, the sin-
glet reaches a maximum bandwidth of approximately 2,500
MB/s. More recent versions of the DDN firmware lift the
per-singlet bandwidth to slightly more than 2800 MBbyte/s
for our configuration.

Having demonstrated that the back-end storage is capa-
ble of delivering a raw performance of over 120 GB/s, we
pressed forward with a Lustre configuration on the XT5.
Each of the 18,688 compute nodes was configured to be a
client of the direct-attached file system, communicating di-
rectly over Cray’s proprietary network to the OSS servers.
We used IOR in file-per-process mode to load the file sys-
tem for the Lustre level testing. We configured the job
launcher to only place one process per node to avoid any
host-level bottlenecks in the client code, allowing us to fo-
cus on the network and storage performance. We used the
Lustre utility lfs setstripe to pre-populate the output
files for the IOR runs, which avoided file creation overheads
and ensured that we did not have ranks/files contending for
an OST. IOR was configured to insert a barrier between
each phase of its operation to ensure that all ranks had their
respective file open prior to testing bulk I/O performance.
Each rank transferred 3 GB of data with a transfer size of 8
MB. The maximum bandwidth achieved from five trials is
presented in Figure 1.

Seconds

P
er

ce
n

to
fr

an
ks

co
m

p
le

te

282624222018161412

100

80

60

40

20

0

Figure 2: Cumulative Distribution Function plot of per-writer
completion time from best run with default placement.

3



Transmitting Nodes

M
B

yt
es

p
er

se
co

n
d

1614121086420

3200
3000
2800
2600
2400
2200
2000
1800
1600

Figure 3: Unidirectional link bandwidth on SeaStar.

Transmitting Pairs

M
B

yt
es

p
er

se
co

n
d

1614121086420

6500

6000

5500

5000

4500

4000

3500

3000

Figure 4: Bidirectional link bandwidth on SeaStar.

Testing at small OSS counts demonstrated performance
that was in line with our expectations of approximately
1250 MBbyte/s per OSS. This performance scaled linearly
up to 6 OSSes and then fell below our expectations of near-
linear scaling. Beyond 40 servers in this scaling study, per-
formance became highly erratic, achieving at best 86% of
the raw baseline, and 61% in the worst case. As illus-
trated by the “Default” series in the cumulative distribution
function (CDF) presented in Figure 2, a large difference in
completion times persists between the fastest and slowest
ranks. A large number of writers complete near the 18 sec-
ond mark, but after 19 seconds a number of writes straggle
in over the course of 10 seconds. Investigating the cause
of this behavior led us to network-congestion on Jaguar’s
SeaStar2+ network as a primary cause.

4 SeaStar Link Congestion

Every node in the Cray XT5 is connected into a 3D torus
via the SeaStar 2+ interconnect chip (or NIC). Much has

been written about the XT network since its introduction
in Sandia’s Red Storm machine ([7], [10], [6] for exam-
ple), so we will only briefly touch upon the details here.
Each SeaStar NIC also acts as a router for the network, and
has six independent, full duplex links to the rest of the sys-
tem. Each input port has a set of lookup tables that deter-
mine the egress port of a packet based on the destination
address of the packet. These tables are initialized to imple-
ment dimension-order routing during the process of booting
the machine, and remain static until the next boot. Barring
accommodations for failed or missing components that pre-
vent a uniform torus topology, packets are routed in a fix
dimension order (X+, Y+, Z+, X-, Y-, Z-) [2].

We verified the bandwidth properties of the SeaStar net-
work using a locally-developed Portals tool. This tool di-
vides the nodes it is launched on into contiguous segments
along each axis, and then generates traffic between pairs of
nodes chosen to ensure that a single link is stressed in the
axis under test. The offered load is 30 seconds of a stream-
ing series of 1 MB transmit requests; we allow up to 256
requests to be in flight for each pair of nodes and the re-
ceiving node returns credits to the transmitting node every
32 messages. The tool varies the number of node pairings
from one to the maximum number possible in each segment
and tests each axis independently. We present the results
from the Y axis of Jaguar in Figures 3 and 4. This axis
contains the maximums of both cable length and dimension
diameter for the machine. The data for other dimensions is
nearly identical.

As shown in Figure 3, we measured 1,705 Mbytes/s of
injection bandwidth from user space on a single node. Link
bandwidth remains nearly constant at approximately 3,020
MB/s from 2 to 15 transmitting nodes, with a small in-
crease to 3,094 MB/s at 16 transmitting nodes. When run-
ning the link in a full duplex mode (Figure 4) bandwidth
nearly doubles as expected. Our initial pair achieves 3,363
MB/s, somewhat less than the perfect 3,410 MB/s. This
is likely due to measurement noise and other small ineffi-
ciencies from the HyperTransport (HT) and processor mem-
ory buses. The link saturates at approximately 5,950 MB/s,
which is slightly less than the expected 6,040 MB/s. We be-
lieve this loss to also be a result of measurement noise. The
down-tick at 16 pairs may be due to credit starvation, but
this was not investigated.

Our IOR testing (§ 3) showed that we can expect each
OST to contribute 180 MB/s to the aggregate bandwidth
under sustained loading of the entire Spider system. Given
our measured SeaStar link bandwidth, each link can support
17 client-OST pairs before reaching saturation. By exam-
ining the routes programmed into the torus at the time of
the test, we can calculate the number of client-OST pairs
communicating over each link. We found that 70% of the
test runs using the default placement had at least one link

4



Predicted

Distance from primary congestion point

1614121086420

1000
100
10
1

0.1

Actual

M
B

yt
es

p
er

se
co

n
d

1000
100
10
1

0.1

Figure 5: SeaStar link balance under congestion.

with 18 or more pairs communicating over it, 42% had at
least one link with over 34 pairs, 21% with over 60 pairs,
and 3% had over 70. This magnitude of bandwidth sharing
is a significant contributing factor to the poor scaling results
initially demonstrated.

In their discussion of age-based packet arbitration, Abts
and Weisser [3] describe the behavior of the SeaStar net-
work when packet age is not taken into account. Traffic
traveling over more hops receives geometrically less band-
width. The bandwidth each node receives in the test de-
scribed above is governed by the equation

Bnode =
Blink

(2n)H

wheren is the number merging streams (1 for the farthest
node from the congestion point, 2 for all other nodes) and
H is the number of hops to the network segment under test.
The transmitting node adjacent to the tested link hasn =
2, H = 1, and is expected to receive half of the available
bandwidth; the next node from the test link hasn = 2, D = 2
and receives a quarter of the available bandwidth, and so
on. Figure 5 shows that the the first node achieved 1,513
MB/s, which compares favorably to the expected value of
1,510 MB/s. For the nodes farthest from the test link, the
nodes receive approximately 166 KB/s, or three orders of
magnitude less bandwidth than the node nearest the link.
This behavior further distorts the balance of the I/O times
of client-OST pairs sharing a saturated link.

5 Controlling SeaStar Congestion By Placing
I/O

To avoid congestion on the SeaStar links, we must care-
fully control which client talks to a particular OSS for the
direct-attached file system. We achieve this by drawing
from the well known pattern of nearest-neighbor commu-
nication often found in HPC applications. Client nodes are
chosen such that each client is a minimum number of hops
(distance) from the OSS responsible for the file it is writ-
ing. Given a sufficient set of nodes from which to select
active clients, it is possible to avoid saturating a link as
there are only seven OSTs served by each OSS, and a single
client/file per OST for our testing.

For a 3D torus, given the coordinates of two nodesn1, n2,
and the length of each axisLaxis, the hop counth (distance)
is given by:

h(n1,n2) = dx(n1,n2)+ dy(n1,n2)+ dz(n1,n2)

where

daxis(n1,n2) = min

{

(n1,axis −n2,axis) modLaxis

(n2,axis −n1,axis) modLaxis

The best client(s) to use for a specified OSSnOSS is given
by calculatingh(n,nOSS) for eachn in the set of compute
nodes available. Choose theN nodes with minimum dis-
tance tonOSS, and remove them from the set of available
node. These are the best clients to use for the OSS. Repeat
these steps for each OSS you wish to involve in the test.

Using the above algorithm and placing all 18,688 com-
pute nodes into the available set, we ran another scaling
study of the direct attached Lustre file system. We used
lfs setstripe to place the file for each rank on a known
OST – and thereby known OSS – and used a feature of the
job launch facility to place the ranks of the IOR job onto
the compute nodes such that the clients were paired up with
OSTs on the nearest OSS to the client. The results were
dramatic; as seen in Figure 6, aggregate bandwidth was in-
creased an average of 18% when more than 40 OSSes were
involved in the test. We see a minimum gain of 5%, and re-
alize increases of over 45% in the best cases. Using place-
ment of the I/O to avoid saturating links of the torus, IOR is
able to achieve 87 to 92% of the aggregate raw performance
of the back-end storage system as measured by XDD. In
these tests, no more than 7 client-OST pairs shared a com-
mon link in the torus for their communication. This com-
pares favorably to the default placement, where over 70%
of the links had 18 or more client-OST pairs, overwhelming
the links with offered load.

The reduction in the difference between the fastest and
slowest writer when using placement is shown by the
“Placed” series in Figure 7. All writes complete within a

5



IOR Write (Default placement)
IOR Write (Improved placement)
XDD Write

Number of OSSes

G
B

yt
es

p
er

se
co

n
d

100806040200

140

120

100

80

60

40

20

0

Figure 6: Write performance for direct-attached Lustre filesystem

Placed
Default

Seconds

P
er

ce
n

to
fr

an
ks

co
m

p
le

te

282624222018161412

100

80

60

40

20

0

Figure 7: Cumulative Distribution Function plot of per-writer
completion time. “Default” series is from best run without place-
ment, “Placed” series is from worst run with placement.

span of less than 5 seconds, while the “Default” placement
complete over a span of approximately 15.5 seconds. With
the elimination of congestion in the torus, we achieve a bet-
ter balance between writers and we leave less of the storage
system idle while waiting for the stragglers.

While the results when allowing the placement algo-
rithm free reign of the machine to optimize the node place-
ment are very encouraging, many applications desire the
improved performance even when not using every core pos-
sible. To determine the potential improvement when using
only 672 nodes of the machine – one for each OST in the
test file system – we ran an experiment using the same nodes
that the job launcher gave us for the un-optimized place-
ment. Additionally, to investigate the impact of location in
the torus on performance, we launched a “place-holder” job
that consumed a specified number of nodes and kept them
idle, displacing the location from which our test job would
execute. The parameters of the test are as before, with the
number of OSTs fixed at 672 and the variables being the
offset within the machine and placement of the processes
performing I/O. Each test was run five times, and the best
bandwidth is reported in Figure 8. Optimizing which pro-
cessing element performs I/O to a particular OST improved
performance from 38 to 58%. In all cases throughput within
5% of the maximum observed was achieved when allow-
ing unconfined placement of processes performing I/O. This
demonstrates that substantial improvements are possible us-

6



IOR Write (Optimized placement)
IOR Write (Default placement)

Placeholder nodes

G
B

yt
es

p
er

se
co

n
d

16000800040002000None

140

120

100

80

60

40

20

0

Figure 8: Write performance for direct-attached Lustre filesystem
with confinement of available compute nodes.

ing our approach even for smaller scale application runs.

6 LNET Routing and the Baseline Routed
Configuration

For the initial configuration of the routed file system,
the XT5 was configured in the ‘ptl’ LNET network and
our servers (OSS and MDS) where configured in the ‘o2ib’
LNET network. We converted the existing OSS servers
(XT5 SIO nodes) from the direct-attached file system into
LNET routers. We then added another 96 XT5 SIO nodes
as LNET routers, bringing the total number of routers on
the Jaguar system to 196. While this configuration had the
benefit of a shared center-wide file system configuration,
we quickly found that there were obstacles to achieving
the performance potential we had demonstrated during our
direct-attached testing. The LNET algorithm for choosing
a router prohibited the use of the placement technique to
avoid congestion on the torus. Furthermore, I/O traffic was
no longer isolated to traversal of a an InfiniBand crossbar,
causing congestion within the InfiniBand fat-tree network.

In order to chose the router to use for a given message
to a remote LNET network, the client keeps each possible
router for a given weight class on a list. For each mes-
sage to be sent, the first alive router is selected from the
list as the destination for this message, and that router entry
is then placed at the tail of the list. In this manner, the client
will distribute the load among all alive routers in a given
weight class for a remote LNET. When there is more than
one router for a remote network it is no longer possible for
an application to predict which router will handle a given

Congested
Uncongested

Nodes

G
B

yt
es

p
er

se
co

n
d

1009080706050403020

140

120

100

80

60

40

20

Figure 9: Aggregate block-level bandwidth of SION to 24 DDN
9900 Couplets. This test was performed with updated firmware
compared to Figures 1 and 8.

request, rendering any attempt to place clients topologically
close to their destination ineffective.

In addition to prohibiting attempts to optimize conges-
tion on the torus, this simple route configuration will in-
ject traffic into the InfiniBand fabric from ports that are
not on the appropriate leaf module. This forces traffic to
traverse the internal fat-trees on the core switches, lead-
ing to congestion deep within the switches and reduced
aggregate performance. While adaptive routing strate-
gies [8] have shown significant performance improvements
for long-lived communication patterns, their effectiveness
in short-lived, highly-dynamic communication patterns has
not been demonstrated.

Figure 9 shows an example of the impact of congestion
in the InfiniBand fabric. This is a block level test, much
like the XDD tests from the direct-attached file system. The
“Uncongested” series shows the linear increase in speed ex-
pected when the SIO node is issuing block IO to a stor-
age back-end on the same leaf module. The “Congested”
series shows the aggregate bandwidth achieved when an
SIO node is forced to traverse the fat-tree to communicate
with an off-module storage module. At 96 SIO nodes – us-
ing half of the Spider hardware (24 couplets/48 singlets) –
the observed performance is 135.7 GB/s without congestion
and 94.1 GB/s with congestion. This represents a 30% per-
formance degradation. These experiments were performed
some time after the results from Figures 1 and 6. We had
then transitioned much of our internal block level testing to
use our newly developed synthetic benchmark,fair-lio.
fair-lio has better sequential I/O characteristics com-

7



pared to XDD and some of the improved performance noted
in the “Uncongested” series of Figure 9 is a result of that
change.

7 Improved Routing Configurations

To minimize the congestion on the InfiniBand network
and to allow application developers the ability to optimize
their I/O using our placement strategy, the following routing
configurations were considered:

1. Nearest-neighbor. In this configuration, the servers
and routers are broken up into 32 sets. Membership
in a set is governed by the module in the core switch
the element is connected to. This configuration leads
to 32 remote LNETs each accessible by 6 routers.
Each client is configured to communicate with a re-
mote LNET using the router for that set that is topo-
logically nearest in the 3D torus. As the distribution
of routers is not perfectly even throughout the torus,
static load-balancing is performed to balance the num-
ber of clients serviced by each router. This configura-
tion would increase variability in performance as the
bandwidth available to a job will have a greater depen-
dency on its location within the torus. Smaller jobs
will see reduced bandwidth as the set of routers in ac-
tive use grows proportionally to the job size.

2. Round-robin. In this configuration, the servers and
routers are again broken up into 32 sets as with
Nearest-neighbor. Instead of using the nearest router,
one of the 6 optimal routers is chosen in a round-robin
fashion for each remote LNET. While this configura-
tion allows for placement and avoids congestion on the
InfiniBand fabric, it unnecessarily distributes I/O traf-
fic throughout the torus.

3. Projection. In this configuration, each server gets a
unique remote LNET. There are 192 remote LNETs,
and the clients are configured with a single router for
each remote LNET. This is effectively a projection of
the OSS servers into the torus. It allows placement of
clients to avoid congestion on the torus and avoids con-
gestion on the InfiniBand fabric. Each client may see
significant variances in distance to particular servers,
but this is no worse than encountered in traditional
direct-attached storage.

In all cases, I/O for a particular OSS is directed to a
router attached to a leaf module in the InfiniBand fabric
common to that OSS. This ensures that there is no traversal
of the switch’s internal fat-tree thereby avoiding the issue of
link saturation and head-of-line blocking in the fabric.

We tested the three configurations with IOR and com-
pared them to our baseline routed configuration. We tested

Read Write

Projection
Round Robin
Baseline

G
B

yt
es

p
er

se
co

n
d

PlacedDefaultPlacedDefault

140

120

100

80

60

40

20

0

Figure 10: IOR write bandwidth on routed filesystem.

with the full machine available for optimization using IOR
in file-per-process mode against 672 OSTs. Each rank
wrote 8 GB of data with a transfer size of 8 MB to a file
configured with a single stripe. Five trials were run and
the maximum aggregate bandwidth is reported in Figure 10.
Our baseline configuration, with its congestion issues in
both the torus and InfiniBand fabric, resulted in 57.1 GB/s
for reads and 47.6 GB/s for writes using the default place-
ment of ranks. Round-robin does slightly better when not
using our placement strategy, at 60.6 GB/s for reads and
48.1 GB/s for writes. Round-robin performs well when
placement is used, yielding 102 GB/s reads and 83 GB/s
writes. Projection yields the best observed results with 115
GB/s reads and 92 GB/s writes without placement, and 123
GB/s reads and 113 GB/s writes with placement. Nearest-
neighbor is not reported due to issues in the placement cal-
culations and limited dedicated system time for testing these
configuration. We leave this issue open for further analysis
and future work.

Using the Projection routing configuration with the com-
bined storage of Spider – 1,344 OSTs – we were able to
demonstrate aggregate bandwidths of over 244 GB/s for
both read and writes. This result was generated by IOR in
file-per-process mode. Each rank wrote 8 GB of data with a
transfer size of 8 MB.

8 Conclusions

During the deployment of Jaguar XT5 at the OLCF, the
performance of the direct-attached Lustre file system did
not meet our expectations. A detailed analysis revealed that
congestion on the Cray SeaStar torus was a primary source

8



of this discrepancy. To address this issue, a mechanism
was developed to allow clients to be paired to specific I/O
servers – a technique we refer to as “placement” – reducing
the load on common XT5 torus links to avoid link satura-
tion. Using this approach, 92% of the raw back-end storage
performance was achieved at the file system level using the
IOR synthetic benchmark. Furthermore, this level of per-
formance (within 5%) was achieved even when the choice
of clients performance I/O was significantly limited. These
results indicate that placement is a viable mechanism to in-
crease aggregate I/O performance, not only for large-scale
application invocations that span the entire Jaguar XT5 plat-
form, but also for smaller scale applications that may use a
much smaller fraction of the available system.

The performance benefits of placement did not auto-
matically follow when the Lustre file system was transi-
tioned from a direct-attached configuration to a routed con-
figuration in support of center-wide access to Spider. The
naive configuration in which all 192 routers were assigned
the same weight coupled with LNET’s per-message round-
robin selection policy prohibited our optimization strategy.
In addition to negating the benefits of reduced congestion
on the SeaStar 2+ network, this configuration introduced
substantial congestion within the SION InfiniBand fabric.
To regain opportunities for optimization via placement and
eliminate InfiniBand congestion, we developed and evalu-
ated three additional LNET routing configurations.

After weighing the benefits and drawbacks of alternate
routing configurations, a configuration dubbed “Projection”
was ultimately selected for our production computing envi-
ronment. This configuration yielded over 90% of the raw
back-end storage performance which compares quite favor-
ably to the 92% achieved on the direct-attached file sys-
tem. In conjunction with the placement strategies outlined
in this paper, this configuration demonstrated aggregate per-
formance of 244 GB/s for both reads and writes when using
the entire Spider storage system.

References

[1] Innovative and Novel Computational Impact on The-
ory and Experiment (INCITE) Awards Fact Sheet.
http://science.energy.gov/~/media/ascr/pdf/

incite/docs/2011_incite_fact%sheets.pdf.

[2] D. Abts. The Cray XT4 and Seastar 3-D Torus Intercon-
nect. http://research.google.com/pubs/archive/

36896.pdf, 2010.

[3] D. Abts and D. Weisser. Age-based packet arbitration in
large-radix k-ary n-cubes. InSC, 2007.

[4] B. Azeez, H. Kim, Y. Jin, and E. Kim. I/O Node Placement
for Performance and Reliability in Torus Networks. InInter-
national Conference on Parallel and Distributed Computing
and Systems (PCDS2006), IASTED, 2006.

[5] A. Bland, R. Kendall, D. Kothe, J. Rogers, and G. Shipman.
Jaguar: The world’s most powerful computer. InProceed-
ings of the Cray User Group Conference, 2009.

[6] R. Brightwell, T. Hudson, K. Pedretti, R. Riesen, and K. D.
Underwood. Portals 3.3 on the Sandia/Cray Red Storm Sys-
tem. In Proceedings of the Cray User Group Conference,
2005.

[7] R. Brightwell, K. Pedretti, and K. D. Underwood. Ini-
tial performance evaluation of the Cray SeaStar intercon-
nect. InProceedings of the 13th IEEE Symposium on High-
Performance Interconnects, 2005.

[8] P. Geoffray and T. Hoefler. Adaptive routing strategies for
modern high performance networks.High-Performance In-
terconnects, Symposium on, 0:165–172, 2008.

[9] G. Shipman, D. Dillow, S. Oral, and F. Wang. The Spider
center wide file system: From concept to reality. InPro-
ceedings of the Cray User Group Conference, 2009.

[10] J. S. Vetter, S. R. Alam, T. H. D. Jr., M. R. Fahey, P. C.
Roth, and P. H. Worley. Early Evaluation of the Cray XT3.
In Proceedings of the 20th IEEE International Parallel and
Distributed Processing Symposium, 2006.

9


